Dietary Patterns Derived from Reduced Rank Regression Are Associated with the 5-Year Occurrence of Metabolic Syndrome: Aichi Workers’ Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Questionnaire (Food Frequency Questionnaire (FFQ) and Covariates)
2.3. Definition of MetS and Follow-Up
- (1)
- Abdominal obesity: WC ≥ 90 cm in men and WC ≥ 80 cm in women;
- (2)
- Hypertension: systolic blood pressure (SBP) ≥ 130 mmHg and/or diastolic blood pressure (DBP) ≥ 85 mmHg, and/or the use of antihypertensive medications;
- (3)
- High triglycerides (TG), ≥150 mg/dL and/or the use of medication for dyslipidemia;
- (4)
- Low high-density lipoprotein cholesterol (HDLC), <40 mg/dL in men and HDLC < 50 mg/dL in women, and/or the use of medications for dyslipidemia;
- (5)
- High FBG, ≥100 mg/dL and/or the use of hyperglycemic agents.
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grundy, S.M. Metabolic syndrome pandemic. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 629–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, P.W.; D’Agostino, R.B.; Parise, H.; Sullivan, L.; Meigs, J.B. Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 2005, 112, 3066–3072. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Kim, S.M.; Jeong, D.H.; Lee, S.K.; Ahn, M.E.; Ryu, O.H. Associations between metabolic syndrome and type of dementia: Analysis based on the National Health Insurance Service database of Gangwon province in South Korea. Diabetol. Metab. Syndr. 2021, 13, 4. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Monforte, M.; Sanchez, E.; Barrio, F.; Costa, B.; Flores-Mateo, G. Metabolic syndrome and dietary patterns: A systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2017, 56, 925–947. [Google Scholar] [CrossRef] [PubMed]
- Shab-Bidar, S.; Golzarand, M.; Hajimohammadi, M.; Mansouri, S. A posteriori dietary patterns and metabolic syndrome in adults: A systematic review and meta-analysis of observational studies. Public Health Nutr. 2018, 21, 1681–1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabiani, R.; Naldini, G.; Chiavarini, M. Dietary Patterns and Metabolic Syndrome in Adult Subjects: A Systematic Review and Meta-Analysis. Nutrients 2019, 11, 2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arisawa, K.; Uemura, H.; Yamaguchi, M.; Nakamoto, M.; Hiyoshi, M.; Sawachika, F.; Katsuura-Kamano, S. Associations of dietary patterns with metabolic syndrome and insulin resistance: A cross-sectional study in a Japanese population. J. Med. Investig. 2014, 61, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Bahari, T.; Uemura, H.; Katsuura-Kamano, S.; Yamaguchi, M.; Nakamoto, M.; Miki, K.; Ishizu, M.; Arisawa, K. Nutrient-Derived Dietary Patterns and Their Association With Metabolic Syndrome in a Japanese Population. J. Epidemiol. 2018, 28, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Tanisawa, K.; Ito, T.; Kawakami, R.; Usui, C.; Kawamura, T.; Suzuki, K.; Sakamoto, S.; Ishii, K.; Muraoka, I.; Oka, K.; et al. Association Between Dietary Patterns and Different Metabolic Phenotypes in Japanese Adults: WASEDA’S Health Study. Front. Nutr. 2022, 9, 779967. [Google Scholar] [CrossRef]
- Lutsey, P.L.; Steffen, L.M.; Stevens, J. Dietary intake and the development of the metabolic syndrome: The Atherosclerosis Risk in Communities study. Circulation 2008, 117, 754–761. [Google Scholar] [CrossRef] [Green Version]
- Kimokoti, R.W.; Gona, P.; Zhu, L.; Newby, P.K.; Millen, B.E.; Brown, L.S.; D’Agostino, R.B.; Fung, T.T. Dietary patterns of women are associated with incident abdominal obesity but not metabolic syndrome. J. Nutr. 2012, 142, 1720–1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millen, B.E.; Pencina, M.J.; Kimokoti, R.W.; Zhu, L.; Meigs, J.B.; Ordovas, J.M.; D’Agostino, R.B. Nutritional risk and the metabolic syndrome in women: Opportunities for preventive intervention from the Framingham Nutrition Study. Am. J. Clin. Nutr. 2006, 84, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Rumawas, M.E.; Meigs, J.B.; Dwyer, J.T.; McKeown, N.M.; Jacques, P.F. Mediterranean-style dietary pattern, reduced risk of metabolic syndrome traits, and incidence in the Framingham Offspring Cohort. Am. J. Clin. Nutr. 2009, 90, 1608–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tortosa, A.; Bes-Rastrollo, M.; Sanchez-Villegas, A.; Basterra-Gortari, F.J.; Nunez-Cordoba, J.M.; Martinez-Gonzalez, M.A. Mediterranean diet inversely associated with the incidence of metabolic syndrome: The SUN prospective cohort. Diabetes Care 2007, 30, 2957–2959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesse-Guyot, E.; Fezeu, L.; Galan, P.; Hercberg, S.; Czernichow, S.; Castetbon, K. Adherence to French nutritional guidelines is associated with lower risk of metabolic syndrome. J. Nutr. 2011, 141, 1134–1139. [Google Scholar] [CrossRef] [Green Version]
- Baik, I.; Lee, M.; Jun, N.R.; Lee, J.Y.; Shin, C. A healthy dietary pattern consisting of a variety of food choices is inversely associated with the development of metabolic syndrome. Nutr. Res. Pract. 2013, 7, 233–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Lee, K.; Rebholz, C.M.; Kim, J. Plant-based diets and incident metabolic syndrome: Results from a South Korean prospective cohort study. PLoS Med. 2020, 17, e1003371. [Google Scholar] [CrossRef]
- Hoffmann, K.; Schulze, M.B.; Schienkiewitz, A.; Nothlings, U.; Boeing, H. Application of a new statistical method to derive dietary patterns in nutritional epidemiology. Am. J. Epidemiol. 2004, 159, 935–944. [Google Scholar] [CrossRef]
- Van Dam, R.M. New approaches to the study of dietary patterns. Br. J. Nutr. 2005, 93, 573–574. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.P.; Chen, G.C.; Wang, X.P.; Qin, L.; Bai, Y. Dietary Fiber and Metabolic Syndrome: A Meta-Analysis and Review of Related Mechanisms. Nutrients 2017, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Wei, B.; Liu, Y.; Lin, X.; Fang, Y.; Cui, J.; Wan, J. Dietary fiber intake and risk of metabolic syndrome: A meta-analysis of observational studies. Clin. Nutr. 2018, 37, 1935–1942. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Ding, J.; Liu, Q.; Li, Y.; Liang, J.; Zhang, Y. Vitamin C and Metabolic Syndrome: A Meta-Analysis of Observational Studies. Front. Nutr. 2021, 8, 728880. [Google Scholar] [CrossRef] [PubMed]
- Al-Daghri, N.M.; Khan, N.; Alkharfy, K.M.; Al-Attas, O.S.; Alokail, M.S.; Alfawaz, H.A.; Alothman, A.; Vanhoutte, P.M. Selected dietary nutrients and the prevalence of metabolic syndrome in adult males and females in Saudi Arabia: A pilot study. Nutrients 2013, 5, 4587–4604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castellanos-Gutierrez, A.; Sanchez-Pimienta, T.G.; Carriquiry, A.; da Costa, T.H.M.; Ariza, A.C. Higher dietary magnesium intake is associated with lower body mass index, waist circumference and serum glucose in Mexican adults. Nutr. J. 2018, 17, 114. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Li, X.; Fan, W.; Yu, W.; Wang, S.; Li, Z.; Scott, E.M.; Li, X. Potassium and Obesity/Metabolic Syndrome: A Systematic Review and Meta-Analysis of the Epidemiological Evidence. Nutrients 2016, 8, 183. [Google Scholar] [CrossRef] [Green Version]
- Beydoun, M.A.; Chen, X.; Jha, K.; Beydoun, H.A.; Zonderman, A.B.; Canas, J.A. Carotenoids, vitamin A, and their association with the metabolic syndrome: A systematic review and meta-analysis. Nutr. Rev. 2019, 77, 32–45. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, J.; Guo, H.; Liu, Z.; Liu, Q.; Li, Y.; Zhang, D.; Liang, J. Associations of Dietary and Circulating Vitamin E Level With Metabolic Syndrome. A Meta-Analysis of Observational Studies. Front. Nutr. 2021, 8, 783990. [Google Scholar] [CrossRef]
- Julibert, A.; Bibiloni, M.D.M.; Tur, J.A. Dietary fat intake and metabolic syndrome in adults: A systematic review. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 887–905. [Google Scholar] [CrossRef]
- Abdelhamid, A.S.; Brown, T.J.; Brainard, J.S.; Biswas, P.; Thorpe, G.C.; Moore, H.J.; Deane, K.H.; Summerbell, C.D.; Worthington, H.V.; Song, F.; et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2020, 3, CD003177. [Google Scholar] [CrossRef]
- Jang, H.; Park, K. Omega-3 and omega-6 polyunsaturated fatty acids and metabolic syndrome: A systematic review and meta-analysis. Clin. Nutr. 2020, 39, 765–773. [Google Scholar] [CrossRef]
- Merchant, A.T.; Anand, S.S.; Vuksan, V.; Jacobs, R.; Davis, B.; Teo, K.; Yusuf, S.; SHARE; SHARE-AP Investigators. Protein intake is inversely associated with abdominal obesity in a multi-ethnic population. J. Nutr. 2005, 135, 1196–1201. [Google Scholar] [CrossRef] [PubMed]
- Ha, K.; Kim, K.; Chun, O.K.; Joung, H.; Song, Y. Differential association of dietary carbohydrate intake with metabolic syndrome in the US and Korean adults: Data from the 2007-2012 NHANES and KNHANES. Eur. J. Clin. Nutr. 2018, 72, 848–860. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, Y.; Takachi, R.; Ishihara, J.; Ishii, Y.; Sasazuki, S.; Sawada, N.; Shinozawa, Y.; Tanaka, J.; Kato, E.; Kitamura, K.; et al. Validity of Short and Long Self-Administered Food Frequency Questionnaires in Ranking Dietary Intake in Middle-Aged and Elderly Japanese in the Japan Public Health Center-Based Prospective Study for the Next Generation (JPHC-NEXT) Protocol Area. J. Epidemiol. 2016, 26, 420–432. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, K.; Ikeda, A.; Ishihara, J.; Takachi, R.; Sawada, N.; Shimazu, T.; Nakamura, K.; Tanaka, J.; Yamaji, T.; Iwasaki, M.; et al. Food frequency questionnaire reproducibility for middle-aged and elderly Japanese. Asia Pac. J. Clin. Nutr. 2019, 28, 362–370. [Google Scholar] [CrossRef]
- Kubota, Y.; Iso, H.; Yamagishi, K.; Sawada, N.; Tsugane, S.; Group, J.S. Daily Total Physical Activity and Incident Stroke: The Japan Public Health Center-Based Prospective Study. Stroke 2017, 48, 1730–1736. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Education, Culture, Sports, Science and Technology. Standard Tables of Food Composition in Japan-2015-Seventh Revised Version. 2015. Available online: https://www.mext.go.jp/en/policy/science_technology/policy/title01/detail01/1374030.htm (accessed on 22 June 2022).
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for total energy intake in epidemiologic studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S, discussion 1229S–1231S. [Google Scholar] [CrossRef]
- Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Statist. 1979, 6, 65–70. [Google Scholar]
- Rothman, K.J. No adjustments are needed for multiple comparisons. Epidemiology 1990, 1, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Despres, J.P. Is visceral obesity the cause of the metabolic syndrome? Ann. Med. 2006, 38, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Despres, J.P.; Lemieux, I.; Bergeron, J.; Pibarot, P.; Mathieu, P.; Larose, E.; Rodes-Cabau, J.; Bertrand, O.F.; Poirier, P. Abdominal obesity and the metabolic syndrome: Contribution to global cardiometabolic risk. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1039–1049. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.; Jovanovski, E.; Ho, H.V.T.; Marques, A.C.R.; Zurbau, A.; Mejia, S.B.; Sievenpiper, J.L.; Vuksan, V. The effect of viscous soluble fiber on blood pressure: A systematic review and meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 3–13. [Google Scholar] [CrossRef]
- Aburto, N.J.; Hanson, S.; Gutierrez, H.; Hooper, L.; Elliott, P.; Cappuccio, F.P. Effect of increased potassium intake on cardiovascular risk factors and disease: Systematic review and meta-analyses. BMJ 2013, 346, f1378. [Google Scholar] [CrossRef] [Green Version]
- Juraschek, S.P.; Guallar, E.; Appel, L.J.; Miller, E.R., 3rd. Effects of vitamin C supplementation on blood pressure: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2012, 95, 1079–1088. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Del Gobbo, L.C.; Rosanoff, A.; Wang, J.; Zhang, W.; Song, Y. Effects of Magnesium Supplementation on Blood Pressure: A Meta-Analysis of Randomized Double-Blind Placebo-Controlled Trials. Hypertension 2016, 68, 324–333. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Fang, X.; Wei, X.; Liu, Y.; Jin, Z.; Chen, Q.; Fan, Z.; Aaseth, J.; Hiyoshi, A.; He, J.; et al. Dose-response relationship between dietary magnesium intake, serum magnesium concentration and risk of hypertension: A systematic review and meta-analysis of prospective cohort studies. Nutr. J. 2017, 16, 26. [Google Scholar] [CrossRef] [PubMed]
- Ascherio, A.; Rimm, E.B.; Giovannucci, E.L.; Colditz, G.A.; Rosner, B.; Willett, W.C.; Sacks, F.; Stampfer, M.J. A prospective study of nutritional factors and hypertension among US men. Circulation 1992, 86, 1475–1484. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Knuppel, S.; Iqbal, K.; Andriolo, V.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food Groups and Risk of Hypertension: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2017, 8, 793–803. [Google Scholar] [CrossRef]
- Gibbs, J.; Gaskin, E.; Ji, C.; Miller, M.A.; Cappuccio, F.P. The effect of plant-based dietary patterns on blood pressure: A systematic review and meta-analysis of controlled intervention trials. J. Hypertens. 2021, 39, 23–37. [Google Scholar] [CrossRef]
- Aadland, E.K.; Lavigne, C.; Graff, I.E.; Eng, O.; Paquette, M.; Holthe, A.; Mellgren, G.; Jacques, H.; Liaset, B. Lean-seafood intake reduces cardiovascular lipid risk factors in healthy subjects: Results from a randomized controlled trial with a crossover design. Am. J. Clin. Nutr. 2015, 102, 582–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagen, I.V.; Helland, A.; Bratlie, M.; Brokstad, K.A.; Rosenlund, G.; Sveier, H.; Mellgren, G.; Gudbrandsen, O.A. High intake of fatty fish, but not of lean fish, affects serum concentrations of TAG and HDL-cholesterol in healthy, normal-weight adults: A randomised trial. Br. J. Nutr. 2016, 116, 648–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tefagh, G.; Payab, M.; Qorbani, M.; Sharifi, F.; Sharifi, Y.; Ebrahimnegad Shirvani, M.S.; Pourghazi, F.; Atlasi, R.; Shadman, Z.; Rezaei, N.; et al. Effect of vitamin E supplementation on cardiometabolic risk factors, inflammatory and oxidative markers and hormonal functions in PCOS (polycystic ovary syndrome): A systematic review and meta-analysis. Sci. Rep. 2022, 12, 5770. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Lee, J.E.; Song, W.O.; Paik, H.Y.; Song, Y. Carbohydrate intake and refined-grain consumption are associated with metabolic syndrome in the Korean adult population. J. Acad. Nutr. Diet. 2014, 114, 54–62. [Google Scholar] [CrossRef]
- Hassannejad, R.; Moosavian, S.P.; Mohammadifard, N.; Mansourian, M.; Roohafza, H.; Sadeghi, M.; Sarrafzadegan, N. Long-term association of red meat consumption and lipid profile: A 13-year prospective population-based cohort study. Nutrition 2021, 86, 111144. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zheng, J.; Yang, B.; Jiang, J.; Fu, Y.; Li, D. Effects of Vegetarian Diets on Blood Lipids: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2015, 4, e002408. [Google Scholar] [CrossRef] [Green Version]
- Guasch-Ferre, M.; Satija, A.; Blondin, S.A.; Janiszewski, M.; Emlen, E.; O’Connor, L.E.; Campbell, W.W.; Hu, F.B.; Willett, W.C.; Stampfer, M.J. Meta-Analysis of Randomized Controlled Trials of Red Meat Consumption in Comparison With Various Comparison Diets on Cardiovascular Risk Factors. Circulation 2019, 139, 1828–1845. [Google Scholar] [CrossRef]
- Zhao, H.; Song, A.; Zheng, C.; Wang, M.; Song, G. Effects of plant protein and animal protein on lipid profile, body weight and body mass index on patients with hypercholesterolemia: A systematic review and meta-analysis. Acta Diabetol. 2020, 57, 1169–1180. [Google Scholar] [CrossRef]
- Bender, N.; Portmann, M.; Heg, Z.; Hofmann, K.; Zwahlen, M.; Egger, M. Fish or n3-PUFA intake and body composition: A systematic review and meta-analysis. Obes. Rev. 2014, 15, 657–665. [Google Scholar] [CrossRef]
- Ozato, N.; Saito, S.; Yamaguchi, T.; Katashima, M.; Tokuda, I.; Sawada, K.; Katsuragi, Y.; Imoto, S.; Ihara, K.; Nakaji, S. Association between Nutrients and Visceral Fat in Healthy Japanese Adults: A 2-Year Longitudinal Study Brief Title: Micronutrients Associated with Visceral Fat Accumulation. Nutrients 2019, 11, 2698. [Google Scholar] [CrossRef] [Green Version]
- Schwingshackl, L.; Hoffmann, G.; Kalle-Uhlmann, T.; Arregui, M.; Buijsse, B.; Boeing, H. Fruit and Vegetable Consumption and Changes in Anthropometric Variables in Adult Populations: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. PLoS ONE 2015, 10, e0140846. [Google Scholar] [CrossRef]
- Schlesinger, S.; Neuenschwander, M.; Schwedhelm, C.; Hoffmann, G.; Bechthold, A.; Boeing, H.; Schwingshackl, L. Food Groups and Risk of Overweight, Obesity, and Weight Gain: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. Adv. Nutr. 2019, 10, 205–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwingshackl, L.; Hoffmann, G.; Lampousi, A.M.; Knuppel, S.; Iqbal, K.; Schwedhelm, C.; Bechthold, A.; Schlesinger, S.; Boeing, H. Food groups and risk of type 2 diabetes mellitus: A systematic review and meta-analysis of prospective studies. Eur. J. Epidemiol. 2017, 32, 363–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuenschwander, M.; Ballon, A.; Weber, K.S.; Norat, T.; Aune, D.; Schwingshackl, L.; Schlesinger, S. Role of diet in type 2 diabetes incidence: Umbrella review of meta-analyses of prospective observational studies. BMJ 2019, 366, l2368. [Google Scholar] [CrossRef] [Green Version]
- Cooper, A.J.; Sharp, S.J.; Lentjes, M.A.; Luben, R.N.; Khaw, K.T.; Wareham, N.J.; Forouhi, N.G. A prospective study of the association between quantity and variety of fruit and vegetable intake and incident type 2 diabetes. Diabetes Care 2012, 35, 1293–1300. [Google Scholar] [CrossRef] [Green Version]
- Conklin, A.I.; Monsivais, P.; Khaw, K.T.; Wareham, N.J.; Forouhi, N.G. Dietary Diversity, Diet Cost, and Incidence of Type 2 Diabetes in the United Kingdom: A Prospective Cohort Study. PLoS Med. 2016, 13, e1002085. [Google Scholar] [CrossRef]
- Jiang, Z.; Sun, T.Y.; He, Y.; Gou, W.; Zuo, L.S.; Fu, Y.; Miao, Z.; Shuai, M.; Xu, F.; Xiao, C.; et al. Dietary fruit and vegetable intake, gut microbiota, and type 2 diabetes: Results from two large human cohort studies. BMC Med. 2020, 18, 371. [Google Scholar] [CrossRef]
- Halvorsen, R.E.; Elvestad, M.; Molin, M.; Aune, D. Fruit and vegetable consumption and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of prospective studies. BMJ Nutr. Prev. Health 2021, 4, 519–531. [Google Scholar] [CrossRef]
- Tang, J.; Wan, Y.; Zhao, M.; Zhong, H.; Zheng, J.S.; Feng, F. Legume and soy intake and risk of type 2 diabetes: A systematic review and meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 2020, 111, 677–688. [Google Scholar] [CrossRef]
- Fang, X.; Han, H.; Li, M.; Liang, C.; Fan, Z.; Aaseth, J.; He, J.; Montgomery, S.; Cao, Y. Dose-Response Relationship between Dietary Magnesium Intake and Risk of Type 2 Diabetes Mellitus: A Systematic Review and Meta-Regression Analysis of Prospective Cohort Studies. Nutrients 2016, 8, 739. [Google Scholar] [CrossRef]
- Zhao, B.; Zeng, L.; Zhao, J.; Wu, Q.; Dong, Y.; Zou, F.; Gan, L.; Wei, Y.; Zhang, W. Association of magnesium intake with type 2 diabetes and total stroke: An updated systematic review and meta-analysis. BMJ Open 2020, 10, e032240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Tian, C.; Jia, C. Association of fish and n-3 fatty acid intake with the risk of type 2 diabetes: A meta-analysis of prospective studies. Br. J. Nutr. 2012, 108, 408–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.H.; Micha, R.; Imamura, F.; Pan, A.; Biggs, M.L.; Ajaz, O.; Djousse, L.; Hu, F.B.; Mozaffarian, D. Omega-3 fatty acids and incident type 2 diabetes: A systematic review and meta-analysis. Br. J. Nutr. 2012, 107 (Suppl. 2), S214–S227. [Google Scholar] [CrossRef]
- Chen, C.; Yang, Y.; Yu, X.; Hu, S.; Shao, S. Association between omega-3 fatty acids consumption and the risk of type 2 diabetes: A meta-analysis of cohort studies. J. Diabetes Investig. 2017, 8, 480–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muley, A.; Muley, P.; Shah, M. ALA, fatty fish or marine n-3 fatty acids for preventing DM?: A systematic review and meta-analysis. Curr. Diabetes Rev. 2014, 10, 158–165. [Google Scholar] [CrossRef]
- Akinkuolie, A.O.; Ngwa, J.S.; Meigs, J.B.; Djousse, L. Omega-3 polyunsaturated fatty acid and insulin sensitivity: A meta-analysis of randomized controlled trials. Clin. Nutr. 2011, 30, 702–707. [Google Scholar] [CrossRef] [Green Version]
- Rouhani, M.H.; Salehi-Abargouei, A.; Surkan, P.J.; Azadbakht, L. Is there a relationship between red or processed meat intake and obesity? A systematic review and meta-analysis of observational studies. Obes. Rev. 2014, 15, 740–748. [Google Scholar] [CrossRef]
- Toi, P.L.; Anothaisintawee, T.; Chaikledkaew, U.; Briones, J.R.; Reutrakul, S.; Thakkinstian, A. Preventive Role of Diet Interventions and Dietary Factors in Type 2 Diabetes Mellitus: An Umbrella Review. Nutrients 2020, 12, 2722. [Google Scholar] [CrossRef]
- Qian, F.; Riddle, M.C.; Wylie-Rosett, J.; Hu, F.B. Red and Processed Meats and Health Risks: How Strong Is the Evidence? Diabetes Care 2020, 43, 265–271. [Google Scholar] [CrossRef] [Green Version]
- Barclay, A.W.; Petocz, P.; McMillan-Price, J.; Flood, V.M.; Prvan, T.; Mitchell, P.; Brand-Miller, J.C. Glycemic index, glycemic load, and chronic disease risk--a meta-analysis of observational studies. Am. J. Clin. Nutr. 2008, 87, 627–637. [Google Scholar] [CrossRef]
- Imamura, F.; Lichtenstein, A.H.; Dallal, G.E.; Meigs, J.B.; Jacques, P.F. Generalizability of dietary patterns associated with incidence of type 2 diabetes mellitus. Am. J. Clin. Nutr. 2009, 90, 1075–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Healthy Dietary Pattern (HDP) † | Unhealthy Dietary Pattern (UHDP) † | ||||
---|---|---|---|---|---|
Factor Loading | Pearson Correlation ‡ | Factor Loading | Pearson Correlation ‡ | ||
Food Groups | Food Groups | ||||
Vegetables, not specified | 0.33 | 0.78 ** | Tomatoes | −0.27 | −0.34 ** |
Green vegetables, not specified | 0.31 | 0.72 ** | Bread | −0.25 | −0.29 ** |
Green leafy vegetables | 0.29 | 0.68 ** | Dark-yellow vegetables | −0.23 | −0.28 ** |
Dark-yellow vegetables | 0.27 | 0.62 ** | Sweeteners | −0.23 | −0.27 ** |
Tomatoes | 0.26 | 0.61 ** | Green leafy vegetables | −0.21 | −0.26 ** |
Cooking oil | 0.26 | 0.60 ** | Green vegetables, not specified | −0.18 | −0.22 ** |
Other fruits | 0.25 | 0.58 ** | Millet | −0.17 | −0.20 ** |
Mushroom | 0.24 | 0.56 ** | Mushroom | −0.14 | −0.17 ** |
Potatoes | 0.24 | 0.55 ** | Vegetables, not specified | −0.11 | −0.14 ** |
Soy products | 0.23 | 0.54 ** | Potatoes | −0.10 | −0.13 ** |
Seaweed | 0.22 | 0.52 ** | Seaweed | −0.09 | −0.12 ** |
Citrus fruits | 0.22 | 0.51 ** | Other fruits | −0.09 | −0.11 ** |
Oily fish | 0.15 | 0.35 ** | Citrus fruits | −0.08 | −0.10 ** |
Pickles | 0.13 | 0.30 ** | Confectioneries | −0.06 | −0.08 ** |
Fish products | 0.12 | 0.29 ** | Whole-fat milk | −0.06 | −0.08 ** |
Lean fish | 0.12 | 0.28 ** | Pasta | −0.04 | −0.05 * |
Seafood other than fish | 0.11 | 0.27 ** | Soy products | −0.04 | −0.05 ** |
Dairy products | 0.11 | 0.26 ** | Oily fish | 0.01 | 0.01 |
Salty fish | 0.10 | 0.25 ** | Corn oil | 0.03 | 0.04 * |
Millet | 0.10 | 0.24 ** | Dairy products | 0.04 | 0.04 * |
Nuts | 0.09 | 0.21 ** | Egg | 0.05 | 0.06 ** |
Confectioneries | 0.09 | 0.21 ** | Chicken | 0.06 | 0.06 ** |
Sweeteners | 0.08 | 0.19 ** | Cooking oil | 0.06 | 0.07 ** |
Egg | 0.06 | 0.13 ** | Mayonnaise and margarine | 0.06 | 0.08 ** |
Processed meats | 0.04 | 0.10 ** | Low-fat milk | 0.09 | 0.11 ** |
Chicken | 0.04 | 0.10 ** | Lean fish | 0.10 | 0.11 ** |
Bread | 0.04 | 0.09 ** | Miso soup | 0.13 | 0.16 ** |
Mayonnaise and margarine | 0.04 | 0.09 ** | Salty fish | 0.13 | 0.15 ** |
Miso soup | 0.04 | 0.08 ** | Nuts | 0.14 | 0.17 ** |
Whole-fat milk | 0.03 | 0.08 ** | Fish products | 0.15 | 0.17 ** |
Pasta | 0.03 | 0.08 ** | Pork | 0.16 | 0.19 ** |
Low-fat milk | 0.03 | 0.08 ** | Processed meats | 0.20 | 0.23 ** |
Noodles | 0.02 | 0.05 ** | Seafood other than fish | 0.20 | 0.23 ** |
Corn oil | 0.01 | 0.01 | Liver | 0.23 | 0.28 ** |
Liver | 0.001 | 0.003 | Beef | 0.25 | 0.30 ** |
Pork | −0.002 | −0.005 | Noodles | 0.27 | 0.32 ** |
Beef | −0.05 | −0.12 ** | Rice | 0.28 | 0.34 ** |
Rice | −0.15 | −0.36 ** | Pickles | 0.31 | 0.37 ** |
Response variables for HDP | Response variables for UHDP | ||||
Total fiber | 0.75 ** | Fasting blood glucose | 0.15 ** | ||
Vitamin C | 0.68 ** | Waist circumference | 0.25 ** | ||
Vitamin E | 0.66 ** | Response variables for HDP | |||
Potassium | 0.63 ** | Total fiber | −0.37 ** | ||
Magnesium | 0.58 ** | Vitamin E | −0.28 ** | ||
β-carotene | 0.57 ** | β-carotene | −0.27 ** | ||
Omega-3 fatty acids | 0.56 ** | Potassium | −0.27 ** | ||
Protein | 0.40 ** | Vitamin C | −0.26 ** | ||
Ratio of protein to carbohydrates | 0.34 ** | Magnesium | −0.25 ** | ||
Carbohydrates | 0.16 ** | Omega-3 fatty acids | −0.08 ** | ||
Response variables for UHDP | Protein | −0.06 ** | |||
Fasting blood glucose | −0.03 | Ratio of protein to carbohydrates | 0.02 | ||
Waist circumference | −0.11 ** | Carbohydrates | 0.10 ** |
Quartile of Healthy Dietary Pattern Score | p | ||||
---|---|---|---|---|---|
Q1, n = 910 | Q2, n = 751 | Q3, n = 646 | Q4, n = 637 | ||
Median (25%, 75%) | −1.56 (−2.34, −1.04) | −0.17 (−0.41, 0.08) | 0.75 (0.53, 0.98) | 1.83 (1.51, 2.41) | |
Male, % | 86.7 | 76.0 | 67.2 | 48.5 | <0.0001 |
Age, year | 46.4 (6.2) | 46.6 (6.4) | 47.1 (6.4) | 46.8 (6.5) | 0.22 |
Body mass index, kg/m2 | 22.7 (2.8) | 22.5 (2.7) | 22.1 (2.7) | 22.0 (2.8) | <0.0001 |
Lower than university education, % | 24.7 | 25.3 | 24.3 | 36.4 | <0.0001 |
Non-clerical, % | 42.3 | 47.8 | 46.9 | 48.0 | 0.06 |
Never smoker, % | 57.6 | 64.7 | 65.9 | 74.9 | <0.0001 |
Former smoker, % | 23.9 | 22.4 | 21.8 | 17.7 | |
Current smoker, <20 cigarettes/day, % | 9.9 | 6.8 | 7.9 | 5.3 | |
Current smoker, ≥20 cigarettes/day, % | 8.7 | 6.1 | 4.3 | 2.0 | |
No change in eating habit, % | 83.3 | 82.3 | 81.9 | 77.7 | 0.09 |
Changed within 1 year, % | 4.0 | 5.1 | 2.9 | 5.2 | |
Changed in the past 1–2 years, % | 6.6 | 5.9 | 7.0 | 9.9 | |
Changed in the past 3–5 years, % | 6.2 | 6.8 | 8.2 | 7.2 | |
Alcohol consumption (g/day) | 17.5 (23.5) | 15.5 (21.8) | 15.6 (21.3) | 11.7 (18.1) | <0.0001 |
Total physical activity, MET-hours/day | 34.9 (5.4) | 35.4 (5.5) | 35.9 (6.0) | 36.0 (6.2) | 0.0003 |
Total energy consumption, kcal/day | 1869 (484) | 2035 (509) | 2104 (544) | 2156 (555) | <0.0001 |
Waist circumference, cm | 79.7 (8.4) | 78.7 (7.9) | 78.0 (7.9) | 77.2 (8.1) | <0.0001 |
Systolic blood pressure, mmHg | 121 (14) | 119 (14) | 117 (14) | 115 (15) | <0.0001 |
Diastolic blood pressure, mmHg | 75.8 (11.3) | 74.9 (11.8) | 73.2 (11.3) | 71.5 (11.3) | <0.0001 |
Triglycerides, mg/dL | 105 (75) | 97.2 (58.9) | 93.5 (59.6) | 83.0 (46.7) | <0.0001 |
High-density lipoprotein cholesterol, mg/dL | 62.4 (14.9) | 63.1 (14.6) | 65.1 (15.9) | 67.8 (16.1) | <0.0001 |
Fasting blood glucose, mg/dL | 91.7 (11.8) | 91.1 (9.7) | 90.6 (8.0) | 90.7 (11.0) | 0.13 |
Medication for hypertension, % | 6.3 | 5.1 | 5.7 | 4.6 | 0.48 |
Medication for hyperglycemia, % | 0.33 | 0.53 | 0.93 | 0.31 | 0.35 |
Medication for dyslipidemia, % | 0 | 0 | 0 | 0 | - |
Quartile of Unhealthy Dietary Pattern Score | p | ||||
---|---|---|---|---|---|
Q1, n = 639 | Q2, n = 662 | Q3, n = 746 | Q4, n = 897 | ||
Median (25%, 75%) | −1.16 (−1.52, −0.92) | −0.35 (−0.51, 0.22) | 0.18 (0.03, 0.32) | 0.90 (0.69, 1.26) | |
Male, % | 53.7 | 65.7 | 75.1 | 85.3 | <0.0001 |
Age, year | 45.1 (6.1) | 46.3 (6.4) | 47.0 (6.4) | 47.9 (6.3) | <0.0001 |
Body mass index, kg/m2 | 21.5 (2.5) | 22.1 (2.6) | 22.4 (2.8) | 23.1 (2.8) | <0.0001 |
Lower than university education, % | 27.9 | 29.0 | 24.7 | 27.9 | 0.28 |
Non-clerical, % | 46.5 | 45.8 | 46.5 | 45.3 | 0.95 |
Never smoker, % | 76.8 | 69.2 | 65.0 | 53.4 | <0.0001 |
Former smoker, % | 16.4 | 18.9 | 21.3 | 27.9 | |
Current smoker, <20 cigarettes/day, % | 4.5 | 7.7 | 8.2 | 9.5 | |
Current smoker, ≥20 cigarettes/day, % | 2.2 | 4.2 | 5.5 | 9.3 | |
No change in eating habit, % | 80.0 | 81.1 | 81.8 | 82.7 | 0.52 |
Changed within 1 year, % | 5.5 | 4.2 | 3.0 | 4.6 | |
Changed in the past 1–2 years, % | 6.9 | 7.4 | 7.9 | 6.7 | |
Changed in the past 3–5 years, % | 7.7 | 7.3 | 7.4 | 6.0 | |
Alcohol consumption (g/day) | 8.6 (13.9) | 14.2 (20.5) | 16.1 (21.7) | 20.3 (25.2) | <0.0001 |
Total physical activity, MET-hours/day | 35.6 (6.0) | 35.7 (5.9) | 35.4 (5.6) | 35.3 (5.6) | 0.54 |
Total energy consumption, kcal/day | 1786 (464) | 1969 (502) | 2079 (523) | 2192 (537) | <0.0001 |
Waist circumference, cm | 75.9 (7.8) | 77.6 (7.4) | 78.8 (8.0) | 81.0 (8.3) | <0.0001 |
Systolic blood pressure, mmHg | 114 (14) | 118 (15) | 119 (14) | 121 (14) | <0.0001 |
Diastolic blood pressure, mmHg | 70.9 (11.0) | 73.3 (11.7) | 74.7 (11.4) | 76.4 (11.4) | <0.0001 |
Triglycerides, mg/dL | 81.4 (45.7) | 89.8 (57.5) | 98.2 (63.8) | 108 (72) | <0.0001 |
High-density lipoprotein cholesterol, mg/dL | 67.2 (15.8) | 65.6 (16.2) | 63.6 (15.2) | 61.9 (14.4) | <0.0001 |
Fasting blood glucose, mg/dL | 89.4 (8.1) | 90.6 (9.8) | 90.9 (9.6) | 92.9 (12.4) | <0.0001 |
Medication of hypertension, % | 4.5 | 4.8 | 5.5 | 6.6 | 0.29 |
Medication of hyperglycemia, % | 0.47 | 0.60 | 0.13 | 0.78 | 0.32 |
Medication of dyslipidemia, % | 0 | 0 | 0 | 0 | - |
Q1 | Q2 | Q3 | Q4 | Trend-p | P-Interaction for Sex | ||||
---|---|---|---|---|---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | ||||
Metabolic syndrome incidence | |||||||||
No. of subjects | 910 | 751 | 646 | 637 | |||||
No. of incidence | 133 | 101 | 74 | 66 | |||||
Person-years | 3614 | 3112 | 2666 | 2589 | |||||
Crude incidence rate * | 36.8 | 32.5 | 27.8 | 25.5 | |||||
Model 1 | 1 | 0.81 (0.62–1.05) | 0.11 | 0.65 (0.49–0.88) | 0.005 | 0.60 (0.44–0.82) | 0.001 | 0.0004 | 0.31 |
Model 2 | 1 | 0.84 (0.64–1.09) | 0.18 | 0.68 (0.50–0.91) | 0.009 | 0.65 (0.48–0.90) | 0.009 | 0.002 | 0.40 |
Individual diagnostic criteria for metabolic syndrome | |||||||||
Hypertension | |||||||||
No. of subjects | 614 | 524 | 470 | 500 | |||||
No. of incidence | 254 | 184 | 166 | 138 | |||||
Model 1 | 1 | 0.79 (0.66–0.94) | 0.01 | 0.80 (0.66–0.97) | 0.02 | 0.69 (0.55–0.85) | 0.001 | 0.001 | 0.70 |
Model 2 | 1 | 0.81 (0.67–0.97) | 0.02 | 0.82 (0.68–1.00) | 0.049 | 0.71 (0.57–0.88) | 0.002 | 0.002 | 0.60 |
Elevated triglyceride | |||||||||
No. of subjects | 778 | 664 | 578 | 602 | |||||
No. of incidence | 173 | 122 | 100 | 91 | |||||
Model 1 | 1 | 0.81 (0.65–1.02) | 0.07 | 0.80 (0.62–1.02) | 0.08 | 0.79 (0.61–1.03) | 0.08 | 0.051 | 0.18 |
Model 2 | 1 | 0.81 (0.66–1.05) | 0.12 | 0.81 (0.63–1.04) | 0.09 | 0.81 (0.63–1.06) | 0.13 | 0.08 | 0.17 |
Decreased high-density lipoprotein cholesterol | |||||||||
No. of subjects | 892 | 736 | 625 | 616 | |||||
No. of cases | 87 | 72 | 58 | 49 | |||||
Model 1 | 1 | 0.92 (0.67–1.27) | 0.62 | 0.84 (0.60–1.19) | 0.33 | 0.70 (0.49–1.02) | 0.06 | 0.06 | 0.22 |
Model 2 | 1 | 0.96 (0.71–1.31) | 0.81 | 0.86 (0.61–1.20) | 0.37 | 0.73 (0.50–1.05) | 0.09 | 0.08 | 0.23 |
Abdominal obesity | |||||||||
No. of subjects | 805 | 646 | 567 | 520 | |||||
No. of incidence | 87 | 89 | 88 | 93 | |||||
Model 1 | 1 | 1.07 (0.80–1.43) | 0.64 | 1.07 (0.79–1.44) | 0.67 | 1.02 (0.75–1.39) | 0.92 | 0.91 | 0.51 |
Model 2 | 1 | 1.10 (0.82–1.47) | 0.54 | 1.11 (0.82–1.51) | 0.48 | 1.04 (0.76–1.43) | 0.79 | 0.75 | 0.42 |
Elevated fasting blood glucose | |||||||||
No. of subjects | 801 | 671 | 589 | 573 | |||||
No. of incidence | 141 | 125 | 103 | 78 | |||||
Model 1 | 1 | 1.00 (0.79–1.27) | 0.99 | 0.92 (0.71–1.18) | 0.49 | 0.80 (0.59–1.07) | 0.13 | 0.13 | 0.22 |
Model 2 | 1 | 1.02 (0.80–1.29) | 0.88 | 0.93 (0.72–1.21) | 0.58 | 0.82 (0.61–1.11) | 0.19 | 0.20 | 0.24 |
Q1 | Q2 | Q3 | Q4 | Trend-p | P-Interaction for Sex | ||||
---|---|---|---|---|---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | HR (95% CI) | p | ||||
Metabolic syndrome incidence | |||||||||
No. of subjects | 639 | 662 | 746 | 897 | |||||
No. of incidence | 42 | 68 | 101 | 163 | |||||
Person-years | 2750 | 2761 | 3008 | 3462 | |||||
Crude incidence rate * | 15.3 | 24.6 | 33.6 | 47.1 | |||||
Model 1 | 1 | 1.49 (1.02–2.18) | 0.04 | 1.96 (1.37–2.81) | 0.0003 | 2.62 (1.85–3.70) | <0.0001 | <0.0001 | 0.19 |
Model 2 | 1 | 1.48 (1.01–2.16) | 0.04 | 2.01 (1.40–2.88) | 0.0001 | 2.51 (1.77–3.54) | <0.0001 | <0.0001 | 0.24 |
Individual diagnostic criteria for metabolic syndrome | |||||||||
Hypertension | |||||||||
No. of subjects | 509 | 477 | 543 | 579 | |||||
No. of incidence | 129 | 150 | 210 | 253 | |||||
Model 1 | 1 | 1.13 (0.91–1.42) | 0.27 | 1.32 (1.07–1.64) | 0.01 | 1.47 (1.19–1.82) | 0.0004 | 0.0001 | 0.72 |
Model 2 | 1 | 1.13 (0.90–1.41) | 0.29 | 1.29 (1.04–1.60) | 0.02 | 1.39 (1.12–1.72) | 0.003 | 0.001 | 0.72 |
Elevated triglyceride | |||||||||
No. of subjects | 603 | 606 | 657 | 756 | |||||
No. of incidence | 75 | 114 | 123 | 174 | |||||
Model 1 | 1 | 1.44 (1.08–1.92) | 0.01 | 1.37 (1.03–1.83) | 0.03 | 1.64 (1.24–2.17) | 0.001 | 0.001 | 0.90 |
Model 2 | 1 | 1.42 (1.07–1.90) | 0.02 | 1.37 (1.03–1.83) | 0.03 | 1.60 (1.21–2.12) | 0.001 | 0.002 | 0.83 |
Decreased high-density lipoprotein cholesterol | |||||||||
No. of subjects | 620 | 641 | 733 | 875 | |||||
No. of cases | 36 | 57 | 81 | 92 | |||||
Model 1 | 1 | 1.58 (1.04–2.41) | 0.03 | 2.03 (1.37–3.01) | 0.0005 | 1.98 (1.33–2.96) | 0.001 | 0.0004 | 0.76 |
Model 2 | 1 | 1.58 (1.04–2.40) | 0.03 | 2.06 (1.39–3.06) | 0.0003 | 1.94 (1.30–2.88) | 0.001 | 0.001 | 0.69 |
Abdominal obesity | |||||||||
No. of subjects | 547 | 581 | 637 | 773 | |||||
No. of incidence | 67 | 83 | 90 | 117 | |||||
Model 1 | 1 | 1.40 (1.02–1.91) | 0.04 | 1.61 (1.18–2.21) | 0.003 | 2.05 (1.51–2.78) | <0.0001 | <0.0001 | 0.02 |
Model 2 | 1 | 1.37 (1.00–1.86) | 0.0496 | 1.61 (1.17–2.21) | 0.003 | 1.93 (1.42–2.62) | <0.0001 | <0.0001 | 0.01 |
Elevated fasting blood glucose | |||||||||
No. of subjects | 599 | 601 | 667 | 767 | |||||
No. of incidence | 69 | 99 | 117 | 162 | |||||
Model 1 | 1 | 1.31 (0.97–1.77) | 0.08 | 1.32 (0.99–1.78) | 0.06 | 1.52 (1.14–2.03) | 0.004 | 0.006 | 0.83 |
Model 2 | 1 | 1.30 (0.96–1.76) | 0.09 | 1.31 (0.98–1.76) | 0.07 | 1.46 (1.09–1.97) | 0.01 | 0.01 | 0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yatsuya, H.; Wang, C.; Uemura, M.; Matsunaga, M.; He, Y.; Khine, M.; Ota, A. Dietary Patterns Derived from Reduced Rank Regression Are Associated with the 5-Year Occurrence of Metabolic Syndrome: Aichi Workers’ Cohort Study. Nutrients 2022, 14, 3019. https://doi.org/10.3390/nu14153019
Li Y, Yatsuya H, Wang C, Uemura M, Matsunaga M, He Y, Khine M, Ota A. Dietary Patterns Derived from Reduced Rank Regression Are Associated with the 5-Year Occurrence of Metabolic Syndrome: Aichi Workers’ Cohort Study. Nutrients. 2022; 14(15):3019. https://doi.org/10.3390/nu14153019
Chicago/Turabian StyleLi, Yuanying, Hiroshi Yatsuya, Chaochen Wang, Mayu Uemura, Masaaki Matsunaga, Yupeng He, Maythet Khine, and Atsuhiko Ota. 2022. "Dietary Patterns Derived from Reduced Rank Regression Are Associated with the 5-Year Occurrence of Metabolic Syndrome: Aichi Workers’ Cohort Study" Nutrients 14, no. 15: 3019. https://doi.org/10.3390/nu14153019
APA StyleLi, Y., Yatsuya, H., Wang, C., Uemura, M., Matsunaga, M., He, Y., Khine, M., & Ota, A. (2022). Dietary Patterns Derived from Reduced Rank Regression Are Associated with the 5-Year Occurrence of Metabolic Syndrome: Aichi Workers’ Cohort Study. Nutrients, 14(15), 3019. https://doi.org/10.3390/nu14153019