Vitamin D Intake May Reduce SARS-CoV-2 Infection Morbidity in Health Care Workers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Physical Data
2.3. Laboratory Tests
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zemb, P.; Bergman, P.; Camargo, C.A., Jr.; Cavalier, E.; Cormier, C.; Courbebaisse, M.; Hollis, B.; Joulia, F.; Minisola, S.; Pilz, S.; et al. Vitamin D deficiency and the COVID-19 pandemic. J. Glob. Antimicrob. Resist. 2020, 22, 133–134. [Google Scholar] [CrossRef] [PubMed]
- Karonova, T.; Andreeva, A.; Nikitina, I.; Belyaeva, O.; Mokhova, E.; Galkina, O.; Vasilyeva, E.; Grineva, E. Prevalence of Vitamin D deficiency in the North-West region of Russia: A cross-sectional study. J. Steroid. Biochem. Mol. Biol. 2016, 164, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Wiersinga, W.J.; Rhodesz, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Mercola, J.; Grant, W.B.; Wagner, C.L. Evidence Regarding Vitamin D and Risk of COVID-19 and Its Severity. Nutrients 2020, 12, 3361. [Google Scholar] [CrossRef]
- Azrielant, S.; Shoenfeld, Y. Vitamin D and the immune system. Isr. Med. Assoc. J. 2017, 19, 510–511. [Google Scholar]
- Lemire, J.M.; Adams, J.S.; Kermani-Arab, V.; Bakke, A.C.; Sakai, R.; Jordan, S.C. 1,25-Dihydroxyvitamin D3 suppresses human T helper/inducer lymphocyte activity in vitro. J. Immunol. 1985, 134, 3032–3035. [Google Scholar]
- Cantorna, M.T.; Snyder, L.; Lin, Y.D.; Yang, L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients 2015, 7, 3011–3021. [Google Scholar] [CrossRef] [Green Version]
- Jeffery, L.E.; Burke, F.; Mura, M.; Zheng, Y.; Qureshi, O.S.; Hewison, M.; Walker, L.S.; Lammas, D.A.; Raza, K.; Sansom, D.M. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J. Immunol. 2009, 183, 5458–5467. [Google Scholar] [CrossRef] [Green Version]
- Panagiotou, G.; Tee, S.A.; Ihsan, Y.; Athar, W.; Marchitelli, G.; Kelly, D.; Boot, C.S.; Stock, N.; Macfarlane, J.; Martineau, A.R.; et al. Low serum 25-hydroxyvitamin D (25[OH]D) levels in patients hospitalized with COVID-19 are associated with greater disease severity. Clin. Endocrinol. 2020, 93, 508–511. [Google Scholar] [CrossRef]
- Carpagnano, G.E.; Di Lecce, V.; Quaranta, V.N.; Zito, A.; Buonamico, E.; Capozza, E.; Palumbo, A.; Di Gioia, G.; Valerio, V.N.; Resta, O. Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory failure due to COVID-19. J. Endocrinol. Investig. 2021, 44, 765–771. [Google Scholar] [CrossRef]
- Pizzini, A.; Aichner, M.; Sahanic, S.; Bohm, A.; Egger, A.; Hoermann, G.; Kurz, K.; Widmann, G.; Bellmann-Weiler, R.; Weiss, G. Impact of Vitamin D Deficiency on COVID-19—A Prospective Analysis from the CovILD Registry. Nutrients 2020, 12, 2775. [Google Scholar] [CrossRef]
- Macaya, F.; Espejo Paeres, C.; Valls, A.; Fernandez-Ortiz, A.; Gonzalez Del Castillo, J.; Martin-Sanchez, J.; Runkle, I.; Rubio Herrera, M.A. Interaction between age and vitamin D deficiency in severe COVID-19 infection. Nutr. Hosp. 2020, 37, 1039–1042. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, H.W.; Niles, J.K.; Kroll, M.H.; Bi, C.; Holick, M.F. SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS ONE 2020, 15, e0239252. [Google Scholar] [CrossRef] [PubMed]
- Merzon, E.; Tworowski, D.; Gorohovski, A.; Vinker, S.; Golan Cohen, A.; Green, I.; Frenkel-Morgenstern, M. Low plasma 25(OH) vitamin D level is associated with increased risk of COVID-19 infection: An Israeli population-based study. FEBS J. 2020, 287, 3693–3702. [Google Scholar] [CrossRef] [PubMed]
- Karonova, T.L.; Andreeva, A.T.; Golovatuk, K.A.; Bykova, E.S.; Skybo, I.I.; Grineva, E.N.; Shlyakhto, E.V. Inficirovannost SARS-CoV-2 v zavisimosti ot urovnya obespechennosti vitaminom D. Probl. Endokrinol. 2021, 67, 20–28. [Google Scholar] [CrossRef]
- Mutambudzi, M.; Niedzwiedz, C.; Macdonald, E.B.; Leyland, A.; Mair, F.; Anderson, J.; Celis-Morales, C.; Clelend, J.; Forbes, J.; Gill, J.; et al. Occupation and risk of severe COVID-19: Prospective cohort study of 120,075 UK Biobank participants. Occup. Environ. Med. 2021, 78, 307–314. [Google Scholar] [CrossRef]
- Faniyi, A.A.; Lugg, S.T.; Faustini, S.E.; Webster, C.; Duffy, J.E.; Hewison, M.; Shields, A.; Nightingale, P.; Richter, A.G.; Thickett, D.R. Vitamin D status and seroconversion for COVID-19 in UK healthcare workers. Eur. Respir. J. 2021, 57, 2004234. [Google Scholar] [CrossRef]
- Malek Mahdavi, A. A brief review of interplay between vitamin D and angiotensin-converting enzyme 2: Implications for a potential treatment for COVID-19. Rev. Med. Virol. 2020, 30, 2119. [Google Scholar] [CrossRef]
- Entrenas Castillo, M.; Entrenas Costa, L.M.; Vaquero Barrios, J.M.; Alcalá Díaz, J.F.; López Miranda, J.; Bouillon, R.; Quesada Gomez, J.M. Effect of calcifediol treatment and best available therapy versus best available therapy on intensive care unit admission and mortality among patients hospitalized for COVID-19: A pilot randomized clinical study. J. Steroid. Biochem. Mol. Biol. 2020, 203, 105751. [Google Scholar] [CrossRef]
- Yildiz, M.; Senel, M.U.; Kavurgaci, S.; Ozturk, F.E.; Ozturk, A. The prognostic significance of vitamin D deficiency in patients with COVID-19 pneumonia. Bratisl. Lek. Listy 2021, 122, 744–747. [Google Scholar] [CrossRef]
- Annweiler, C.; Beaudenon, M.; Simon, R.; Guenet, M.; Otekpo, M.; Célarier, T.; Gautier, J.; GERIA-COVID Study Group. Vitamin D supplementation prior to or during COVID-19 associated with better 3-month survival in geriatric patients: Extension phase of the GERIA-COVID study. J. Steroid. Biochem. Mol. Biol. 2021, 213, 105958. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, H.A.; de Silva, N.L.; Sumanatilleke, M.; de Silva, S.D.N.; Gamage, K.K.K.; Dematapitiya, C.; Kuruppu, D.C.; Ranasinghe, P.; Pathmanathan, S.; Katulanda, P. Prognostic and therapeutic role of vitamin D in COVID-19: Systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2021, dgab892. [Google Scholar] [CrossRef] [PubMed]
- The prevention, diagnosis and treatment of the new coronavirus infection 2019-nCoV. Temporary guidelines Ministry of Health of the Russian Federation. PULMONOLOGIYA 2019, 29, 655–672. (In Russian) [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [Green Version]
- Sealedenvelope. Available online: https://www.sealedenvelope.com/power/binary-superiority/ (accessed on 8 December 2021).
- Turrubiates-Hernández, F.J.; Sánchez-Zuno, G.A.; González-Estevez, G.; Hernández-Bello, J.; Macedo-Ojeda, G.; Muñoz-Valle, J.F. Potential immunomodulatory effects of vitamin D in the prevention of severe coronavirus disease 2019: An ally for Latin America (Review). Int. J. Mol. Med. 2021, 47, 32. [Google Scholar] [CrossRef]
- Charoenngam, N.; Holick, M.F. Immunologic effects of vitamin D on human health and disease. Nutrients 2020, 12, 2097. [Google Scholar] [CrossRef]
- Kumar, R.; Rathi, H.; Haq, A.; Wimalawansa, S.J.; Sharma, A. Putative roles of vitamin D in modulating immune response and immunopathology associated with COVID-19. Virus Res. 2021, 292, 198235. [Google Scholar] [CrossRef]
- Karonova, T.L.; Andreeva, A.T.; Golovatuk, K.A.; Bykova, E.S.; Simanenkova, A.V.; Vashukova, M.A.; Grant, W.B.; Shlyakhto, E.V. Low 25(OH)D Level Is Associated with Severe Course and Poor Prognosis in COVID-19. Nutrients 2021, 13, 3021. [Google Scholar] [CrossRef]
- Bychinin, M.V.; Klypa, T.V.; Mandel, I.A.; Andreichenko, S.A.; Baklaushev, V.P.; Yusubalieva, G.M.; Kolyshkina, N.A.; Troitsky, A.V. Low Circulating Vitamin D in Intensive Care Unit-Admitted COVID-19 Patients as a Predictor of Negative Outcomes. J. Nutr. 2021, 151, 2199–2205. [Google Scholar] [CrossRef]
- Sowah, D.; Fan, X.; Dennett, L.; Hagtvedt, R.; Straube, S. Vitamin D levels and deficiency with different occupations: A systematic review. BMC Public Health 2017, 17, 519. [Google Scholar] [CrossRef]
- Sudheesh, S.; Boaz, R.J. Degrees of Deficiency: Doctors and Vitamin D. Indian J. Community Med. 2017, 42, 53. [Google Scholar] [CrossRef]
- World Health Organization. The Impact of COVID-19 on Health and Care Workers: A Closer Look at Deaths; World Health Organization: Geneva, Switzerland, 2021; Available online: https://apps.who.int/iris/handle/10665/345300 (accessed on 28 October 2021).
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; Franch, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence That Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef] [Green Version]
- Lakkireddy, M.; Gadiga, S.G.; Malathi, R.D.; Karra, M.L.; Raju, I.P.M.; Chinapaka, S.; KSS, S.B.; Kandakatla, M. Impact of Pulse D Therapy on the Inflammatory Markers in Patients with COVID-19. Sci. Rep. 2021, 11, 1064. [Google Scholar]
- Heaney, R.P.; Davies, K.M.; Chen, T.C.; Holick, M.F.; Barger-Lux, M.J. Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am. J. Clin. Nutr. 2003, 77, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Gönen, M.S.; Alaylıoğlu, M.; Durcan, E.; Özdemir, Y.; Şahin, S.; Konukoğlu, D.; Nohut, O.K.; Ürkmez, S.; Küçükece, B.; Balkan, İ.İ.; et al. Rapid and Effective Vitamin D Supplementation May Present Better Clinical Outcomes in COVID-19 (SARS-CoV-2) Patients by Altering Serum INOS1, IL1B, IFNg, Cathelicidin-LL37, and ICAM1. Nutrients 2021, 13, 4047. [Google Scholar] [CrossRef] [PubMed]
- Oristrell, J.; Oliva, J.C.; Casado, E.; Subirana, I.; Domínguez, D.; Toloba, A.; Balado, A.; Grau, M. Vitamin D supplementation and COVID-19 risk: A population-based, cohort study. J. Endocrinol. Investig. 2021, 45, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Miccono, A.; Lamburghini, S.; Avanzato, I.; Riva, A.; Allegrini, P.; Faliva, M.A.; Peroni, G.; Nichetti, M.; Perna, S. Self-Care for Common Colds: The Pivotal Role of Vitamin D, Vitamin C, Zinc, and Echinacea in Three Main Immune Interactive Clusters (Physical Barriers, Innate and Adaptive Immunity) Involved during an Episode of Common Colds-Practical Advice on Dosages and on the Time to Take These Nutrients/Botanicals in order to Prevent or Treat Common Colds. Evid. Based Complement. Altern. Med. 2018, 2018, 5813095. [Google Scholar] [CrossRef] [Green Version]
Parameter | Medical Doctors n = 52 | Nurses n = 45 | Medical Attendants n = 17 | p |
---|---|---|---|---|
25(OH)D, ng/mL, Me + IQR (25; 75) | 22.1 (16.1; 29.5) | 19.3 (10.7; 24.9) | 11.1 (9.7; 17.6) | 0.001 |
Vitamin D status, n (%) | ||||
Normal | 12 (23) | 4 (9) | 1 (6) | 0.001 |
Insufficiency | 16 (31) | 17 (38) | 1 (6) | |
Deficiency | 24 (46) | 24 (53) | 15 (88) |
Parameters | Group I n = 45 | Group II n = 46 | p |
---|---|---|---|
Age, years (mean ± SD) | 35 ± 2 | 35 ± 2 | 0.81 |
Sex, M/F, n (%) | 8 (18)/37 (82) | 6 (13)/40 (87) | 0.53 |
Education, n (%) | |||
Graduate medical | 15 (33) | 23 (50) | 0.36 |
Secondary medical | 24 (53) | 14 (30) | |
Without specialized education | 6 (14) | 9 (20) | |
BMI, kg/m2, n (%) | 24.8 ± 0.8 | 24.6 ± 0.7 | 0.98 |
Normal | 25 (55) | 29 (63) | 0.49 |
Overweight | 12 (27) | 10 (22) | |
Obese | 8 (18) | 7 (15) | |
FPG, mmol/L | 5.3 ± 0.2 | 5.3 ± 0.2 | 0.35 |
TC, mmol/L | 5.3 ± 0.2 | 5.3 ± 0.2 | 0.95 |
LDL, mmol/L | 2.9 ± 0.2 | 3.0 ± 0.1 | 0.46 |
HDL, mmol/L | 1.6 ± 0.1 | 1.6 ± 0.1 | 0.44 |
TG, mmol/L | 1.6 ± 0.2 | 1.6 ± 0.2 | 0.49 |
25(OH)D, ng/mL, Me + IQR (25; 75) | 16.9 (11.4; 23.9) | 18.4 (12.2; 25.1) | 0.54 |
Vitamin D status, n (%) | |||
Normal | 4 (9) | 5 (11) | 0.45 |
Insufficiency | 12 (27) | 15 (33) | |
Deficiency | 29 (64) | 26 (56) |
Parameters | Group I n = 38 | Group II n = 40 | p |
---|---|---|---|
Age, years (mean ± SD) | 34 ± 2 | 36 ± 2 | 0.93 |
Sex, M/F, n (%) | 6 (16)/32 (84) | 6 (15)/34 (85) | 0.92 |
Education, n (%) | 0.99 | ||
Graduate medical | 15 (39) | 19 (48) | |
Secondary medical | 20 (53) | 13 (32) | |
Without specialized education | 3 (8) | 8 (20) | |
BMI, kg/m2, n (%) | 24.3 ± 0.9 | 24.7 ± 0.7 | 0.57 |
Normal | 22 (58) | 25 (63) | 0.85 |
Overweight | 12 (32) | 9 (22) | |
Obesity | 4 (10) | 6 (15) | |
FPG, mmol/L | 4.9 ± 0.1 | 5.4 ± 0.2 | 0.12 |
TC, mmol/L | 5.2 ± 0.2 | 5.3 ± 0.2 | 0.91 |
LDL, mmol/L | 2.8 ± 0.2 | 3.0 ± 0.1 | 0.44 |
HDL, mmol/L | 1.6 ± 0.1 | 1.6 ± 0.1 | 0.29 |
TG, mmol/L | 1.5 ± 0.2 | 1.6 ± 0.2 | 0.81 |
25(OH)D, ng/mL, Me + IQR (25; 75) | 18.4 (14.3; 24.5) | 18.5 (12.5; 25.0) | 0.94 |
Vitamin D status, n (%) | |||
Normal | 3 (8) | 5 (12) | |
Insufficiency | 12 (32) | 12 (30) | |
Deficiency | 23 (60) | 23 (58) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karonova, T.L.; Chernikova, A.T.; Golovatyuk, K.A.; Bykova, E.S.; Grant, W.B.; Kalinina, O.V.; Grineva, E.N.; Shlyakhto, E.V. Vitamin D Intake May Reduce SARS-CoV-2 Infection Morbidity in Health Care Workers. Nutrients 2022, 14, 505. https://doi.org/10.3390/nu14030505
Karonova TL, Chernikova AT, Golovatyuk KA, Bykova ES, Grant WB, Kalinina OV, Grineva EN, Shlyakhto EV. Vitamin D Intake May Reduce SARS-CoV-2 Infection Morbidity in Health Care Workers. Nutrients. 2022; 14(3):505. https://doi.org/10.3390/nu14030505
Chicago/Turabian StyleKaronova, Tatiana L., Alena T. Chernikova, Ksenia A. Golovatyuk, Ekaterina S. Bykova, William B. Grant, Olga V. Kalinina, Elena N. Grineva, and Evgeny V. Shlyakhto. 2022. "Vitamin D Intake May Reduce SARS-CoV-2 Infection Morbidity in Health Care Workers" Nutrients 14, no. 3: 505. https://doi.org/10.3390/nu14030505
APA StyleKaronova, T. L., Chernikova, A. T., Golovatyuk, K. A., Bykova, E. S., Grant, W. B., Kalinina, O. V., Grineva, E. N., & Shlyakhto, E. V. (2022). Vitamin D Intake May Reduce SARS-CoV-2 Infection Morbidity in Health Care Workers. Nutrients, 14(3), 505. https://doi.org/10.3390/nu14030505