Temporal Association of Reduced Serum Vitamin D with COVID-19 Infection: Two Single-Institution Case–Control Studies
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Serum 25(OH)D Was Lower in COVID-19 Subjects Tested after, but Not before Diagnosis
3.2. Reduced 25(OH)D in COVID-19-Positive Hospitalized Patients Compared to a COVID-19-Negative Hospitalized Cohort
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
25(OH)D | 25-hydroxy-vitamin D |
BMI | body mass index |
CAMP | cathelicidin antimicrobial peptide |
CI | confidence interval |
OLS | ordinary least squares |
SD | standard deviation |
UCSD | University of California San Diego (UCSD) |
References
- Wei, R.; Christakos, S. Mechanisms Underlying the Regulation of Innate and Adaptive Immunity by Vitamin D. Nutrients 2015, 7, 8251–8260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginde, A.A.; Mansbach, J.M.; Camargo, C.A. Vitamin D, Respiratory Infections, and Asthma. Curr. Allergy Asthma Rep. 2009, 9, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Barlow, P.G.; Svoboda, P.; Mackellar, A.; Nash, A.A.; York, I.A.; Pohl, J.; Davidson, D.J.; Donis, R.O. Antiviral Activity and Increased Host Defense against Influenza Infection Elicited by the Human Cathelicidin LL-37. PLoS ONE 2011, 6, e25333. [Google Scholar] [CrossRef]
- Aranow, C. Vitamin D and the Immune System. J. Investig. Med. 2012, 59, 881–886. [Google Scholar] [CrossRef] [Green Version]
- Sinha, P.; Matthay, M.A.; Calfee, C.S. Is a “Cytokine Storm” Relevant to COVID-19? JAMA Intern. Med. 2020, 180, 1152. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B.; Aliano, J.L.; Bhattoa, H.P. Evidence That Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients 2020, 12, 988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimlin, M.G. Geographic Location and Vitamin D Synthesis. Mol. Aspects Med. 2008, 29, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Meltzer, D.O.; Best, T.J.; Zhang, H.; Vokes, T.; Arora, V.; Solway, J. Association of Vitamin D Status and Other Clinical Characteristics With COVID-19 Test Results. JAMA Netw. Open 2020, 3, e2019722. [Google Scholar] [CrossRef]
- Merzon, E.; Tworowski, D.; Gorohovski, A.; Vinker, S.; Golan Cohen, A.; Green, I.; Frenkel-Morgenstern, M. Low Plasma 25(OH) Vitamin D Level Is Associated with Increased Risk of COVID-19 Infection: An Israeli Population-based Study. FEBS J. 2020, 287, 3693–3702. [Google Scholar] [CrossRef]
- Hastie, C.E.; Mackay, D.F.; Ho, F.; Celis-Morales, C.A.; Katikireddi, S.V.; Niedzwiedz, C.L.; Jani, B.D.; Welsh, P.; Mair, F.S.; Gray, S.R.; et al. Vitamin D Concentrations and COVID-19 Infection in UK Biobank. Diabet. Metab. Syndr. Clin. Res. Rev. 2020, 14, 561–565. [Google Scholar] [CrossRef]
- Ferrari, D.; Locatelli, M. No Significant Association between Vitamin D and COVID-19. A Retrospective Study from a Northern Italian Hospital. Int. J. Vitamin Nutr. Res. 2020, 91, 200–203. [Google Scholar] [CrossRef]
- Radujkovic, A.; Hippchen, T.; Tiwari-Heckler, S.; Dreher, S.; Boxberger, M.; Merle, U. Vitamin D Deficiency and Outcome of COVID-19 Patients. Nutrients 2020, 12, 2757. [Google Scholar] [CrossRef] [PubMed]
- Maghbooli, Z.; Sahraian, M.A.; Ebrahimi, M.; Pazoki, M.; Kafan, S.; Tabriz, H.M.; Hadadi, A.; Montazeri, M.; Nasiri, M.; Shirvani, A.; et al. Vitamin D Sufficiency, a Serum 25-Hydroxyvitamin D at Least 30 Ng/ML Reduced Risk for Adverse Clinical Outcomes in Patients with COVID-19 Infection. PLoS ONE 2020, 15, e0239799. [Google Scholar] [CrossRef] [PubMed]
- Macaya, F.; Espejo Paeres, C.; Valls, A.; Fernández-Ortiz, A.; González Del Castillo, J.; Martín-Sánchez, F.J.; Runkle, I.; Rubio Herrera, M.Á. Interaction between Age and Vitamin D Deficiency in Severe COVID-19 Infection. Nutr. Hosp. 2020, 37, 1039–1042. [Google Scholar] [CrossRef]
- Ye, K.; Tang, F.; Liao, X.; Shaw, B.A.; Deng, M.; Huang, G.; Qin, Z.; Peng, X.; Xiao, H.; Chen, C.; et al. Does Serum Vitamin D Level Affect COVID-19 Infection and Its Severity?-A Case-Control Study. J. Am. Coll. Nutr. 2020, 40, 724–731. [Google Scholar] [CrossRef]
- Panagiotou, G.; Tee, S.A.; Ihsan, Y.; Athar, W.; Marchitelli, G.; Kelly, D.; Boot, C.S.; Stock, N.; Macfarlane, J.; Martineau, A.R.; et al. Low Serum 25-hydroxyvitamin D (25[OH]D) Levels in Patients Hospitalized with COVID-19 Are Associated with Greater Disease Severity. Clin. Endocrinol. 2020, 93, 508–511. [Google Scholar] [CrossRef]
- Entrenas Castillo, M.; Entrenas Costa, L.M.; Vaquero Barrios, J.M.; Alcalá Díaz, J.F.; López Miranda, J.; Bouillon, R.; Quesada Gomez, J.M. Effect of Calcifediol Treatment and Best Available Therapy versus Best Available Therapy on Intensive Care Unit Admission and Mortality among Patients Hospitalized for COVID-19: A Pilot Randomized Clinical Study. J. Steroid Biochem. Mol. Biol. 2020, 203, 105751. [Google Scholar] [CrossRef] [PubMed]
- Annweiler, C.; Hanotte, B.; Grandin de l’Eprevier, C.; Sabatier, J.-M.; Lafaie, L.; Célarier, T. Vitamin D and Survival in COVID-19 Patients: A Quasi-Experimental Study. J. Steroid Biochem. Mol. Biol. 2020, 204, 105771. [Google Scholar] [CrossRef]
- Martineau, A.R.; Forouhi, N.G. Vitamin D for COVID-19: A Case to Answer? Lancet Diabet. Endocrinol. 2020, 8, 735–736. [Google Scholar] [CrossRef]
- Ali, N. Role of Vitamin D in Preventing of COVID-19 Infection, Progression and Severity. J. Infection Public Health 2020, 13, 1373–1380. [Google Scholar] [CrossRef]
- Ilie, P.C.; Stefanescu, S.; Smith, L. The Role of Vitamin D in the Prevention of Coronavirus Disease 2019 Infection and Mortality. Aging Clin. Exp. Res. 2020, 32, 1195–1198. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.; Dunstan, F.; Laird, E.; Subramanian, S.; Kenny, R.A. COVID-19 Mortality Increases with Northerly Latitude after Adjustment for Age Suggesting a Link with Ultraviolet and Vitamin D. BMJ Nutr. Prev. Health 2020, 3, 118–120. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, A.K.; Singh, R.J.; Noymer, A. Vitamin D (25OHD) Serum Seasonality in the United States. PLoS ONE 2013, 8, e65785. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.E.; Hovey, K.M.; Wactawski-Wende, J.; Andrews, C.A.; LaMonte, M.J.; Horst, R.L.; Genco, R.J.; Millen, A.E. Intraindividual Variation in Plasma 25-Hydroxyvitamin D Measures 5 Years Apart among Postmenopausal Women. Cancer Epidemiol. Biomark. Prev. 2012, 21, 916–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klingberg, E.; Oleröd, G.; Konar, J.; Petzold, M.; Hammarsten, O. Seasonal Variations in Serum 25-Hydroxy Vitamin D Levels in a Swedish Cohort. Endocrine 2015, 49, 800–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campi, I.; Gennari, L.; Merlotti, D.; Mingiano, C.; Frosali, A.; Giovanelli, L.; Torlasco, C.; Pengo, M.F.; Heilbron, F.; Soranna, D.; et al. Vitamin D and COVID-19 Severity and Related Mortality: A Prospective Study in Italy. BMC Infect. Dis. 2021, 21, 566. [Google Scholar] [CrossRef] [PubMed]
- Davoudi, A.; Najafi, N.; Aarabi, M.; Tayebi, A.; Nikaeen, R.; Izadyar, H.; Salar, Z.; Delavarian, L.; Vaseghi, N.; Daftarian, Z.; et al. Lack of Association between Vitamin D Insufficiency and Clinical Outcomes of Patients with COVID-19 Infection. BMC Infect. Dis. 2021, 21, 450. [Google Scholar] [CrossRef]
- D’Avolio, A.; Avataneo, V.; Manca, A.; Cusato, J.; De Nicolò, A.; Lucchini, R.; Keller, F.; Cantù, M. 25-Hydroxyvitamin D Concentrations Are Lower in Patients with Positive PCR for SARS-CoV-2. Nutrients 2020, 12, 1359. [Google Scholar] [CrossRef]
- Quraishi, S.A.; Camargo, C.A. Vitamin D in Acute Stress and Critical Illness. Curr. Opin. Clin. Nutr. Metab. Care 2012, 15, 625–634. [Google Scholar] [CrossRef]
- CDC COVID-19 Response Team; Bialek, S.; Boundy, E.; Bowen, V.; Chow, N.; Cohn, A.; Dowling, N.; Ellington, S.; Gierke, R. Severe Outcomes Among Patients with Coronavirus Disease 2019 (COVID-19) — United States, February 12–March 16, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 343–346. [Google Scholar] [CrossRef]
- Hicks, N.; Kammerling, R. The Relationship between a Severity of Illness Indicator and Mortality and Length-of-Stay. Health Trends 1993, 25, 65–68. [Google Scholar] [PubMed]
- Jordan, R.E.; Adab, P.; Cheng, K.K. Covid-19: Risk Factors for Severe Disease and Death. BMJ 2020, 368, m1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubin, R. Sorting Out Whether Vitamin D Deficiency Raises COVID-19 Risk. JAMA 2021, 325, 329–330. [Google Scholar] [CrossRef] [PubMed]
- Alpcan, A.; Tursun, S.; Kandur, Y. Vitamin D Levels in Children with COVID-19: A Report from Turkey. Epidemiol. Infect. 2021, 149, e180. [Google Scholar] [CrossRef] [PubMed]
- Haugen, J.; Chandyo, R.K.; Ulak, M.; Mathisen, M.; Basnet, S.; Brokstad, K.A.; Valentiner-Branth, P.; Shrestha, P.S.; Strand, T.A. 25-Hydroxy-Vitamin D Concentration Is Not Affected by Severe or Non-Severe Pneumonia, or Inflammation, in Young Children. Nutrients 2017, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Newens, K.; Filteau, S.; Tomkins, A. Plasma 25-Hydroxyvitamin D Does Not Vary over the Course of a Malarial Infection. Transact. Royal Soc. Trop. Med. Hygiene 2006, 100, 41–44. [Google Scholar] [CrossRef]
- Bang, U.C.; Novovic, S.; Andersen, A.M.; Fenger, M.; Hansen, M.B.; Jensen, J.-E.B. Variations in Serum 25-Hydroxyvitamin D during Acute Pancreatitis: An Exploratory Longitudinal Study. Endocrine Res. 2011, 36, 135–141. [Google Scholar] [CrossRef]
- Kruit, A.; Zanen, P. The Association between Vitamin D and C-Reactive Protein Levels in Patients with Inflammatory and Non-Inflammatory Diseases. Clin. Biochem. 2016, 49, 534–537. [Google Scholar] [CrossRef]
- Silva, M.C.; Furlanetto, T.W. Does Serum 25-Hydroxyvitamin D Decrease during Acute-Phase Response? A Systematic Review. Nutr. Res. 2015, 35, 91–96. [Google Scholar] [CrossRef]
- Smolders, J.; van den Ouweland, J.; Geven, C.; Pickkers, P.; Kox, M. Letter to the Editor: Vitamin D Deficiency in COVID-19: Mixing up Cause and Consequence. Metabolism 2021, 115, 154434. [Google Scholar] [CrossRef]
- Hughes, D.A.; Norton, R. Vitamin D and Respiratory Health. Clin. Exp. Immunol. 2009, 158, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Waldron, J.L.; Ashby, H.L.; Cornes, M.P.; Bechervaise, J.; Razavi, C.; Thomas, O.L.; Chugh, S.; Deshpande, S.; Ford, C.; Gama, R. Vitamin D: A Negative Acute Phase Reactant. J. Clin. Pathol. 2013, 66, 620–622. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, X.; Wang, H.; Li, Y.; Lan, N.; Yuan, X.; Wu, M.; Liu, Z.; Li, G. Allergen Specific Immunotherapy Enhanced Defense against Bacteria via TGF-β1-Induced CYP27B1 in Asthma. Oncotarget 2017, 8, 68681–68695. [Google Scholar] [CrossRef] [Green Version]
- Jolliffe, D.A.; Stefanidis, C.; Wang, Z.; Kermani, N.Z.; Dimitrov, V.; White, J.H.; McDonough, J.E.; Janssens, W.; Pfeffer, P.; Griffiths, C.J.; et al. Vitamin D Metabolism Is Dysregulated in Asthma and Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2020, 202, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.K.C.; Lucas, R.M.; Banks, E.; Ponsonby, A.-L. Ausimmune Investigator Group Variability in Vitamin D Assays Impairs Clinical Assessment of Vitamin D Status: Variability in Vitamin D Assays. Intern. Med. J. 2012, 42, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, F.H.; Powell, C.E.; Adonecchi, G.; Danos, D.M.; DiNardo, A.R.; Chugden, R.J.; Wolf, P.; Castilla, C.F. Pilot Phase Results of a Prospective, Randomized Controlled Trial of Narrowband Ultraviolet B Phototherapy in Hospitalized COVID-19 Patients. Exp. Dermatol. 2022. [Google Scholar] [CrossRef]
- Murai, I.H.; Fernandes, A.L.; Sales, L.P.; Pinto, A.J.; Goessler, K.F.; Duran, C.S.C.; Silva, C.B.R.; Franco, A.S.; Macedo, M.B.; Dalmolin, H.H.H.; et al. Effect of a Single High Dose of Vitamin D3 on Hospital Length of Stay in Patients With Moderate to Severe COVID-19: A Randomized Clinical Trial. JAMA 2021, 325, 1053–1060. [Google Scholar] [CrossRef]
Characteristic | COVID-19-Positive (n = 107) | COVID-19-Negative (n = 214) | p-Value |
---|---|---|---|
Age (years) ± SD | 51.2 ± 16.0 | 52.6 ± 15.3 | 0.49 |
Sex—no. (%) | |||
Male | 53 (49.5) | 106 (49.5) | 1.00 |
Female | 54 (50.5) | 108 (50.5) | |
Body Mass Index ± SD | 27.8 ± 5.8 | 27.5 ± 5.4 | 0.67 |
Diabetes—no. (%) | |||
Yes | 22 (20.6) | 44 (20.6) | 1.00 |
No | 85 (79.4) | 170 (79.4) | |
Hypertension—no. (%) | |||
Yes | 50 (46.7) | 100 (46.7) | 1.00 |
No | 57 (53.3) | 114 (53.3) | |
Days between vitamin D and | |||
COVID-19 test ± SD | 77.4 ± 39.9 | 77.7 ± 39.6 | 0.95 |
Season—no. (%) | |||
Winter (1 January–29 February) | 36 (33.6) | 72 (33.6) | |
Spring (1 March–31 May) | 33 (30.8) | 68 (31.8) | 0.98 |
Summer (1 June–31 August) | 38 (35.5) | 74 (34.6) | |
Fall (1 September–30 September) | - | - |
Characteristic | COVID-19-Positive (n = 203) | COVID-19-Negative (n = 406) | p-Value |
---|---|---|---|
Age (years) ± SD | 52.7 ± 15.7 | 53.4 ± 15.2 | 0.60 |
Sex—no. (%) | |||
Male | 123 (60.6) | 246 (60.6) | 1.00 |
Female | 80 (39.4) | 160 (39.4) | |
Body Mass Index ± SD | 28.0 ± 6.5 | 27.6 ± 5.9 | 0.44 |
Diabetes—no. (%) | |||
Yes | 70 (34.5) | 140 (34.5) | 1.00 |
No | 133 (65.5) | 266 (65.5) | |
Hypertension—no. (%) | |||
Yes | 109 (53.7) | 218 (53.7) | 1.00 |
No | 94 (46.3) | 188 (46.3) | |
Days between vitamin D and | |||
COVID-19 test ± SD | 32.3 ± 40.4 | 32.3 ± 38.9 | 0.99 |
Season—no. (%) | |||
Winter (1 January–29 February) | - | - | |
Spring (1 March–31 May) | 42 (20.7) | 82 (20.2) | |
Summer (1 June–31 August) | 124 (61.1) | 251 (61.8) | 0.98 |
Fall (1 September–30 September) | 37 (18.2) | 73 (18.0) |
Predictor | Cases (n = 107) Serum 25(OH)D (ng/mL) ± SD | Controls (n = 214) Serum 25(OH)D (ng/mL) ± SD | Odds Ratio | 95% CI | p-Value |
---|---|---|---|---|---|
Vitamin D (ng/mL) | 35.5 ± 13.7 | 35.4 ± 13.8 | 1.0 | 1.0 to 1.0 | 0.98 |
Predictor | Cases (n = 203) Serum 25(OH)D (ng/mL) ± SD | Controls (n = 406) Serum 25(OH)D (ng/mL) ± SD | Beta Estimate | 95% CI | p-Value |
---|---|---|---|---|---|
COVID-19 Infection | 30.5 ± 15.5 | 33.2 ± 15.7 | −2.7 | −5.2 to −0.2 | 0.03 |
Characteristic | COVID-19-Positive (n = 120) | COVID-19-Negative (n = 240) | p-Value |
---|---|---|---|
Age (years) ± SD | 55.9 ± 14.6 | 57.9 ± 14.0 | 0.22 |
Sex—no. (%) | |||
Male | 82 (68.3) | 165 (68.8) | 0.94 |
Female | 38 (31.7) | 75 (31.3) | |
Body Mass Index ± SD | 28.1 ± 6.8 | 26.8 ± 6.3 | 0.07 |
Diabetes—no. (%) | |||
Yes | 59 (49.2) | 115 (47.9) | 0.82 |
No | 61 (50.8) | 125 (52.1) | |
Hypertension—no. (%) | |||
Yes | 83 (69.2) | 165 (68.8) | 0.94 |
No | 37 (30.8) | 75 (31.4) | |
Days between vitamin D test and | |||
COVID-19 hospitalization ± SD | 21.0 ± 34.4 | 19.9 ± 30.0 | 0.76 |
Season—no. (%) Winter (1 January–29 February) Spring (1 March–31 May) Summer (1 June–31 August) Fall (1 September–30 September) | 7 (5.8) 37 (30.8) 67 (55.8) 9 (7.5) | 16 (6.7) 77 (32.1) 128 (53.3) 19 (7.9) | 0.97 |
Length of hospitalization (days) ± SD | 21.4 ± 21.4 | 17.2 ± 17.8 | 0.07 |
Predictor | Cases (n = 120) Serum 25(OH)D (ng/mL) ± SD | Controls (n = 240) Serum 25 (OH)D (ng/mL) ± SD | Beta Estimate | 95% CI | p-Value |
---|---|---|---|---|---|
COVID-19 Hospitalization | 23.9 ± 13.5 | 27.3 ± 15.4 | −3.3 | −6.3 to −0.4 | 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, D.; Menon, S.; Criqui, M.H.; Sun, B.K. Temporal Association of Reduced Serum Vitamin D with COVID-19 Infection: Two Single-Institution Case–Control Studies. Nutrients 2022, 14, 2757. https://doi.org/10.3390/nu14132757
Gupta D, Menon S, Criqui MH, Sun BK. Temporal Association of Reduced Serum Vitamin D with COVID-19 Infection: Two Single-Institution Case–Control Studies. Nutrients. 2022; 14(13):2757. https://doi.org/10.3390/nu14132757
Chicago/Turabian StyleGupta, Diviya, Sahit Menon, Michael H. Criqui, and Bryan K. Sun. 2022. "Temporal Association of Reduced Serum Vitamin D with COVID-19 Infection: Two Single-Institution Case–Control Studies" Nutrients 14, no. 13: 2757. https://doi.org/10.3390/nu14132757
APA StyleGupta, D., Menon, S., Criqui, M. H., & Sun, B. K. (2022). Temporal Association of Reduced Serum Vitamin D with COVID-19 Infection: Two Single-Institution Case–Control Studies. Nutrients, 14(13), 2757. https://doi.org/10.3390/nu14132757