Breastfeeding and Allergy Effect Modified by Genetic, Environmental, Dietary, and Immunological Factors
Abstract
:1. Introduction
2. The Effect of Breastfeeding as an Only Exposure
3. Exposure to Cow Milk
4. Breastfeeding and Changes in the Microbiota
5. Supplements and Breastfeeding
6. Introduction of Solid Foods
7. Mechanism of the Effect of Breastfeeding
8. Breastfeeding in Atopic Mothers
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BF | breastfeeding |
SCFA | short-chain fatty acids |
HMO | human oligosaccharide |
OVA | ovalbumin |
ILC2 | innate lymphoid cell type 2 |
References
- Victora, C.G.; Bahl, R.; Barros, A.J.D.; França, V.A.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C. Breastfeeding 1 Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet 2016, 387, 475. [Google Scholar] [CrossRef] [Green Version]
- Kramer, M.S. Breastfeeding and Allergy: The Evidence. Ann. Nutr. Metab. 2007, 335, 20–26. [Google Scholar] [CrossRef]
- Du Toit, G.; Roberts, G.; Sayre, P.H.; Bahnson, H.T.; Radulovic, S.; Santos, A.F.; Brough, H.A.; Phippard, D.; Basting, M.; Feeney, M.; et al. Randomized trial of peanut consumption in infants at risk for peanut allergy. N. Engl. J. Med. 2015, 372, 803–813. [Google Scholar] [CrossRef] [Green Version]
- Wei-Liang Tan, J.; Valerio, C.; Barnes, E.H.; Turner, P.J.; Van Asperen, P.A.; Kakakios, A.M.; Campbell, D.E. A randomized trial of egg introduction from 4 months of age in infants at risk for egg allergy. J. Allergy Clin. Immunol. 2017, 139, 1621–1628.e8. [Google Scholar] [CrossRef] [Green Version]
- Perkin, M.R.; Logan, K.; Marrs, T.; Radulovic, S.; Craven, J.; Flohr, C.; Lack, G.; EAT Study Team, E.S. Enquiring About Tolerance (EAT) study: Feasibility of an early allergenic food introduction regimen. J. Allergy Clin. Immunol. 2016, 137, 1477–1486.e8. [Google Scholar] [CrossRef] [Green Version]
- Lødrup Carlsen, K.C.; Rehbinder, E.M.; Skjerven, H.O.; Carlsen, M.H.; Fatnes, T.A.; Fugelli, P.; Granum, B.; Haugen, G.; Hedlin, G.; Jonassen, C.M.; et al. Preventing Atopic Dermatitis and ALLergies in Children—the PreventADALL study. Allergy 2018, 73, 2063–2070. [Google Scholar] [CrossRef]
- Perkin, M.R.; Logan, K.; Tseng, A.; Raji, B.; Ayis, S.; Peacock, J.; Brough, H.; Marrs, T.; Radulovic, S.; Craven, J.; et al. Randomized Trial of Introduction of Allergenic Foods in Breast-Fed Infants. N. Engl. J. Med. 2016, 374, 1733–1743. [Google Scholar] [CrossRef] [Green Version]
- Annesi-Maesano, I.; Fleddermann, M.; Hornef, M.; Von Mutius, E.; Pabst, O.; Schaubeck, M.; Fiocchi, A. Allergic diseases in infancy: I—Epidemiology and current interpretation. World Allergy Organ. J. 2021, 14, 100591. [Google Scholar] [CrossRef]
- Urashima, M.; Urashima, M.; Mezawa, H.; Okuyama, M.; Urashima, T.; Hirano, D.; Gocho, N.; Tachimoto, H. Primary Prevention of Cow’s Milk Sensitization and Food Allergy by Avoiding Supplementation With Cow’s Milk Formula at Birth: A Randomized Clinical Trial. JAMA Pediatr. 2019, 173, 1137–1145. [Google Scholar] [CrossRef]
- Sakihara, T.; Otsuji, K.; Arakaki, Y.; Hamada, K.; Sugiura, S.; Ito, K.; Aichi, J. Randomized trial of early infant formula introduction to prevent cow’s milk allergy. J. Allergy Clin. Immunol. 2021, 147, 224–232.e8. [Google Scholar] [CrossRef]
- Ek, W.E.; Karlsson, T.; Hernándes, C.A.; Rask-Andersen, M.; Johansson, Å. Breast-feeding and risk of asthma, hay fever, and eczema. J. Allergy Clin. Immunol. 2018, 141, 1157–1159.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flohr, C.; John Henderson, A.; Kramer, M.S.; Patel, R.; Thompson, J.; Rifas-Shiman, S.L.; Yang, S.; Vilchuck, K.; Bogdanovich, N.; Hameza, M.; et al. Effect of an Intervention to Promote Breastfeeding on Asthma, Lung Function, and Atopic Eczema at Age 16 Years: Follow-up of the PROBIT Randomized Trial. JAMA Pediatr. 2018, 172, e174064. [Google Scholar] [CrossRef] [PubMed]
- Filipiak-Pittroff, B.; Koletzko, S.; Krämer, U.; Standl, M.; Bauer, C.P.; Berdel, D.; von Berg, A. Full breastfeeding and allergies from infancy until adolescence in the GINIplus cohort. Pediatr. Allergy Immunol. 2018, 29, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Chen, Y.; Liu, S.; Jiang, F.; Wu, M.; Yan, C.; Tan, J.; Yu, G.; Hu, Y.; Yin, Y.; et al. Breastfeeding duration modified the effects of neonatal and familial risk factors on childhood asthma and allergy: A population-based study. Respir. Res. 2021, 22, 41. [Google Scholar] [CrossRef]
- Sordillo, J.E.; Zhou, Y.; McGeachie, M.J.; Ziniti, J.; Lange, N.; Laranjo, N.; Savage, J.R.; Carey, V.; O’Connor, G.; Sandel, M.; et al. Factors Influencing the Infant Gut Microbiome at Age 3–6 months: Findings from the ethnically diverse Vitamin D Antenatal Asthma Reduction Trial (VDAART). J. Allergy Clin. Immunol. 2017, 139, 482. [Google Scholar] [CrossRef] [Green Version]
- Savage, J.H.; Lee-Sarwar, K.A.; Sordillo, J.E.; Lange, N.E.; Zhou, Y.; O’Connor, G.T.; Sandel, M.; Bacharier, L.B.; Zeiger, R.; Sodergren, E.; et al. Diet during Pregnancy and Infancy and the Infant Intestinal Microbiome. J. Pediatr. 2018, 203, 47. [Google Scholar] [CrossRef]
- Korpela, K.; Salonen, A.; Vepsäläinen, O.; Suomalainen, M.; Kolmeder, C.; Varjosalo, M.; Miettinen, S.; Kukkonen, K.; Savilahti, E.; Kuitunen, M.; et al. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome 2018, 6, 182. [Google Scholar] [CrossRef] [Green Version]
- Lee-Sarwar, K.A.; Kelly, R.S.; Lasky-Su, J.; Zeiger, R.S.; O’Connor, G.T.; Sandel, M.T.; Bacharier, L.B.; Beigelman, A.; Laranjo, N.; Gold, D.R.; et al. Integrative analysis of the intestinal metabolome of childhood asthma. J. Allergy Clin. Immunol. 2019, 144, 442–454. [Google Scholar] [CrossRef] [Green Version]
- Sprenger, N.; Odenwald, H.; Kukkonen, A.K.; Kuitunen, M.; Savilahti, E.; Kunz, C. FUT2-dependent breast milk oligosaccharides and allergy at 2 and 5 years of age in infants with high hereditary allergy risk. Eur. J. Nutr. 2017, 56, 1293–1301. [Google Scholar] [CrossRef] [Green Version]
- Wickens, K.; Barthow, C.; Mitchell, E.A.; Kang, J.; van Zyl, N.; Purdie, G.; Stanley, T.; Fitzharris, P.; Murphy, R.; Crane, J. Effects of Lactobacillus rhamnosus HN001 in early life on the cumulative prevalence of allergic disease to 11 years. Pediatr. Allergy Immunol. 2018, 29, 808–814. [Google Scholar] [CrossRef]
- Henrick, B.M.; Rodriguez, L.; Lakshmikanth, T.; Pou, C.; Henckel, E.; Arzoomand, A.; Olin, A.; Wang, J.; Mikes, J.; Tan, Z.; et al. Bifidobacteria-mediated immune system imprinting early in life. Cell 2021, 184, 3884–3898.e11. [Google Scholar] [CrossRef] [PubMed]
- Pitt, T.J.; Becker, A.B.; Chan-Yeung, M.; Chan, E.S.; Watson, W.T.A.; Chooniedass, R.; Azad, M.B. Reduced risk of peanut sensitization following exposure through breast-feeding and early peanut introduction. J. Allergy Clin. Immunol. 2018, 141, 620–625.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marrs, T.; Jo, J.H.; Perkin, M.R.; Rivett, D.W.; Witney, A.A.; Bruce, K.D.; Logan, K.; Craven, J.; Radulovic, S.; Versteeg, S.A.; et al. Gut microbiota development during infancy: Impact of introducing allergenic foods. J. Allergy Clin. Immunol. 2021, 147, 613–621.e9. [Google Scholar] [CrossRef] [PubMed]
- Mallisetty, Y.; Mukherjee, N.; Jiang, Y.; Chen, S.; Ewart, S.; Hasan Arshad, S.; Holloway, J.W.; Zhang, H.; Karmaus, W. Epigenome-Wide Association of Infant Feeding and Changes in DNA Methylation from Birth to 10 Years. Nutrients 2020, 13, 99. [Google Scholar] [CrossRef] [PubMed]
- Stinson, L.F.; Gay, M.C.L.; Koleva, P.T.; Eggesbø, M.; Johnson, C.C.; Wegienka, G.; du Toit, E.; Shimojo, N.; Munblit, D.; Campbell, D.E.; et al. Human Milk From Atopic Mothers Has Lower Levels of Short Chain Fatty Acids. Front. Immunol. 2020, 11, 1427. [Google Scholar] [CrossRef]
- Brink, L.R.; Mercer, K.E.; Piccolo, B.D.; Chintapalli, S.V.; Elolimy, A.; Bowlin, A.K.; Matazel, K.S.; Pack, L.; Adams, S.H.; Shankar, K.; et al. Neonatal diet alters fecal microbiota and metabolome profiles at different ages in infants fed breast milk or formula. Am. J. Clin. Nutr. 2020, 111, 1190–1202. [Google Scholar] [CrossRef]
- Ho, N.T.; Li, F.; Lee-Sarwar, K.A.; Tun, H.M.; Brown, B.P.; Pannaraj, P.S.; Bender, J.M.; Azad, M.B.; Thompson, A.L.; Weiss, S.T.; et al. Meta-analysis of effects of exclusive breastfeeding on infant gut microbiota across populations. Nat. Commun. 2018, 9, 4169. [Google Scholar] [CrossRef]
- Drall, K.M.; Tun, H.M.; Morales-Lizcano, N.P.; Konya, T.B.; Guttman, D.S.; Field, C.J.; Mandal, R.; Wishart, D.S.; Becker, A.B.; Azad, M.B.; et al. Clostridioides difficile Colonization Is Differentially Associated With Gut Microbiome Profiles by Infant Feeding Modality at 3-4 Months of Age. Front. Immunol. 2019, 10, 2866. [Google Scholar] [CrossRef]
- Tonon, K.M.; Morais, T.B.; Taddei, C.R.; Araújo-Filho, H.B.; Abrão, A.C.F.V.; Miranda, A.; De Morais, M.B. Gut microbiota comparison of vaginally and cesarean born infants exclusively breastfed by mothers secreting α1-2 fucosylated oligosaccharides in breast milk. PLoS ONE 2021, 16, e0246839. [Google Scholar] [CrossRef]
- Seppo, A.E.; Autran, C.A.; Bode, L.; Järvinen, K.M. Human milk oligosaccharides and development of cow’s milk allergy in infants. J. Allergy Clin. Immunol. 2017, 139, 708. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Parenti, M.; Grip, T.; Lönnerdal, B.; Timby, N.; Domellöf, M.; Hernell, O.; Slupsky, C.M. Fecal microbiome and metabolome of infants fed bovine MFGM supplemented formula or standard formula with breast-fed infants as reference: A randomized controlled trial. Sci. Rep. 2019, 9, 11589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dow, M.L.; Szymanski, L.M. Effects of Overweight and Obesity in Pregnancy on Health of the Offspring. Endocrinol. Metab. Clin. N. Am. 2020, 49, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Walker, W.A. The importance of appropriate initial bacterial colonization of the intestine in newborn, child and adult health. Pediatr. Res. 2017, 82, 387. [Google Scholar] [CrossRef] [PubMed]
- Galley, J.D.; Bailey, M.; Dush, C.K.; Schoppe-Sullivan, S.; Christian, L.M. Maternal Obesity Is Associated with Alterations in the Gut Microbiome in Toddlers. PLoS ONE 2014, 9, 113026. [Google Scholar] [CrossRef]
- Stiemsma, L.T.; Michels, K.B. The Role of the Microbiome in the Developmental Origins of Health and Disease. Pediatrics 2018, 141, e20172437. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, D.; Muñoz, Y.; Ortiz, M.; Maliqueo, M.; Chouinard-Watkins, R.; Valenzuela, R. Impact of Maternal Obesity on the Metabolism and Bioavailability of Polyunsaturated Fatty Acids during Pregnancy and Breastfeeding. Nutrients 2020, 13, 19. [Google Scholar] [CrossRef]
- Kim, H.; Sitarik, A.R.; Woodcroft, K.; Johnson, C.C.; Zoratti, E. Birth Mode, Breastfeeding, Pet Exposure, and Antibiotic Use: Associations With the Gut Microbiome and Sensitization in Children. Curr. Allergy Asthma Rep. 2019, 19, 22. [Google Scholar] [CrossRef]
- Berger, B.; Porta, N.; Foata, F.; Grathwohl, D.; Delley, M.; Moine, D.; Charpagne, A.; Siegwald, L.; Descombes, P.; Alliet, P.; et al. Linking Human Milk Oligosaccharides, Infant Fecal Community Types, and Later Risk To Require Antibiotics. MBio 2020, 11, e03196-19. [Google Scholar] [CrossRef] [Green Version]
- Wickens, K.; Barthow, C.; Mitchell, E.A.; Stanley, T.V.; Purdie, G.; Rowden, J.; Kang, J.; Hood, F.; van den Elsen, L.; Forbes-Blom, E.; et al. Maternal supplementation alone with Lactobacillus rhamnosus HN001 during pregnancy and breastfeeding does not reduce infant eczema. Pediatr. Allergy Immunol. 2018, 29, 296–302. [Google Scholar] [CrossRef]
- Turfkruyer, M.; Rekima, A.; Macchiaverni, P.; Le Bourhis, L.; Muncan, V.; Van Den Brink, G.R.; Tulic, M.K.; Verhasselt, V. Oral tolerance is inefficient in neonatal mice due to a physiological vitamin A deficiency. Mucosal Immunol. 2015, 9, 479–491. [Google Scholar] [CrossRef]
- Rekima, A.; Macchiaverni, P.; Turfkruyer, M.; Holvoet, S.; Dupuis, L.; Baiz, N.; Annesi-Maesano, I.; Mercenier, A.; Nutten, S.; Verhasselt, V. Long-term reduction in food allergy susceptibility in mice by combining breastfeeding-induced tolerance and TGF-β-enriched formula after weaning. Clin. Exp. Allergy 2017, 47, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, M.; Macchiaverni, P.; Tulic, M.K.; Rekima, A.; Annesi-Maesano, I.; Verhasselt, V.; Bernard, J.Y.; Botton, J.; Charles, M.A.; Dargent-Molina, P.; et al. Early oral exposure to house dust mite allergen through breast milk: A potential risk factor for allergic sensitization and respiratory allergies in children. J. Allergy Clin. Immunol. 2017, 139, 369–372.e10. [Google Scholar] [CrossRef] [Green Version]
- Rekima, A.; Bonnart, C.; Macchiaverni, P.; Metcalfe, J.; Tulic, M.K.; Halloin, N.; Rekima, S.; Genuneit, J.; Zanelli, S.; Medeiros, S.; et al. A role for early oral exposure to house dust mite allergens through breast milk in IgE-mediated food allergy susceptibility. J. Allergy Clin. Immunol. 2020, 145, 1416–1429.e11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherwood, W.B.; Kothalawala, D.M.; Kadalayil, L.; Ewart, S.; Zhang, H.; Karmaus, W.; Hasan Arshad, S.; Holloway, J.W.; Rezwan, F.I. Epigenome-Wide Association Study Reveals Duration of Breastfeeding Is Associated with Epigenetic Differences in Children. Int. J. Environ. Res. Public Health 2020, 17, 3569. [Google Scholar] [CrossRef]
- Hartwig, F.P.; Davey Smith, G.; Simpkin, A.J.; Victora, C.G.; Relton, C.L.; Caramaschi, D. Association between Breastfeeding and DNA Methylation over the Life Course: Findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Nutrients 2020, 12, 3309. [Google Scholar] [CrossRef]
- Briollais, L.; Rustand, D.; Allard, C.; Wu, Y.; Xu, J.; Rajan, S.G.; Hivert, M.F.; Doyon, M.; Bouchard, L.; McGowan, P.O.; et al. DNA methylation mediates the association between breastfeeding and early-life growth trajectories. Clin. Epigenet. 2021, 13, 231. [Google Scholar] [CrossRef]
- Walker-Short, E.; Buckner, T.; Vigers, T.; Carry, P.; Vanderlinden, L.A.; Dong, F.; Johnson, R.K.; Yang, I.V.; Kechris, K.; Rewers, M.; et al. Epigenome-Wide Association Study of Infant Feeding and DNA Methylation in Infancy and Childhood in a Population at Increased Risk for Type 1 Diabetes. Nutrients 2021, 13, 4057. [Google Scholar] [CrossRef]
- Hartwig, F.P.; De Mola, C.L.; Davies, N.M.; Victora, C.G.; Relton, C.L. Breastfeeding effects on DNA methylation in the offspring: A systematic literature review. PLoS ONE 2017, 12, e0173070. [Google Scholar] [CrossRef] [Green Version]
- Acevedo, N.; Alhamwe, B.A.; Caraballo, L.; Ding, M.; Ferrante, A.; Garn, H.; Garssen, J.; Hii, C.S.; Irvine, J.; Llinás-Caballero, K.; et al. Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients 2021, 13, 724. [Google Scholar] [CrossRef]
- Ozkan, H.; Tuzun, F.; Taheri, S.; Korhan, P.; Akokay, P.; Yılmaz, O.; Duman, N.; Özer, E.; Tufan, E.; Kumral, A.; et al. Epigenetic Programming Through Breast Milk and Its Impact on Milk-Siblings Mating. Front. Genet. 2020, 11, 569232. [Google Scholar] [CrossRef]
- Leroux, C.; Chervet, M.L.; German, J.B. Perspective: Milk microRNAs as Important Players in Infant Physiology and Development. Adv. Nutr. Int. Rev. J. 2021, 12, 1625–1635. [Google Scholar] [CrossRef] [PubMed]
- Bozack, A.K.; Colicino, E.; Rodosthenous, R.; Bloomquist, T.R.; Baccarelli, A.A.; Wright, R.O.; Wright, R.J.; Lee, A.G. Associations between maternal lifetime stressors and negative events in pregnancy and breast milk-derived extracellular vesicle microRNAs in the programming of intergenerational stress mechanisms (PRISM) pregnancy cohort. Epigenetics 2021, 16, 389–404. [Google Scholar] [CrossRef] [PubMed]
- Tingö, L.; Ahlberg, E.; Johansson, L.; Pedersen, S.A.; Chawla, K.; Sætrom, P.; Cione, E.; Simpson, M.R. Non-Coding RNAs in Human Breast Milk: A Systematic Review. Front. Immunol. 2021, 12, 725323. [Google Scholar] [CrossRef]
- Matheson, M.C.; Erbas, B.; Balasuriya, A.; Jenkins, M.A.; Wharton, C.L.; Tang, M.L.-K.; Abramson, M.J.; Walters, E.H.; Hopper, J.L.; Dharmage, S.C. Breast-feeding and atopic disease: A cohort study from childhood to middle age. J. Allergy Clin. Immunol. 2007, 120, 1051–1057. [Google Scholar] [CrossRef] [Green Version]
- Mandhane, P.J.; Greene, J.M. Original articles Interactions between breast-feeding, specific parental atopy, and sex on development of asthma and atopy. J. Allergy Clin. Immunol. 2007, 119, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- Guilbert, T.W.; Stern, D.A.; Morgan, W.J.; Martinez, F.D.; Wright, A.L. Effect of Breastfeeding on Lung Function in Childhood and Modulation by Maternal Asthma and Atopy. Am. J. Respir. Crit. Care Med. 2007, 176, 843–848. [Google Scholar] [CrossRef] [Green Version]
- Sitarik, A.R.; Kasmikha, N.S.; Kim, H.; Wegienka, G.; Havstad, S.; Ownby, D.; Zoratti, E.; Johnson, C.C. Breastfeeding and Delivery Mode Modify the Association between Maternal Atopy and Childhood Allergic Outcomes. J. Allergy Clin. Immunol. 2018, 142, 2002. [Google Scholar] [CrossRef] [Green Version]
- Harvey, S.M.; Murphy, V.E.; Gibson, P.G.; Collison, A.; Robinson, P.; Sly, P.D.; Mattes, J.; Jensen, M.E. Maternal asthma, breastfeeding, and respiratory outcomes in the first year of life. Pediatr. Pulmonol. 2020, 55, 1690–1696. [Google Scholar] [CrossRef]
- Azad, M.B.; Vehling, L.; Lu, Z.; Dai, D.; Subbarao, P.; Becker, A.B.; Mandhane, P.J.; Turvey, S.E.; Lefebvre, D.L.; Sears, M.R.; et al. Breastfeeding, maternal asthma and wheezing in the first year of life: A longitudinal birth cohort study. Eur. Respir. J. 2017, 49, 1602019. [Google Scholar] [CrossRef] [Green Version]
- Lupinek, C.; Hochwallner, H.; Johansson, C.; Mie, A.; Rigler, E.; Scheynius, A.; Alm, J.; Valenta, R. Maternal allergen-specific IgG might protect the child against allergic sensitization. J. Allergy Clin. Immunol. 2019, 144, 536–548. [Google Scholar] [CrossRef] [Green Version]
Intervention or Observation | Age of Intervention or Observation | Type of Study | Outcome | Age of Outcome | Number of Participants | Effect of BF on Outcome | Limitations | Conclusion | |
---|---|---|---|---|---|---|---|---|---|
Cow milk exposure | |||||||||
Urashima M, 2019 [9] | Avoiding supplementation with cow milk | 1 day–5 months | RCT | Sensitization to cow milk Food allergy (including CMA and anaphylaxis) | 2 years | 312 | RR 0.52 (0.34–0.81) | Amino acid formula in avoiding CM arm and switching to CM arm after 3 days | Sensitization to cow milk is preventable by avoiding CMF for at least 3 days of life |
Sakihara T, 2021 [10] | Early introduction and daily infant CMF | 1–2 months | RCT | CMA by OFC | 6 months | 504 | RR 0.12 (0.01–0.5) | Soya-based formula in no CMF arm | Daily ingestion of CMF prevents CMA development |
BF effect as only exposure | |||||||||
Ek WE, 2018 [11] | BF yes or not | time of BF | Cohort Born 1937–1969 | Self-reported asthma hay fever eczema | 38–73 years | 336,364 | Asthma OR 0.99 (0.96–1.02) hay fever/eczema OR 1.06 (1.03–1.08) | Wide time interval, population with different environmental exposure and cultural behaviors | BF is associated with an increased risk for hay fever and eczema, no effect on asthma |
Flohr C, 2018 [12] | BF promotion | birth | Cluster RT | Spirometry Eczema Asthma Wheezing | 16 years | 17,046 | Eczema OR 0.46 (0.25–0.83) | Allocation was not blinded | BF reduces eczema risk but not asthma |
Filipiak-Pirttroff B, 2018 [13] | Exclusive BF for 4 month or supplementation with randomized formula Non-intervention group—no recommendations | birth | RCT | Asthma Eczema Allergic rhinitis | 1, 2, 3, 4, 6, 10, and 15 years | 5991 | non-risk non-intervention allergic rhinitis OR 0.65 (0.42–0.99) | Recall bias in non-intervention group | In the non-intervention non-risk cohort—BF showed no effect on eczema and asthma, but a risk reduction for allergic rhinitis |
Hu Y, 2021 [14] | Duration of BF | 6–11 years | Population based | Asthma Allergic rhinitis Urticaria Food allergy Drug allergy | 6–11 years | 10,464 | Asthma (and vaginal delivery) OR 0.78 (0.66–0.92) | Self-reported allergy Recall bias | BF > 6 months is inversely associated with childhood asthma and allergic diseases and modifies the risks of parental allergy and Cesarean section |
BF and microbiome composition | |||||||||
Sordillo JE, 2017 [15] | Infant gut microbiome VDAART study (supplementation with low and high vitamin D at pregnancy) High-risk infants (atopic mother or father) | Pregnancy—vitamin D Infancy BF | RCT | Gut microbiome composition | 3–6 months stool | 333 | beta −0.45 p < 0.001 | High-risk infants, No allergy phenotype was studied at that point | Ethnicity, mode of delivery, BF, and cord blood vitamin D levels are associated with infant gut microbiome composition |
Savage JH, 2018 [16] | Intestinal microbiome in breastfed high-risk infants (atopic mother or father) VDAART study (supplementation with low and high vitamin D at pregnancy) | pregnancy | RCT | Microbial composition | 3–6 months | 323 | Bifidobacterium beta 0.56 (0.12, 1.00) Lactobacillus beta 3.50 (2.14, 4.86) | Included only high-risk infants | BF is dietary factor independently associated with microbiome composition |
Korpela K, 2018 [17] | Probiotic supplementation with BF High-risk infants | pregnancy and infancy until 6 month | RCT | Intestinal microbiota composition | 3 months | 428 | NA | Studying microbiota only, not proving any impact on allergy risk | At least partial breastfeeding together with probiotic supplementation might correct unfavorable changes in microbiota composition (possibly related to allergy risk) caused by antibiotics and cesarean birth |
Lee-Sarwar KA, 2019 [18] | Intestinal microbiome VDAART study | pregnancy | RCT | Asthma at 3 y | 3 years | 361 | beta 0.02 (0.01–0.03) | Parent reported asthma Not all metabolites were included Only high-risk children | Asthma-associated intestinal metabolites are significant mediators of the inverse relationship between exclusive breastfeeding for the first 4 months of life and asthma |
Supplement use with BF | |||||||||
Sprenger N, 2017 [19] | FUT2-HMO measurement in the placebo group from supplementation with probiotics and prebiotics trial high-risk infants | Mean 2.6 day | RCT | Allergy IgE-allergy Eczema IgE-eczema | 2 years 5 years | 266 | beta −2.14 SE 1.23 p = 0.083 | High-risk infants Trend only | A lower risk of manifesting IgE-associated eczema at 2 years, but not 5 years, when fed breast milk with FUT2-HMO |
Wickens K, 2018 [20] | Supplementation with either Lactobacillus rhamnosus HN001 Lactobacillus rhamnosus HN001 or Bifidobacterium lactis HN019 | Mothers from 35 weeks of pregnancy—6 month Postpartum; children 1 day–2 year | RCT | Eczema Asthma Wheeze Rhinitis | 10 years | 298 | 12 months prevalence eczema RR 0.46 (0.25–0.86) hay fever RR = 0.73 (0.53–1.00) Lifelong prevalence atopic sensitization HR = 0.71 (0.51–1.00) eczema HR = 0.58 (0.41–0.82) wheeze HR = 0.76 (0.57–0.99) | Study not directed at BF, mixed effect of maternal and child’s diet supplementation | HN001 supplementation is associated with a significant reduction in hay fever, eczema, wheeze, and atopic sensitization |
Henrick BM, 2021 [21] | Supplementation with B.infantis EVC001 Metagenomics profiling of BF infants | 7–28 day n = 60 | CT | Metagenomics profile n = 288 Galectin-1 Th2 Th17 n = 60 | 1–6 month | 208 Sweden 60 U.S. | NA | No intestinal tissue studied | Infants colonized early in life with Bifidobacterium species are less likely to develop immune-mediated diseases |
Solid food introduction | |||||||||
Pitt TJ, 2018 [22] | Peanut introduction before 12 month | Infancy and time of BF | Cohort | Peanut sensitization | 7 years | 545 | OR 0.08 (0.01–0.85) | No data on environmental peanut exposure and peanut exposure during pregnancy | Maternal peanut consumption while breastfeeding paired with direct introduction is associated with a lower risk of peanut sensitization |
Marrs T, 2021 [23] | Solid food regular consumption of 6 allergenic foods from 3 months alongside continued BF or EBF until 6 month | 3 months | RCT | Intestinal microbiota Allergen-specific IgE Atopic dermatitis | 6 months 12 months | 288 | NA | No data before 3 month | Introduction of allergenic solids from age 3 months alongside breastfeeding is associated with maturation of the gut microbiota |
Epigenetic effect of BF | |||||||||
Mallisetty Y, 2020 [24] | Epigenetics of BF | Time of BF | Cohort IOWBC | Methylation in blood Lung function Serum IgE | birth 10 years 18 years | 201 | NA | Relatively small sample size | 87 CpGs were identified as DM, the methylation pattern in EFF group was more stable from birth to 10 years and significantly lower cg25458520 (MAPK13 gene) is related to an increase in FEV1/FVC in EBF |
Atopic mothers | |||||||||
Stinson LF, 2020 [25] | SCFA composition measurement in BM from atopic and non-atopic mothers | 1 month | Cohort | SCFA composition | 1 month | 109 | NA | No allergy phenotype in children studied | Atopic mothers had significantly lower concentrations of acetate and butyrate than non-atopic mothers |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danielewicz, H. Breastfeeding and Allergy Effect Modified by Genetic, Environmental, Dietary, and Immunological Factors. Nutrients 2022, 14, 3011. https://doi.org/10.3390/nu14153011
Danielewicz H. Breastfeeding and Allergy Effect Modified by Genetic, Environmental, Dietary, and Immunological Factors. Nutrients. 2022; 14(15):3011. https://doi.org/10.3390/nu14153011
Chicago/Turabian StyleDanielewicz, Hanna. 2022. "Breastfeeding and Allergy Effect Modified by Genetic, Environmental, Dietary, and Immunological Factors" Nutrients 14, no. 15: 3011. https://doi.org/10.3390/nu14153011
APA StyleDanielewicz, H. (2022). Breastfeeding and Allergy Effect Modified by Genetic, Environmental, Dietary, and Immunological Factors. Nutrients, 14(15), 3011. https://doi.org/10.3390/nu14153011