Consistent Inverse Associations of Total, “Bioavailable”, Free, and “Non-Bioavailable” Vitamin D with Incidence of Diabetes among Older Adults with Lower Baseline HbA1c (≤6%) Levels
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Data and Blood Sample Collection
2.3. Vitamin D Measurements
2.4. Diabetes Ascertainment
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.A.B.; Hashim, M.J.; King, J.K.; Govender, R.D.; Mustafa, H.; Al Kaabi, J. Epidemiology of Type 2 Diabetes—Global Burden of Disease and Forecasted Trends. J. Epidemiol. Glob. Health 2020, 10, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi, S.; Hajhashemy, Z.; Saneei, P. Serum vitamin D levels in relation to type-2 diabetes and prediabetes in adults: A systematic review and dose-response meta-analysis of epidemiologic studies. Crit. Rev. Food Sci. Nutr. 2021, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Sharp, S.J.; Burgess, S.; Scott, R.A.; Imamura, F.; Langenberg, C.; Wareham, N.J.; Forouhi, N.G. Association between circulating 25-hydroxyvitamin D and incident type 2 diabetes: A mendelian randomisation study. Lancet Diabetes Endocrinol. 2015, 3, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Zhou, Y.; Liu, J.; Wang, C.; Qu, Z.; Wei, Z.; Zhou, D. Genetically increased circulating 25(OH)D level reduces the risk of type 2 diabetes in subjects with deficiency of vitamin D: A large-scale Mendelian randomization study. Medicine 2020, 99, e23672. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.S.; Luan, J.; Sofianopoulou, E.; Sharp, S.J.; Day, F.R.; Imamura, F.; Gundersen, T.E.; Lotta, L.A.; Sluijs, I.; Stewart, I.D.; et al. The association between circulating 25-hydroxyvitamin D metabolites and type 2 diabetes in European populations: A meta-analysis and Mendelian randomisation analysis. PLoS Med. 2020, 17, e1003394. [Google Scholar] [CrossRef]
- Bejar, C.A.; Goyal, S.; Afzal, S.; Mangino, M.; Zhou, A.; van der Most, P.J.; Bao, Y.; Gupta, V.; Smart, M.C.; Walia, G.K.; et al. A Bidirectional Mendelian Randomization Study to evaluate the causal role of reduced blood vitamin D levels with type 2 diabetes risk in South Asians and Europeans. Nutr. J. 2021, 20, 71. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, H.; Tang, J.; Li, J.; Chong, W.; Hai, Y.; Feng, Y.; Lunsford, L.D.; Xu, P.; Jia, D.; et al. Effects of Vitamin D Supplementation on Prevention of Type 2 Diabetes in Patients with Prediabetes: A Systematic Review and Meta-analysis. Diabetes Care 2020, 43, 1650–1658. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D.; Schwartz, J. Vitamin D Binding Protein, Total and Free Vitamin D Levels in Different Physiological and Pathophysiological Conditions. Front. Endocrinol. 2019, 10, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bikle, D.D.; Malmstroem, S.; Schwartz, J. Current Controversies: Are Free Vitamin Metabolite Levels a More Accurate Assessment of Vitamin D Status than Total Levels? Endocrinol. Metab. Clin. N. Am. 2017, 46, 901–918. [Google Scholar] [CrossRef] [PubMed]
- Tsuprykov, O.; Chen, X.; Hocher, C.-F.; Skoblo, R.; Yin, L.; Hocher, B. Why should we measure free 25(OH) vitamin D? J. Steroid Biochem. Mol. Biol. 2018, 180, 87–104. [Google Scholar] [CrossRef] [PubMed]
- Jorde, R. The Role of Vitamin D Binding Protein, Total and Free 25-Hydroxyvitamin D in Diabetes. Front. Endocrinol. 2019, 10, 79. [Google Scholar] [CrossRef]
- Schöttker, B.; Hagen, L.; Zhang, Y.; Gào, X.; Holleczek, B.; Gao, X.; Brenner, H. Serum 25-Hydroxyvitamin D Levels as an Aging Marker: Strong Associations with Age and All-Cause Mortality Independent from Telomere Length, Epigenetic Age Acceleration, and 8-Isoprostane Levels. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2019, 74, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Kuznia, S.; Niedermaier, T.; Holleczek, B.; Schöttker, B.; Brenner, H. Distribution and Determinants of Vitamin D-Binding Protein, Total, “Non-Bioavailable”, Bioavailable, and Free 25-Hydroxyvitamin D Concentrations among Older Adults. Nutrients 2021, 13, 3982. [Google Scholar] [CrossRef]
- Pugliese, G.; Solini, A.; Bonora, E.; Orsi, E.; Zerbini, G.; Giorgino, F.; Cavalot, F.; Pontiroli, A.E.; Baroni, M.G.; Morano, S.; et al. The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation provides a better definition of cardiovascular burden associated with CKD than the Modification of Diet in Renal Disease (MDRD) Study formula in subjects with type 2 diabetes. Atherosclerosis 2011, 218, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Schöttker, B.; Jansen, E.H.; Haug, U.; Schomburg, L.; Köhrle, J.; Brenner, H. Standardization of misleading immunoassay based 25-hydroxyvitamin D levels with liquid chromatography tandem-mass spectrometry in a large cohort study. PLoS ONE 2012, 7, e48774. [Google Scholar] [CrossRef] [PubMed]
- Stocker, H.; Perna, L.; Weigl, K.; Möllers, T.; Schöttker, B.; Thomsen, H.; Holleczek, B.; Rujescu, D.; Brenner, H. Prediction of clinical diagnosis of Alzheimer’s disease, vascular, mixed, and all-cause dementia by a polygenic risk score and APOE status in a community-based cohort prospectively followed over 17 years. Mol. Psychiatry 2021, 26, 5812–5822. [Google Scholar] [CrossRef] [PubMed]
- Powe, C.E.; Evans, M.K.; Wenger, J.; Zonderman, A.B.; Berg, A.H.; Nalls, M.; Tamez, H.; Zhang, D.; Bhan, I.; Karumanchi, S.A. Vitamin D–binding protein and vitamin D status of black Americans and white Americans. N. Engl. J. Med. 2013, 369, 1991–2000. [Google Scholar] [CrossRef] [Green Version]
- Saarnio, E.; Pekkinen, M.; Itkonen, S.T.; Kemi, V.; Karp, H.; Kärkkäinen, M.; Mäkitie, O.; Lamberg-Allardt, C. Serum parathyroid hormone is related to genetic variation in vitamin D binding protein with respect to total, free, and bioavailable 25-hydroxyvitamin D in middle-aged Caucasians–a cross-sectional study. BMC Nutr. 2016, 2, 46. [Google Scholar] [CrossRef] [Green Version]
- Schöttker, B.; Xuan, Y.; Gào, X.; Anusruti, A.; Brenner, H. Oxidatively Damaged DNA/RNA and 8-Isoprostane Levels Are Associated with the Development of Type 2 Diabetes at Older Age: Results from a Large Cohort Study. Diabetes Care 2020, 43, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Desquilbet, L.; Mariotti, F. Dose-response analyses using restricted cubic spline functions in public health research. Stat. Med. 2010, 29, 1037–1057. [Google Scholar] [CrossRef] [PubMed]
- Sebestyen VanSickle, J.; Srivastava, T.; Garg, U.; Rezaiekhaligh, M.H.; Alon, U.S. Comparing directly measured versus mathematically calculated free serum 25-hydroxy vitamin D level in children. J. Bone Miner. Metab. 2020, 38, 271–274. [Google Scholar] [CrossRef]
- Rivera-Paredez, B.; Hidalgo-Bravo, A.; León-Reyes, G.; León-Maldonado, L.S.; Aquino-Gálvez, A.; Castillejos-López, M.; Denova-Gutiérrez, E.; Flores, Y.N.; Salmerón, J.; Velázquez-Cruz, R. Total, Bioavailable, and Free 25-Hydroxyvitamin D Equally Associate with Adiposity Markers and Metabolic Traits in Mexican Adults. Nutrients 2021, 13, 3320. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Young, K.A.; Norris, J.M.; Rotter, J.I.; Liu, Y.; Lorenzo, C.; Wagenknecht, L.E.; Cole, D.E.; Haffner, S.M.; Chen, Y.I.; et al. Association of Directly Measured Plasma Free 25(OH)D with Insulin Sensitivity and Secretion: The IRAS Family Study. J. Clin. Endocrinol. Metab. 2017, 102, 2781–2788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansuri, S. Vitamin D and Type 2 Diabetes Mellitus in an Aboriginal Community; University of Toronto: Toronto, ON, Canada, 2014. [Google Scholar]
- Yu, C.; Xue, H.; Wang, L.; Chen, Q.; Chen, X.; Zhang, Y.; Hu, G.; Ling, W. Serum Bioavailable and Free 25-Hydroxyvitamin D Levels, but Not Its Total Level, Are Associated with the Risk of Mortality in Patients with Coronary Artery Disease. Circ. Res. 2018, 123, 996–1007. [Google Scholar] [CrossRef] [PubMed]
- Fang, A.-P.; Long, J.-A.; Zhang, Y.-J.; Liu, Z.-Y.; Li, Q.-J.; Zhang, D.-M.; Luo, Y.; Zhong, R.-H.; Zhou, Z.-G.; Xu, Y.-J.; et al. Serum Bioavailable, Rather than Total, 25-hydroxyvitamin D Levels Are Associated with Hepatocellular Carcinoma Survival. Hepatology 2020, 72, 169–182. [Google Scholar] [CrossRef] [Green Version]
- Zhu, A.; Kuznia, S.; Niedermaier, T.; Holleczek, B.; Schöttker, B.; Brenner, H. Vitamin D-binding protein, total, “nonbioavailable”, bioavailable, and free 25-hydroxyvitamin D, and mortality in a large population-based cohort of older adults. J. Intern. Med. 2022, 292, 463–476. [Google Scholar] [CrossRef]
- Park, S.K.; Garland, C.F.; Gorham, E.D.; BuDoff, L.; Barrett-Connor, E. Plasma 25-hydroxyvitamin D concentration and risk of type 2 diabetes and pre-diabetes: 12-year cohort study. PLoS ONE 2018, 13, e0193070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Zheng, T.; Ran, X.; Ren, Y.; Chen, T.; Zhong, L.; Yan, D.; Yan, F.; Wu, Q.; Tian, H. Vitamin D and Incidence of Prediabetes or Type 2 Diabetes: A Four-Year Follow-Up Community-Based Study. Dis. Markers 2018, 2018, 1926308. [Google Scholar] [CrossRef] [Green Version]
- Neelankal John, A.; Jiang, F.X. An overview of type 2 diabetes and importance of vitamin D3-vitamin D receptor interaction in pancreatic β-cells. J. Diabetes Complicat. 2018, 32, 429–443. [Google Scholar] [CrossRef] [PubMed]
- Yaribeygi, H.; Maleki, M.; Sathyapalan, T.; Iranpanah, H.; Orafai, H.M.; Jamialahmadi, T.; Sahebkar, A. The molecular mechanisms by which vitamin D improve glucose homeostasis: A mechanistic review. Life Sci. 2020, 244, 117305. [Google Scholar] [CrossRef]
- Jamilian, M.; Amirani, E.; Asemi, Z. The effects of vitamin D and probiotic co-supplementation on glucose homeostasis, inflammation, oxidative stress and pregnancy outcomes in gestational diabetes: A randomized, double-blind, placebo-controlled trial. Clin. Nutr. 2019, 38, 2098–2105. [Google Scholar] [CrossRef] [PubMed]
- Szymczak-Pajor, I.; Drzewoski, J.; Śliwińska, A. The Molecular Mechanisms by which Vitamin D Prevents Insulin Resistance and Associated Disorders. Int. J. Mol. Sci. 2020, 21, 6644. [Google Scholar] [CrossRef] [PubMed]
- Leong, A.; Rehman, W.; Dastani, Z.; Greenwood, C.; Timpson, N.; Langsetmo, L.; Berger, C.; Fu, L.; Wong, B.Y.; Malik, S.; et al. The causal effect of vitamin D binding protein (DBP) levels on calcemic and cardiometabolic diseases: A Mendelian randomization study. PLoS Med. 2014, 11, e1001751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Setayesh, L.; Casazza, K.; Moradi, N.; Mehranfar, S.; Yarizadeh, H.; Amini, A.; Yekaninejad, M.S.; Mirzaei, K. Association of vitamin D-binding protein and vitamin D(3) with insulin and homeostatic model assessment (HOMA-IR) in overweight and obese females. BMC Res. Notes 2021, 14, 193. [Google Scholar] [CrossRef]
- Ashraf, A.P.; Huisingh, C.; Alvarez, J.A.; Wang, X.; Gower, B.A. Insulin resistance indices are inversely associated with vitamin D binding protein concentrations. J. Clin. Endocrinol. Metab. 2014, 99, 178–183. [Google Scholar] [CrossRef] [Green Version]
- Parveen, R.; Kapur, P.; Venkatesh, S.; Agarwal, N.B. Attenuated serum 25-hydroxyvitamin D and vitamin D binding protein associated with cognitive impairment in patients with type 2 diabetes. Diabetes Metab. Syndr. Obes. 2019, 12, 1763–1772. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.K.; Kahlon, G.; Bass, P.; Levine, S.N.; Warden, C. Can L-Cysteine and Vitamin D Rescue Vitamin D and Vitamin D Binding Protein Levels in Blood Plasma of African American Type 2 Diabetic Patients? Antioxid. Redox Signal. 2015, 23, 688–693. [Google Scholar] [CrossRef] [Green Version]
- Fawzy, M.S.; Al Beladi, F.I. Association of Circulating Vitamin D, VDBP, and Vitamin D Receptor Expression with Severity of Diabetic Nephropathy in a Group of Saudi Type 2 Diabetes Mellitus Patients. Clin. Lab. 2018, 64, 1623–1633. [Google Scholar] [CrossRef]
- Naderpoor, N.; Shorakae, S.; Abell, S.K.; Mousa, A.; Joham, A.E.; Moran, L.J.; Stepto, N.K.; Spritzer, P.M.; Teede, H.J.; de Courten, B. Bioavailable and free 25-hydroxyvitamin D and vitamin D binding protein in polycystic ovary syndrome: Relationships with obesity and insulin resistance. J. Steroid Biochem. Mol. Biol. 2018, 177, 209–215. [Google Scholar] [CrossRef]
- Viloria, K.; Nasteska, D.; Briant, L.J.B.; Heising, S.; Larner, D.P.; Fine, N.H.F.; Ashford, F.B.; da Silva Xavier, G.; Ramos, M.J.; Hasib, A.; et al. Vitamin-D-Binding Protein Contributes to the Maintenance of α Cell Function and Glucagon Secretion. Cell Rep. 2020, 31, 107761. [Google Scholar] [CrossRef]
- Oleröd, G.; Hultén, L.M.; Hammarsten, O.; Klingberg, E. The variation in free 25-hydroxy vitamin D and vitamin D-binding protein with season and vitamin D status. Endocr. Connect. 2017, 6, 111–120. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Total n = 4841 | Incident Diabetes | p-Value | |
---|---|---|---|---|
No n = 4004 | Yes n = 837 | |||
Age (years) * | 61.9 (6.6) | 62.0 (6.7) | 61.4 (6.4) | 0.033 |
Male | 2057 (42.5) | 1676 (41.9) | 381 (45.5) | 0.056 |
Education (years) | 0.020 | |||
<9 | 3496 (73.9) | 2858 (73.1) | 638 (77.8) | |
9–11 | 688 (14.5) | 585 (15.0) | 103 (12.6) | |
≥12 | 546 (11.5) | 467 (11.9) | 79 (9.6) | |
Smoking status | 0.002 | |||
Never | 2434 (51.9) | 2062 (53.0) | 372 (46.3) | |
Former | 1497 (31.9) | 1214 (31.2) | 283 (35.2) | |
Current | 760 (16.2) | 611 (15.7) | 149 (18.5) | |
Alcohol consumption | 0.001 | |||
Abstainer | 1333 (30.4) | 1067 (29.3) | 266 (35.9) | |
Moderate | 2730 (62.3) | 2296 (63.1) | 434 (58.6) | |
High | 317 (7.2) | 277 (7.6) | 40 (5.4) | |
Moderate or high physical activity | 1618 (33.5) | 1333 (33.4) | 285 (34.3) | 0.644 |
Daily vegetable consumption | 1707 (36.1) | 1420 (36.3) | 287 (35.1) | 0.537 |
Daily fruit consumption | 2949 (62.8) | 2449 (63.0) | 500 (61.7) | 0.514 |
Weekly fish consumption | 3032 (66.3) | 2497 (66.1) | 535 (66.8) | 0.757 |
Regular intake of multivitamin supplements | 1928 (41.9) | 1593 (41.8) | 335 (42.0) | 0.953 |
Family history of diabetes | 1674 (35.2) | 1297 (33.0) | 377 (45.5) | <0.001 |
History of cardiovascular disease | 800 (16.5) | 627 (15.7) | 173 (20.7) | <0.001 |
History of cancer | 359 (7.4) | 301 (7.5) | 58 (6.9) | 0.605 |
Antihypertensive medication | 1937 (40.1) | 1516 (37.9) | 421 (50.5) | <0.001 |
Lipid-lowering medication | 501 (10.4) | 397 (9.9) | 104 (12.5) | 0.034 |
Body mass index (kg/m2) * | 27.4 (4.3) | 27.0 (4.1) | 29.2 (4.6) | <0.001 |
HbA1c (mmol/L) * | 5.6 (0.4) | 5.5 (0.4) | 5.8 (0.4) | <0.001 |
Total cholesterol (mg/dL) * | 232.8 (41.9) | 232.9 (41.8) | 232.6 (42.2) | 0.845 |
HDL cholesterol (mg/dL) * | 54.7 (15.1) | 55.6 (15.3) | 50.1 (13.5) | <0.001 |
Triglycerides (mg/dL) * | 131.9 (77.5) | 126.8 (74.0) | 156.5 (88.4) | <0.001 |
C-reactive protein (mg/L) * | 4.0 (8.0) | 3.9 (8.1) | 4.5 (7.1) | 0.037 |
Systolic blood pressure (mmHg) * | 138.9 (19.4) | 138.5 (19.5) | 141.0 (18.9) | 0.001 |
Estimated glomerular filtration rate (mL/min/1.73 m2) * | 77.4 (18.5) | 77.0 (18.5) | 79.6 (18.2) | <0.001 |
VDBP | Total 25(OH)D | “Non-Bioavailable” 25(OH)D | “Bioavailable” 25(OH)D | Free 25(OH)D | |
---|---|---|---|---|---|
Median (IQR) | (µg/mL) | (nmol/L) | (nmol/L) | (ng/mL) | (pg/mL) |
Quintile 1 | 261.7 (23.3) | 29.5 (2.9) | 25.5 (3.4) | 1.2 (0.3) | 2.7 (0.8) |
Quintile 2 | 292.3 (12.8) | 36.3 (4.2) | 31.5 (3.6) | 1.7 (0.3) | 3.9 (0.5) |
Quintile 3 | 316.4 (12.0) | 45.1 (4.4) | 39.1 (4.1) | 2.2 (0.3) | 5.0 (0.6) |
Quintile 4 | 344.0 (16.7) | 56.7 (7.8) | 49.6 (6.9) | 2.9 (0.4) | 6.5 (0.9) |
Quintile 5 | 399.4 (52.9) | 80.6 (21.4) | 69.8 (19.0) | 4.4 (1.4) | 9.7 (3.3) |
Model 1 | |||||
By quintile | |||||
Quintile 1 | 1.22 (0.98, 1.53) | 1.30 (1.03, 1.65) | 1.31 (1.03, 1.65) | 1.20 (0.95, 1.51) | 1.15 (0.91, 1.44) |
Quintile 2 | 1.10 (0.88, 1.37) | 1.20 (0.96, 1.52) | 1.26 (1.00, 1.59) | 1.12 (0.89, 1.41) | 1.14 (0.91, 1.43) |
Quintile 3 | 1.05 (0.84, 1.32) | 1.12 (0.89, 1.41) | 1.20 (0.95, 1.51) | 1.02 (0.81, 1.29) | 0.99 (0.79, 1.24) |
Quintile 4 | 1.19 (0.96, 1.49) | 1.08 (0.86, 1.36) | 1.18 (0.94, 1.48) | 1.00 (0.80, 1.25) | 0.94 (0.75, 1.18) |
Quintile 5 | Ref | Ref | Ref | Ref | Ref |
Per SD decrease | 1.05 (0.97, 1.13) | 1.09 (1.01, 1.18) | 1.09 (1.01, 1.18) | 1.06 (0.98, 1.15) | 1.07 (0.98, 1.16) |
Model 2 | |||||
By quintile | |||||
Quintile 1 | 1.37 (1.09, 1.72) | 1.31 (1.03, 1.66) | 1.30 (1.02, 1.65) | 1.12 (0.89, 1.42) | 1.11 (0.88, 1.41) |
Quintile 2 | 1.24 (0.98, 1.55) | 1.15 (0.91, 1.45) | 1.22 (0.96, 1.54) | 1.07 (0.84, 1.34) | 1.10 (0.87, 1.38) |
Quintile 3 | 1.13 (0.90, 1.42) | 1.08 (0.86, 1.36) | 1.16 (0.92, 1.46) | 1.01 (0.80, 1.28) | 1.00 (0.80, 1.25) |
Quintile 4 | 1.22 (0.98, 1.52) | 1.09 (0.87, 1.38) | 1.18 (0.94, 1.48) | 1.01 (0.81, 1.27) | 0.98 (0.78, 1.24) |
Quintile 5 | Ref | Ref | Ref | Ref | Ref |
Per SD decrease | 1.09 (1.01, 1.18) | 1.09 (1.00, 1.18) | 1.09 (1.00, 1.18) | 1.05 (0.97, 1.14) | 1.05 (0.98, 1.14) |
Subgroup [ncases/nat risk] | VDBP | Total 25(OH)D | “Non-Bioavailable” 25(OH)D | “Bioavailable” 25(OH)D | Free 25(OH)D |
---|---|---|---|---|---|
Total 25(OH)D | |||||
<50 nmol/L (531/2916) | 1.07 (0.97, 1.18) | 1.14 (0.87, 1.50) | 1.13 (0.87, 1.47) | 1.06 (0.88, 1.27) | 1.07 (0.89, 1.29) |
≥50 nmol/L (306/1925) | 1.09 (0.95, 1.26) | 1.14 (0.98, 1.31) | 1.14 (0.99, 1.32) | 1.05 (0.94, 1.17) | 1.06 (0.95, 1.18) |
p-interaction | 0.56 | 0.78 | 0.86 | 0.60 | 0.54 |
Age | |||||
<65 years (546/3045) | 1.04 (0.94, 1.14) | 1.09 (0.99, 1.21) | 1.09 (0.99, 1.20) | 1.08 (0.98, 1.20) | 1.09 (0.99, 1.21) |
≥65 years (291/1796) | 1.19 (1.03, 1.37) | 1.09 (0.94, 1.26) | 1.10 (0.95, 1.28) | 1.01 (0.90, 1.14) | 1.02 (0.91, 1.14) |
p-interaction | 0.16 | 0.71 | 0.82 | 0.38 | 0.38 |
Sex | |||||
Female (456/2784) | 1.08 (0.98, 1.20) | 1.20 (1.03, 1.39) | 1.20 (1.03, 1.39) | 1.10 (0.95, 1.27) | 1.11 (0.96, 1.28) |
Male (381/2057) | 1.10 (0.96, 1.25) | 1.06 (0.96, 1.17) | 1.06 (0.96, 1.17) | 1.04 (0.94, 1.14) | 1.04 (0.95, 1.14) |
p-interaction | 0.34 | 0.06 | 0.06 | 0.20 | 0.16 |
Body mass index | |||||
<25 kg/m2 (139/1448) | 0.97 (0.81, 1.16) | 1.12 (0.92, 1.36) | 1.12 (0.93, 1.35) | 1.09 (0.88, 1.34) | 1.12 (0.91, 1.38) |
≥25 kg/m2 (696/3388) | 1.13 (1.03, 1.23) | 1.11 (1.01, 1.21) | 1.11 (1.01, 1.22) | 1.07 (0.98, 1.16) | 1.07 (0.98, 1.16) |
p-interaction | 0.31 | 0.83 | 0.84 | 0.76 | 0.95 |
Season ** | |||||
Winter (544/3130) | 1.08 (0.99, 1.19) | 1.09 (0.98, 1.22) | 1.10 (0.98, 1.23) | 1.04 (0.94, 1.15) | 1.04 (0.94, 1.15) |
Summer (293/1711) | 1.09 (0.92, 1.29) | 1.08 (0.96, 1.22) | 1.08 (0.96, 1.22) | 1.08 (0.96, 1.22) | 1.09 (0.96, 1.24) |
p-interaction | 0.96 | 0.41 | 0.34 | 0.96 | 0.95 |
Family history of diabetes | |||||
No (451/3084) | 1.05 (0.95, 1.17) | 1.11 (1.00, 1.24) | 1.11 (1.00, 1.24) | 1.10 (0.98, 1.22) | 1.10 (0.99, 1.22) |
Yes (377/1674) | 1.13 (1.00, 1.28) | 1.05 (0.93, 1.19) | 1.06 (0.94, 1.20) | 1.01 (0.91, 1.12) | 1.01 (0.91, 1.12) |
p-interaction | 0.64 | 0.57 | 0.63 | 0.37 | 0.41 |
Baseline HbA1c | |||||
≤6% (631/4380) | 1.07 (0.97, 1.17) | 1.15 (1.04, 1.27) | 1.15 (1.04, 1.26) | 1.13 (1.02, 1.25) | 1.13 (1.02, 1.25) |
6–6.5% (206/460) | 1.09 (0.91, 1.31) | 0.97 (0.84, 1.11) | 0.97 (0.84, 1.12) | 0.96 (0.87, 1.07) | 0.98 (0.89, 1.09) |
p-interaction | 0.73 | 0.01 | 0.02 | 0.01 | 0.03 |
Cardiovascular disease | |||||
No (664/4041) | 1.09 (1.00, 1.19) | 1.13 (1.03, 1.24) | 1.13 (1.03, 1.24) | 1.07 (0.97, 1.16) | 1.07 (0.98, 1.17) |
Yes (173/800) | 1.07 (0.89, 1.29) | 0.95 (0.80, 1.14) | 0.95 (0.79, 1.13) | 0.99 (0.83, 1.19) | 1.00 (0.84, 1.19) |
p-interaction | 0.89 | 0.43 | 0.39 | 0.89 | 0.88 |
Cancer | |||||
No (779/4482) | 1.09 (1.00, 1.18) | 1.10 (1.01, 1.19) | 1.10 (1.01, 1.19) | 1.06 (0.98, 1.15) | 1.07 (0.98, 1.16) |
Yes (58/359) | 1.13 (0.76, 1.69) | 1.11 (0.75, 1.64) | 1.10 (0.75, 1.63) | 1.07 (0.74, 1.53) | 1.10 (0.75, 1.62) |
p-interaction | 0.84 | 0.60 | 0.65 | 0.46 | 0.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, A.; Kuznia, S.; Niedermaier, T.; Holleczek, B.; Schöttker, B.; Brenner, H. Consistent Inverse Associations of Total, “Bioavailable”, Free, and “Non-Bioavailable” Vitamin D with Incidence of Diabetes among Older Adults with Lower Baseline HbA1c (≤6%) Levels. Nutrients 2022, 14, 3282. https://doi.org/10.3390/nu14163282
Zhu A, Kuznia S, Niedermaier T, Holleczek B, Schöttker B, Brenner H. Consistent Inverse Associations of Total, “Bioavailable”, Free, and “Non-Bioavailable” Vitamin D with Incidence of Diabetes among Older Adults with Lower Baseline HbA1c (≤6%) Levels. Nutrients. 2022; 14(16):3282. https://doi.org/10.3390/nu14163282
Chicago/Turabian StyleZhu, Anna, Sabine Kuznia, Tobias Niedermaier, Bernd Holleczek, Ben Schöttker, and Hermann Brenner. 2022. "Consistent Inverse Associations of Total, “Bioavailable”, Free, and “Non-Bioavailable” Vitamin D with Incidence of Diabetes among Older Adults with Lower Baseline HbA1c (≤6%) Levels" Nutrients 14, no. 16: 3282. https://doi.org/10.3390/nu14163282
APA StyleZhu, A., Kuznia, S., Niedermaier, T., Holleczek, B., Schöttker, B., & Brenner, H. (2022). Consistent Inverse Associations of Total, “Bioavailable”, Free, and “Non-Bioavailable” Vitamin D with Incidence of Diabetes among Older Adults with Lower Baseline HbA1c (≤6%) Levels. Nutrients, 14(16), 3282. https://doi.org/10.3390/nu14163282