Therapeutic Potential of Natural Products in the Treatment of Renal Cell Carcinoma: A Review
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Apoptosis Induction
3.2. Anti-Angiogenesis
3.3. Inhibition of Motility
3.4. Drug Sensitizer
4. Limitations and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Escudier, B.; Porta, C.; Schmidinger, M.; Rioux-Leclercq, N.; Bex, A.; Khoo, V.; Grunwald, V.; Gillessen, S.; Horwich, A.; ESMO Guidelines Committee. Renal cell carcinoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-updagger. Ann. Oncol. 2019, 30, 706–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barata, P.C.; Rini, B.I. Treatment of renal cell carcinoma: Current status and future directions. CA Cancer J. Clin. 2017, 67, 507–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin. 2016, 66, 115–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capitanio, U.; Montorsi, F. Renal cancer. Lancet 2016, 387, 894–906. [Google Scholar] [CrossRef]
- Warren, A.Y.; Harrison, D. WHO/ISUP classification, grading and pathological staging of renal cell carcinoma: Standards and controversies. World J. Urol. 2018, 36, 1913–1926. [Google Scholar] [CrossRef] [Green Version]
- Dudani, S.; de Velasco, G.; Wells, J.C.; Gan, C.L.; Donskov, F.; Porta, C.; Fraccon, A.; Pasini, F.; Lee, J.L.; Hansen, A.; et al. Evaluation of Clear Cell, Papillary, and Chromophobe Renal Cell Carcinoma Metastasis Sites and Association With Survival. JAMA Netw. Open 2021, 4, e2021869. [Google Scholar] [CrossRef]
- Frank, I.; Blute, M.L.; Cheville, J.C.; Lohse, C.M.; Weaver, A.L.; Zincke, H. An outcome prediction model for patients with clear cell renal cell carcinoma treated with radical nephrectomy based on tumor stage, size, grade and necrosis: The SSIGN score. J. Urol. 2002, 168, 2395–2400. [Google Scholar] [CrossRef]
- Leibovich, B.C.; Blute, M.L.; Cheville, J.C.; Lohse, C.M.; Frank, I.; Kwon, E.D.; Weaver, A.L.; Parker, A.S.; Zincke, H. Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma: A stratification tool for prospective clinical trials. Cancer 2003, 97, 1663–1671. [Google Scholar] [CrossRef]
- Patard, J.J.; Kim, H.L.; Lam, J.S.; Dorey, F.J.; Pantuck, A.J.; Zisman, A.; Ficarra, V.; Han, K.R.; Cindolo, L.; De La Taille, A.; et al. Use of the University of California Los Angeles integrated staging system to predict survival in renal cell carcinoma: An international multicenter study. J. Clin. Oncol. 2004, 22, 3316–3322. [Google Scholar] [CrossRef]
- Choueiri, T.K.; Kaelin, W.G., Jr. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat. Med. 2020, 26, 1519–1530. [Google Scholar] [CrossRef]
- Brugarolas, J. Molecular genetics of clear-cell renal cell carcinoma. J. Clin. Oncol. 2014, 32, 1968–1976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iliopoulos, O. Molecular biology of renal cell cancer and the identification of therapeutic targets. J. Clin. Oncol. 2006, 24, 5593–5600. [Google Scholar] [CrossRef] [PubMed]
- D’Avella, C.; Abbosh, P.; Pal, S.K.; Geynisman, D.M. Mutations in renal cell carcinoma. Urol. Oncol. Semin. Orig. Investig. 2020, 38, 763–773. [Google Scholar] [CrossRef]
- Keenan, T.E.; Burke, K.P.; Van Allen, E.M. Genomic correlates of response to immune checkpoint blockade. Nat. Med. 2019, 25, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Escudier, B.; McDermott, D.F.; George, S.; Hammers, H.J.; Srinivas, S.; Tykodi, S.S.; Sosman, J.A.; Procopio, G.; Plimack, E.R.; et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N. Engl. J. Med. 2015, 373, 1803–1813. [Google Scholar] [CrossRef] [PubMed]
- Tannir, N.; Hammers, H.; Amin, A. First-line vascular endothelial growth factor targeted therapy in renal cell carcinoma: Priming the tumor microenvironment for immunotherapy. Curr. Med. Res. Opin. 2018, 34, 825–831. [Google Scholar] [CrossRef]
- Bedke, J.; Albiges, L.; Capitanio, U.; Giles, R.H.; Hora, M.; Lam, T.B.; Ljungberg, B.; Marconi, L.; Klatte, T.; Volpe, A.; et al. The 2021 Updated European Association of Urology Guidelines on Renal Cell Carcinoma: Immune Checkpoint Inhibitor-based Combination Therapies for Treatment-naive Metastatic Clear-cell Renal Cell Carcinoma Are Standard of Care. Eur. Urol. 2021, 80, 393–397. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; International Natural Product Sciences, T.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Olgen, S. Overview on Anticancer Drug Design and Development. Curr. Med. Chem. 2018, 25, 1704–1719. [Google Scholar] [CrossRef]
- Gao, L.; Wu, Z.X.; Assaraf, Y.G.; Chen, Z.S.; Wang, L. Overcoming anti-cancer drug resistance via restoration of tumor suppressor gene function. Drug Resist. Updat. 2021, 57, 100770. [Google Scholar] [CrossRef]
- Buyel, J.F. Plants as sources of natural and recombinant anti-cancer agents. Biotechnol. Adv. 2018, 36, 506–520. [Google Scholar] [CrossRef] [PubMed]
- Makino, T.; Izumi, K.; Hiratsuka, K.; Kano, H.; Shimada, T.; Nakano, T.; Kadomoto, S.; Naito, R.; Iwamoto, H.; Yaegashi, H.; et al. Anti-proliferative and anti-migratory properties of coffee diterpenes kahweol acetate and cafestol in human renal cancer cells. Sci. Rep. 2021, 11, 675. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Zhang, H.; Liu, T.; Yang, W.; Lv, W.; He, D.; Guo, P.; Li, L. 6-Gingerol induces cell-cycle G1-phase arrest through AKT-GSK 3beta-cyclin D1 pathway in renal-cell carcinoma. Cancer Chemother. Pharmacol. 2020, 85, 379–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Wang, Y.; Song, Y.; Bu, R.; Yin, B.; Fei, X.; Guo, Q.; Wu, B. Expression profiling and clinicopathological significance of DNA methyltransferase 1, 3A and 3B in sporadic human renal cell carcinoma. Int. J. Clin. Exp. Pathol. 2014, 7, 7597–7609. [Google Scholar]
- Jonasch, E.; Gao, J.; Rathmell, W.K. Renal cell carcinoma. BMJ 2014, 349, g4797. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Wang, P.; Fu, X.; Lin, W. Circular RNAs in renal cell carcinoma: Implications for tumorigenesis, diagnosis, and therapy. Mol. Cancer 2020, 19, 149. [Google Scholar] [CrossRef]
- Carneiro, B.A.; El-Deiry, W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 2020, 17, 395–417. [Google Scholar] [CrossRef]
- Wong, R.S. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res. 2011, 30, 87. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Meng, X.Y.; Wu, K.R.; Cao, J.Z.; Yu, R.; Yan, Z.J. Sinularin exerts anti-tumor effects against human renal cancer cells relies on the generation of ROS. J. Cancer 2019, 10, 5114–5123. [Google Scholar] [CrossRef]
- Alexander, B.; Fishman, A.I.; Eshghi, M.; Choudhury, M.; Konno, S. Induction of cell death in renal cell carcinoma with combination of D-fraction and vitamin C. Integr. Cancer Ther. 2013, 12, 442–448. [Google Scholar] [CrossRef]
- Meng, F.D.; Li, Y.; Tian, X.; Ma, P.; Sui, C.G.; Fu, L.Y.; Jiang, Y.H. Synergistic effects of snail and quercetin on renal cell carcinoma Caki-2 by altering AKT/mTOR/ERK1/2 signaling pathways. Int. J. Clin. Exp. Pathol. 2015, 8, 6157–6168. [Google Scholar] [PubMed]
- Liu, Y.; Lv, H.; Li, X.; Liu, J.; Chen, S.; Chen, Y.; Jin, Y.; An, R.; Yu, S.; Wang, Z. Cyclovirobuxine inhibits the progression of clear cell renal cell carcinoma by suppressing the IGFBP3-AKT/STAT3/MAPK-Snail signalling pathway. Int. J. Biol. Sci. 2021, 17, 3522–3537. [Google Scholar] [CrossRef] [PubMed]
- Son, J.Y.; Yoon, S.; Tae, I.H.; Park, Y.J.; De, U.; Jeon, Y.; Park, Y.J.; Rhyu, I.J.; Lee, B.M.; Chung, K.H.; et al. Novel therapeutic roles of MC-4 in combination with everolimus against advanced renal cell carcinoma by dual targeting of Akt/pyruvate kinase muscle isozyme M2 and mechanistic target of rapamycin complex 1 pathways. Cancer Med. 2018, 7, 5083–5095. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.J.; Crevelin, E.J.; Souza, D.T.; Lacerda-Junior, G.V.; de Oliveira, V.M.; Ruiz, A.; Rosa, L.H.; Moraes, L.A.B.; Melo, I.S. Actinobacteria from Antarctica as a source for anticancer discovery. Sci. Rep. 2020, 10, 13870. [Google Scholar] [CrossRef]
- Williams, R.T.; Yu, A.L.; Diccianni, M.B.; Theodorakis, E.A.; Batova, A. Renal cancer-selective Englerin A induces multiple mechanisms of cell death and autophagy. J. Exp. Clin. Cancer Res. 2013, 32, 57. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.J.; Yao, X.D.; Peng, B.O.; Xu, Y.F.; Wang, G.C.; Huang, J.; Liu, M.; Zheng, J.H. Epigallocatechin-3-gallate inhibits migration and invasion of human renal carcinoma cells by downregulating matrix metalloproteinase-2 and matrix metalloproteinase-9. Exp. Ther. Med. 2016, 11, 1243–1248. [Google Scholar] [CrossRef] [Green Version]
- Negrette-Guzman, M.; Huerta-Yepez, S.; Vega, M.I.; Leon-Contreras, J.C.; Hernandez-Pando, R.; Medina-Campos, O.N.; Rodriguez, E.; Tapia, E.; Pedraza-Chaverri, J. Sulforaphane induces differential modulation of mitochondrial biogenesis and dynamics in normal cells and tumor cells. Food Chem. Toxicol. 2017, 100, 90–102. [Google Scholar] [CrossRef]
- Ali, S.; Nisar, M.; Qaisar, M.; Khan, A.; Khan, A.A. Evaluation of the cytotoxic potential of a new pentacyclic triterpene from Rhododendron arboreum stem bark. Pharm. Biol. 2017, 55, 1927–1930. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Baek, S.H.; Um, J.Y.; Shim, B.S.; Ahn, K.S. Resveratrol attenuates constitutive STAT3 and STAT5 activation through induction of PTPepsilon and SHP-2 tyrosine phosphatases and potentiates sorafenib-induced apoptosis in renal cell carcinoma. BMC Nephrol. 2016, 17, 19. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.; Jiang, L.; Li, W.; Liang, Q.; Li, Z. Curcumin induces apoptosis and autophagy inhuman renal cell carcinoma cells via Akt/mTOR suppression. Bioengineered 2021, 12, 5017–5027. [Google Scholar] [CrossRef]
- He, H.; Zhuo, R.; Dai, J.; Wang, X.; Huang, X.; Wang, H.; Xu, D. Chelerythrine induces apoptosis via ROS-mediated endoplasmic reticulum stress and STAT3 pathways in human renal cell carcinoma. J. Cell. Mol. Med. 2020, 24, 50–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.-M.; Wijeratne, E.M.K.; Brooks, A.D.; Tewary, P.; Xuan, L.-J.; Wang, W.-Q.; Sayers, T.J.; Gunatilaka, A.A.L. Cytotoxic and other withanolides from aeroponically grown Physalis philadelphica. Phytochemistry 2018, 152, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Predes, F.S.; Ruiz, A.L.; Carvalho, J.E.; Foglio, M.A.; Dolder, H. Antioxidative and in vitro antiproliferative activity of Arctium lappa root extracts. BMC Complement. Altern. Med. 2011, 11, 25. [Google Scholar] [CrossRef] [Green Version]
- Sacoman, J.L.; Monteiro, K.M.; Possenti, A.; Figueira, G.M.; Foglio, M.A.; Carvalho, J.E. Cytotoxicity and antitumoral activity of dichloromethane extract and its fractions from Pothomorphe umbellata. Braz. J. Med. Biol. Res. 2008, 41, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Cortelo, P.C.; Demarque, D.P.; Dusi, R.G.; Albernaz, L.C.; Braz-Filho, R.; Goncharova, E.I.; Bokesch, H.R.; Gustafson, K.R.; Beutler, J.A.; Espindola, L.S. A Molecular Networking Strategy: High-Throughput Screening and Chemical Analysis of Brazilian Cerrado Plant Extracts against Cancer Cells. Cells 2021, 10, 691. [Google Scholar] [CrossRef]
- Liu, R.; Pei, Q.; Shou, T.; Zhang, W.; Hu, J.; Li, W. Apoptotic effect of green synthesized gold nanoparticles from Curcuma wenyujin extract against human renal cell carcinoma A498 cells. Int. J. Nanomed. 2019, 14, 4091–4103. [Google Scholar] [CrossRef] [Green Version]
- Verma, S.P.; Sisoudiya, S.; Das, P. Aqueous Extract of Anticancer Drug CRUEL Herbomineral Formulation Capsules Exerts Anti-proliferative Effects in Renal Cell Carcinoma Cell Lines. Asian Pac. J. Cancer Prev. 2015, 16, 8419–8423. [Google Scholar] [CrossRef] [Green Version]
- Ratnayake, R.; Covell, D.; Ransom, T.T.; Gustafson, K.R.; Beutler, J.A. Englerin A, a selective inhibitor of renal cancer cell growth, from Phyllanthus engleri. Org. Lett. 2009, 11, 57–60. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.T.; Lin, J.K. EGCG inhibits the invasion of highly invasive CL1-5 lung cancer cells through suppressing MMP-2 expression via JNK signaling and induces G2/M arrest. J. Agric. Food Chem. 2011, 59, 13318–13327. [Google Scholar] [CrossRef]
- Sen, T.; Dutta, A.; Chatterjee, A. Epigallocatechin-3-gallate (EGCG) downregulates gelatinase-B (MMP-9) by involvement of FAK/ERK/NFkappaB and AP-1 in the human breast cancer cell line MDA-MB-231. Anticancer Drugs 2010, 21, 632–644. [Google Scholar] [CrossRef]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Yoga Latha, L. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit Complement. Altern. Med. 2011, 8, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yehya, A.H.S.; Asif, M.; Petersen, S.H.; Subramaniam, A.V.; Kono, K.; Majid, A.; Oon, C.E. Angiogenesis: Managing the Culprits behind Tumorigenesis and Metastasis. Medicina 2018, 54, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, S.; Li, A.; Yi, M.; Yu, S.; Zhang, M.; Wu, K. Recent advances on anti-angiogenesis receptor tyrosine kinase inhibitors in cancer therapy. J. Hematol. Oncol. 2019, 12, 27. [Google Scholar] [CrossRef] [Green Version]
- Argentiero, A.; Solimando, A.G.; Krebs, M.; Leone, P.; Susca, N.; Brunetti, O.; Racanelli, V.; Vacca, A.; Silvestris, N. Anti-angiogenesis and Immunotherapy: Novel Paradigms to Envision Tailored Approaches in Renal Cell-Carcinoma. J. Clin. Med. 2020, 9, 1594. [Google Scholar] [CrossRef]
- Sasamura, H.; Takahashi, A.; Miyao, N.; Yanase, M.; Masumori, N.; Kitamura, H.; Itoh, N.; Tsukamoto, T. Inhibitory effect on expression of angiogenic factors by antiangiogenic agents in renal cell carcinoma. Br. J. Cancer 2002, 86, 768–773. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ma, W.; Zheng, W. Deguelin, a novel anti-tumorigenic agent targeting apoptosis, cell cycle arrest and anti-angiogenesis for cancer chemoprevention. Mol. Clin. Oncol. 2013, 1, 215–219. [Google Scholar] [CrossRef] [Green Version]
- El-Khashab, I.H. Antiangiogenic and Proapoptotic Activities of Atorvastatin and Ganoderma lucidum in Tumor Mouse Model via VEGF and Caspase-3 Pathways. Asian Pac. J. Cancer Prev. 2021, 22, 1095–1104. [Google Scholar] [CrossRef]
- Cho, H.D.; Kim, J.H.; Park, J.K.; Hong, S.M.; Kim, D.H.; Seo, K.I. Kochia scoparia seed extract suppresses VEGF-induced angiogenesis via modulating VEGF receptor 2 and PI3K/AKT/mTOR pathways. Pharm Biol 2019, 57, 684–693. [Google Scholar] [CrossRef] [Green Version]
- Aisha, A.F.; Ismail, Z.; Abu-Salah, K.M.; Siddiqui, J.M.; Ghafar, G.; Abdul Majid, A.M. Syzygium campanulatum korth methanolic extract inhibits angiogenesis and tumor growth in nude mice. BMC Complement. Altern. Med. 2013, 13, 168. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Fu, A.; Hu, J.; Wang, T.; Luo, Y.; Peng, M.; Ma, Y.; Wei, Y.; Chen, L. 5-Formylhonokiol exerts anti-angiogenesis activity via inactivating the ERK signaling pathway. Exp. Mol. Med. 2011, 43, 146–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, J.; Zhang, K.; Nam, S.; Anderson, R.A.; Jove, R.; Wen, W. Novel angiogenesis inhibitory activity in cinnamon extract blocks VEGFR2 kinase and downstream signaling. Carcinogenesis 2010, 31, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhang, Y.; Wang, G.; Li, Y.; Huang, W. Penduliflaworosin, a Diterpenoid from Croton crassifolius, Exerts Anti-Angiogenic Effect via VEGF Receptor-2 Signaling Pathway. Molecules 2017, 22, 126. [Google Scholar] [CrossRef] [Green Version]
- Moserle, L.; Casanovas, O. Anti-angiogenesis and metastasis: A tumour and stromal cell alliance. J. Intern. Med. 2013, 273, 128–137. [Google Scholar] [CrossRef]
- Winer, A.; Adams, S.; Mignatti, P. Matrix Metalloproteinase Inhibitors in Cancer Therapy: Turning Past Failures Into Future Successes. Mol. Cancer Ther. 2018, 17, 1147–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Wang, Q.; Su, Q.; Ma, D.; An, C.; Ma, L.; Liang, H. Honokiol suppresses renal cancer cells’ metastasis via dual-blocking epithelial-mesenchymal transition and cancer stem cell properties through modulating miR-141/ZEB2 signaling. Mol. Cells 2014, 37, 383–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juengel, E.; Afschar, M.; Makarevic, J.; Rutz, J.; Tsaur, I.; Mani, J.; Nelson, K.; Haferkamp, A.; Blaheta, R.A. Amygdalin blocks the in vitro adhesion and invasion of renal cell carcinoma cells by an integrin-dependent mechanism. Int. J. Mol. Med. 2016, 37, 843–850. [Google Scholar] [CrossRef]
- Duan, J.; Shi, J.; Ma, X.; Xuan, Y.; Li, P.; Wang, H.; Fan, Y.; Gong, H.; Wang, L.; Pang, Y.; et al. Esculetin inhibits proliferation, migration, and invasion of clear cell renal cell carcinoma cells. Biomed. Pharmacother. 2020, 125, 110031. [Google Scholar] [CrossRef]
- Hsieh, M.H.; Tsai, J.P.; Yang, S.F.; Chiou, H.L.; Lin, C.L.; Hsieh, Y.H.; Chang, H.R. Fisetin Suppresses the Proliferation and Metastasis of Renal Cell Carcinoma through Upregulation of MEK/ERK-Targeting CTSS and ADAM9. Cells 2019, 8, 948. [Google Scholar] [CrossRef] [Green Version]
- Hung, T.W.; Chen, P.N.; Wu, H.C.; Wu, S.W.; Tsai, P.Y.; Hsieh, Y.S.; Chang, H.R. Kaempferol Inhibits the Invasion and Migration of Renal Cancer Cells through the Downregulation of AKT and FAK Pathways. Int. J. Med. Sci. 2017, 14, 984–993. [Google Scholar] [CrossRef] [Green Version]
- Liou, Y.F.; Hsieh, Y.S.; Hung, T.W.; Chen, P.N.; Chang, Y.Z.; Kao, S.H.; Lin, S.W.; Chang, H.R. Thymoquinone inhibits metastasis of renal cell carcinoma cell 786-O-SI3 associating with downregulation of MMP-2 and u-PA and suppression of PI3K/Src signaling. Int. J. Med. Sci. 2019, 16, 686–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golovine, K.; Makhov, P.; Naito, S.; Raiyani, H.; Tomaszewski, J.; Mehrazin, R.; Tulin, A.; Kutikov, A.; Uzzo, R.G.; Kolenko, V.M. Piperlongumine and its analogs down-regulate expression of c-Met in renal cell carcinoma. Cancer Biol. Ther. 2015, 16, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Chiu, K.Y.; Chen, T.H.; Wen, C.L.; Lai, J.M.; Cheng, C.C.; Liu, H.C.; Hsu, S.L.; Tzeng, Y.M. Antcin-H Isolated from Antrodia cinnamomea Inhibits Renal Cancer Cell Invasion Partly through Inactivation of FAK-ERK-C/EBP-beta/c-Fos-MMP-7 Pathways. Evid.-Based Complement. Alternat. Med. 2017, 2017, 5052870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Liu, W.; Wang, K.; Fan, Y.; Chen, J.; Ma, J.; Wang, X.; He, D.; Zeng, J.; Li, L. Tetrandrine inhibits migration and invasion of human renal cell carcinoma by regulating Akt/NF-kappaB/MMP-9 signaling. PLoS ONE 2017, 12, e0173725. [Google Scholar] [CrossRef]
- Xie, J.; Qian, Y.Y.; Yang, Y.; Peng, L.J.; Mao, J.Y.; Yang, M.R.; Tian, Y.; Sheng, J. Isothiocyanate From Moringa oleifera Seeds Inhibits the Growth and Migration of Renal Cancer Cells by Regulating the PTP1B-dependent Src/Ras/Raf/ERK Signaling Pathway. Front. Cell Dev. Biol. 2021, 9, 790618. [Google Scholar] [CrossRef]
- Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature 2019, 575, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Min, K.J.; Han, M.A.; Kim, S.; Park, J.W.; Kwon, T.K. Osthole enhances TRAIL-mediated apoptosis through downregulation of c-FLIP expression in renal carcinoma Caki cells. Oncol. Rep. 2017, 37, 2348–2354. [Google Scholar] [CrossRef]
- Xu, Y.M.; Brooks, A.D.; Wijeratne, E.M.; Henrich, C.J.; Tewary, P.; Sayers, T.J.; Gunatilaka, A.A. 17beta-Hydroxywithanolides as Sensitizers of Renal Carcinoma Cells to Tumor Necrosis Factor-alpha Related Apoptosis Inducing Ligand (TRAIL) Mediated Apoptosis: Structure-Activity Relationships. J. Med. Chem. 2017, 60, 3039–3051. [Google Scholar] [CrossRef]
- Chen, S.; Liang, L.; Wang, Y.; Diao, J.; Zhao, C.; Chen, G.; He, Y.; Luo, C.; Wu, X.; Zhang, Y. Synergistic immunotherapeutic effects of Lycium barbarum polysaccharide and interferon-alpha2b on the murine Renca renal cell carcinoma cell line in vitro and in vivo. Mol. Med. Rep. 2015, 12, 6727–6737. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Lee, J.H.; Baek, S.H.; Ko, J.H.; Nam, D.; Ahn, K.S. Korean Red Ginseng Extract Enhances the Anticancer Effects of Sorafenib through Abrogation of CREB and c-Jun Activation in Renal Cell Carcinoma. Phytother. Res. 2017, 31, 1078–1089. [Google Scholar] [CrossRef]
- Bolarinwa, I.F.; Orfila, C.; Morgan, M.R.A. Amygdalin content of seeds, kernels and food products commercially-available in the UK. Food Chem. 2014, 152, 133–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.-J.; Lee, S.-C.; Hsu, C.-H.; Kuo, Y.-H.; Yang, C.-C.; Lin, F.-J. Antcins, triterpenoids from Antrodia cinnamomea, as new agonists for peroxisome proliferator-activated receptor α. J. Food Drug Anal. 2019, 27, 295–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, L.; Yu, G.; Hao, W.; Yang, K.; Chen, H. The efficacy and safety of Curcuma longa extract and curcumin supplements on osteoarthritis: A systematic review and meta-analysis. Biosci. Rep. 2021, 41, BSR20210817. [Google Scholar] [CrossRef]
- Samavat, H.; Newman, A.R.; Wang, R.; Yuan, J.-M.; Wu, A.H.; Kurzer, M.S. Effects of green tea catechin extract on serum lipids in postmenopausal women: A randomized, placebo-controlled clinical trial. Am. J. Clin. Nutr. 2016, 104, 1671–1682. [Google Scholar] [CrossRef]
- Dickerson, F.; Origoni, A.; Katsafanas, E.; Squire, A.; Newman, T.; Fahey, J.; Xiao, J.-C.; Stallings, C.; Goga, J.; Khushalani, S.; et al. Randomized controlled trial of an adjunctive sulforaphane nutraceutical in schizophrenia. Schizophr. Res. 2021, 231, 142–144. [Google Scholar] [CrossRef] [PubMed]
- Grammatikopoulou, M.G.; Gkiouras, K.; Papageorgiou, S.Τ.; Myrogiannis, I.; Mykoniatis, I.; Papamitsou, T.; Bogdanos, D.P.; Goulis, D.G. Dietary Factors and Supplements Influencing Prostate-Specific Antigen (PSA) Concentrations in Men with Prostate Cancer and Increased Cancer Risk: An Evidence Analysis Review Based on Randomized Controlled Trials. Nutrients 2020, 12, 2985. [Google Scholar] [CrossRef]
- Łata, E.; Fulczyk, A.; Ott, P.G.; Kowalska, T.; Sajewicz, M.; Móricz, Á.M. Thin-layer chromatographic quantification of magnolol and honokiol in dietary supplements and selected biological properties of these preparations. J. Chromatogr. A 2020, 1625, 461230. [Google Scholar] [CrossRef]
- Borgonovo, G.; De Petrocellis, L.; Schiano Moriello, A.; Bertoli, S.; Leone, A.; Battezzati, A.; Mazzini, S.; Bassoli, A. Moringin, A Stable Isothiocyanate from Moringa oleifera, Activates the Somatosensory and Pain Receptor TRPA1 Channel In Vitro. Molecules 2020, 25, 976. [Google Scholar] [CrossRef] [Green Version]
- Crocetto, F.; di Zazzo, E.; Buonerba, C.; Aveta, A.; Pandolfo, S.D.; Barone, B.; Trama, F.; Caputo, V.F.; Scafuri, L.; Ferro, M.; et al. Kaempferol, Myricetin and Fisetin in Prostate and Bladder Cancer: A Systematic Review of the Literature. Nutrients 2021, 13, 3750. [Google Scholar] [CrossRef]
- Ogbuagu, N.E.; Aluwong, T.; Ayo, J.O.; Sumanu, V.O. Effect of fisetin and probiotic supplementation on erythrocyte osmotic fragility, malondialdehyde concentration and superoxide dismutase activity in broiler chickens exposed to heat stress. J. Vet. Med. Sci. 2018, 80, 1895–1900. [Google Scholar] [CrossRef] [Green Version]
- Quinteros, J.A.; Scott, P.C.; Wilson, T.B.; Anwar, A.M.; Scott, T.; Muralidharan, C.; Van, T.T.H.; Moore, R.J. Isoquinoline alkaloids induce partial protection of laying hens from the impact of Campylobacter hepaticus (spotty liver disease) challenge. Poult. Sci. 2021, 100, 101423. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Chen, D.; Yan, Y.; Chen, G.; Ran, L.; Mi, J.; Lu, L.; Zeng, X.; Cao, Y. Effects of long-term consumption of polysaccharides from the fruit of Lycium barbarum on host’s health. Food Res. Int. 2021, 139, 109913. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Ouyang, S.; Yang, R.; Li, S.; Gong, Y.; Zou, L.; Jia, T.; Zhao, S.; Wu, B.; Yi, Z.; et al. Osthole alleviated diabetic neuropathic pain mediated by the P2X4 receptor in dorsal root ganglia. Brain Res. Bull. 2018, 142, 289–296. [Google Scholar] [CrossRef]
- Alrafiah, A. Thymoquinone Protects Neurons in the Cerebellum of Rats through Mitigating Oxidative Stress and Inflammation Following High-Fat Diet Supplementation. Biomolecules 2021, 11, 165. [Google Scholar] [CrossRef] [PubMed]
Classification | Compound | Source | Cell Line/Animal Model | Experimental Dosage | Effects | Molecular Mechanisms | Reference |
---|---|---|---|---|---|---|---|
Plant | Kahweol acetate | Coffee bean | ACHN/Caki | 30/100 μM 48 h; 30/100 Μm, 48 h | Induction of apoptosis, inhibition of proliferation and migration, cell cycle arrest, anti-resistance | Bcl↓, Bcl-xl↓, Bax↑, CCR2/5/6↓, STAT3↓, PIK3/Akt↓, Mcl-1↓, c-FLIP↓ | [22] |
Plant | Sinularin | Soft coral | 786-O/ACHN | 5/10/20/40/60/80 μM, 24/48/72/96 h | Induction of apoptosis, cell cycle arrest | PI3K/Akt/mTOR↓, cyclin B1↓, CDK↓, caspase-3/9↑, Bax/BAD↑ | [29] |
Fungus | D-fraction | Grifola frondosa | ACHN | 0~1000 μg/mL, 72 h; 300 μg/mL (+Vc200 μM), 12 h | Induction of apoptosis, cell cycle arrest | Bcl2↓, Bax↑ | [30] |
Plant | Quercetin | Wild cabbage, apple, potato, etc. | Caki-2 | 10 μg/mL, 24/48 h | Induction of apoptosis, cell cycle arrest, inhibition of migration | Akt/mTOR/ERK↓ | [31] |
Plant | Cyclovirobuxine | Boxwood | 786-O | 20/40/60 μM, 48 h | Induction of apoptosis, inhibition of proliferation and migration | IGFBP3-AKT/STAT3/MAPK-Snail↓ | [32] |
Plant | MC-4 | Artemisia annua L. | Caki/786-O | 25/50/100 μg/mL, 24 h | Induction of apoptosis, cell cycle arrest | Akt/PKM2/mTOR↓, mTORC1↓ | [33] |
Plant | Cinerubin B | Deschampsia antarctica Desv. | 786-O | 0.025/0.25/2.5/25 μg/mL, 24 h | Induction of apoptosis, inhibition of proliferation | [34] | |
Plant | Englerin A | Phyllanthus | A-498 | 50/100 nM, 24/48 h | Induction of apoptosis, cell cycle arrest, inhibition of migration, activation of autophagy | PI3/Akt/ERK↓, PKCθ | [35] |
Plant | Epigallocatechin-3-gallate | Green tea, apple etc. | 786-O/ACHN | 5/10/20/40/60 μg/mL, 12/24/48 h | Induction of apoptosis, inhibition of proliferation and migration | TFPI-2↑, Mcl-1↓, BCl-2↓, MMP-2/9↓, mTOR↓, JNK↓ | [36] |
Plant | Sulforaphane | Brassica oleracea | LLCPK1 | 1/3/5/10/20 μM, 24/48/72/96 h | Induction of apoptosis, inhibition of proliferation | NRF-1↑, TFAM↑, HIF1α↓ | [37] |
Plant | 15-Oxoursolic acid | Rhododendron arboreum Sm. | A-498 | 5~100 μM, 72 h | Induction of apoptosis, cell cycle arrest | [38] | |
Plant | Resveratrol | Grape | Caki/786-O | 10/30/50 μM, 6 h | Induction of apoptosis, cell cycle arrest, inhibition of proliferation | JAK-1↓, -2↓, c-Src↓, STAT3/5↓, PTPε↑, SHP-2↑ | [39] |
Plant | Curcumin | Curcuma longa | ACHN | 5/15/30/50 μM, 24 h | Induction of apoptosis, inhibition of proliferation, activation of autophagy | Akt/mTOR↓, beclin-1↑ | [40] |
Plant | Chelerythrine | Chelidonium majus, Macleayacordata | Caki/786-O | 6/9/12 μmol/L, 24 h | Induction of apoptosis, cell cycle arrest, inhibition of migration | ROS↑, STAT3/ERK1,2/MAPK↓ | [41] |
Classification | Extract(s) | Source | Cell Lines/Animal Models | Experimental Dosage | Effects | Molecular Mechanisms | Reference |
---|---|---|---|---|---|---|---|
Plant | Methanol extract | Genus Physalis (Solanaceae) | ACHN/UO-31 | 10 mM, 72 h | Induction of apoptosis | [42] | |
Plant | Hydroethanolic extract | Arctium lappa L. | 786-O | 0.25/2.5/25/250 μg/mL, 48 h | Induction of apoptosis, elimination of oxygen radical, inhibition of proliferation | [43] | |
Plant | Dichloromethane extract | Brazilian shrub | 786-O | 0.25/2.5/25/250 µg/mL, 48 h | Induction of apoptosis | [44] | |
Plant | Hexane extract/ethanol extract/ethyl acetate extract | Brazilian Cerrado biome | 786-O/UO-31 | 1.3~20 μg/mL, 24/48 h | Inhibition of proliferation, induction of apoptosis | [45] | |
Plant | Chloroauric acid trihydrate extract | Curcuma wenyujin | A-498/SW-156 | 5~50 μg/mL, 24 h | Inhibition of proliferation, induction of apoptosis | Bid↑, Bax↑, caspase-3/9↑, Bcl-2↓ | [46] |
Plant | Aqueous extract | CRUEL herbomineralformulation capsules | UOK146/ACHN | 2/4/6/8/10 mg/mL, 24 h | Induction of apoptosis, activation of autophagy and migration, cell cycle arrest | Bax↓, LC3↑ | [47] |
Classification | Compound | Source | Cell Lines | Experimental Dosage | Effects | Molecular Mechanisms | Reference |
---|---|---|---|---|---|---|---|
Plant | Epigallocatechin-3-gallate | Green tea, apple, etc. | 786-O/ACHN | 5/10/20/40/60 μg/mL, 12/24/48 h | Induction of apoptosis, inhibition of proliferation and migration | TFPI-2↑Mcl-1↓, BCl-2↓, MMP-2/9↓, mTOR↓, JNK↓ | [36] |
Plant | Englerin A | Phyllanthus | A-498 | 50/100 nM, 24/48 h | Induction of apoptosis, inhibition of proliferation and migration, cell cycle arrest, activation of autophagy | PI3K/Akt/ERK↓, PKCθ | [35] |
Plant | Quercetin | Kale, apple, potato, etc. | Caki-2 | 10 μg/mL, 24/48 h | Induction of apoptosis, inhibition of migration, cell cycle arrest | Akt/mTOR/ERK↓ | [31] |
Plant | Honokiol | Magnolia spp. bark | A-498 | 2.5/5/10/20/40/80 μmol, 24/48/72 h | Inhibition of migration and proliferation | miR-141/ZEB2↑, E-cadherin↑ | [66] |
Plant | Amygdalin | Semen armeniacae Amarum | Caki-1/A-498 | 10 mg/mL, 24 h | Inhibition of migration and adhesion | Integrin α5↓, integrin α6↓ | [67] |
Plant | Cafestol and kahweol acetate | Coffee bean | ACHN/Caki | 30/100 μM 48 h; 30/100 Μm, 48 h | Induction of apoptosis, inhibition of proliferation and migration, cell cycle arrest, anti-resistance | Bcl↓, Bcl-xl↓, Bax↑, CCR2/5/6↓, STAT3↓, PIK3/Akt↓ | [22] |
Plant | Cyclovirobuxine | Boxwood | 786-O | 20/40/60 μM, 48 h | Induction of apoptosis, inhibition of proliferation and migration | IGFBP3/AKT/STAT3/MAPK-Snail↓ | [32] |
Plant | Esculetin | Cortex fraxini | 786-O | 100/200 μg/mL | Induction of apoptosis, inhibition of migration, cell cycle arrest | IGF-1, EGFR/PI3K/Akt↓, Ras/ERK1,2↑, cyclin D1/E↓, E-cadherin↑, N-cadherin↓, vimentin↓ | [68] |
Plant | Fisetin | Rhus succedanea L. | 786-O/A-498/Caki-1/ACHN | 20/40/60/80 μM, 24 h | Inhibition of migration, cell cycle arrest, anti-resistance | Cyclin D1/E↓, P21↑, MEK/ERK↑ | [69] |
Plant | Piperlongumine | Piper longum | 786-O | 2.5/5/10 μM, 6/12/24 h | Inhibition of proliferation and migration | c-Met↓, Akt/ERK↓ | [72] |
Plant | Kaempferol | Kaempferia galanga L. | 786-O | 25/50/75/100 μM, 24 h | Inhibition of migration | MMP2↓, PI3K/Akt↓, FAK-Akt↓ | [70] |
Plant | Antcin-H | Antrodia cinnamomea | 786-O | 20/50/100/200/300 μM, 24/28 h | Inhibition of proliferation and migration | MMP2/3/7/13↓, MMP3/4↑, FAK, c-Src, ERK1/2↓ | [73] |
Seeds | Thymoquinone | Nigella sativa | 786-O | 5/10/20 μM | Inhibition of migration, anti-resistance | MMP2↓, u-PA↓, PI3K/Akt↓, Src/paxlin↓ | [71] |
Plant | Tetrandrine | Stephaaniae | 786-O/769-P | 0.05/0.1/0.25/0.5/1.25/2.5 μm, 24 h | Inhibition of proliferation and migration | Akt/NF-κB↓ | [74] |
Plant | Isothiocyanate | Moringa oleifera L. | 786-O/769-P | 1/2/4/6/8/16 μM, 24/48 h | Induction of apoptosis, inhibition of proliferation and migration | Src/Ras/Raf/ERK↓ | [75] |
Classification | Compound | Source | Cell Lines/Animal Models | Experimental Dosage | Effects | Molecular Mechanisms | References |
---|---|---|---|---|---|---|---|
Plant | kahweol acetate | Coffee bean | ACHN/Caki | 30/100 μM 48 h; 30/100 Μm, 48 h | Induction of apoptosis, inhibition of proliferation and migration, cell cycle arrest, anti-resistance (sensitizing) | Bcl↓, Bcl-xl↓, Bax↑, CCR2/5/6↓, STAT3↓, PIK3/Akt↓, Mcl-1↓, c-FLIP↓ | [22] |
Plant | Osthol | Cnidium monnieri | Caki/U251MG | 20~30 mM | Sensitizing | MMP↓, cytochrome c↑, c-FLIP↓ | [77] |
Plant | Physachenolide C | Rosmarinus officinalis L. | ACHN | 125/250/500 nM | Sensitizing, induction of apoptosis | c-FLIP↓, livin↓, caspase-8 | [78] |
Plant | Lycium barbarum polysaccharides | Lycium barbarum | Renca mouse | 200 mg/mL | Sensitizing, induction of apoptosis | Bcl-2↓, BAX↑, cyclin D1↓, c-Myc↓ | [79] |
Plant | Sulforaphane | Brassica oleracea | LLCPK1 | 1/3/5/10/20 μM, 24/48/72/96 h | Sensitizing, induction of apoptosis, inhibition of proliferation | NRF-1↑, TFAM↑, HIF1α↑ | [37] |
Seeds | Thymoquinone | Nigella sativa | 786-O | 5/10/20 μM | Sensitizing, inhibition of proliferation | MMP2↓, u-PA↓, PI3K/Akt↓, Src/paxlin↓ | [71] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, C.; Lyu, Y.; Gong, L.; Wang, J. Therapeutic Potential of Natural Products in the Treatment of Renal Cell Carcinoma: A Review. Nutrients 2022, 14, 2274. https://doi.org/10.3390/nu14112274
Feng C, Lyu Y, Gong L, Wang J. Therapeutic Potential of Natural Products in the Treatment of Renal Cell Carcinoma: A Review. Nutrients. 2022; 14(11):2274. https://doi.org/10.3390/nu14112274
Chicago/Turabian StyleFeng, Chenchen, Yinfeng Lyu, Lingxiao Gong, and Jing Wang. 2022. "Therapeutic Potential of Natural Products in the Treatment of Renal Cell Carcinoma: A Review" Nutrients 14, no. 11: 2274. https://doi.org/10.3390/nu14112274
APA StyleFeng, C., Lyu, Y., Gong, L., & Wang, J. (2022). Therapeutic Potential of Natural Products in the Treatment of Renal Cell Carcinoma: A Review. Nutrients, 14(11), 2274. https://doi.org/10.3390/nu14112274