Intrahepatic Fat Content and COVID-19 Lockdown in Adults with NAFLD and Metabolic Syndrome
Abstract
:1. Introduction
2. Methods
2.1. Design
2.2. Participants
2.3. Description of the COVID-19 Lockdown
2.4. Dietary Assessment
2.5. Anthropometrics and Blood Pressure
2.6. Blood Collection and Analysis
2.7. Imaging
2.8. Statistics
3. Results
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benedict, M.; Zhang, X. Non-alcoholic fatty liver disease: An expanded review. J. Hepatol. 2017, 9, 715–732. [Google Scholar] [CrossRef]
- Mitra, S.; De, A.; Chowdhury, A. Epidemiology of non-alcoholic and alcoholic fatty liver diseases. Transl. Gastroenterol. Hepatol. 2020, 5, 16. [Google Scholar] [CrossRef]
- Allen, A.M.; Therneau, T.M.; Larson, J.J.; Coward, A.; Somers, V.K.; Kamath, P.S. Nonalcoholic Fatty Liver Disease Incidence and Impact on Metabolic Burden and Death: A 20 Year-Community Study. Hepatology 2018, 67, 1726–1736. [Google Scholar] [CrossRef] [Green Version]
- Le, M.H.; Yeo, Y.H.; Li, X.; Li, J.; Zou, B.; Wu, Y.; Ye, Q.; Huang, D.Q.; Zhao, C.; Zhang, J.; et al. 2019 Global NAFLD Prevalence: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2021; in press. [Google Scholar] [CrossRef]
- Sayiner, M.; Koenig, A.; Henry, L.; Younossi, Z.M. Epidemiology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis in the United States and the Rest of the World. Clin. Liver Dis. 2016, 20, 205–214. [Google Scholar] [CrossRef]
- Kanwar, P.; Kowdley, K.V. The Metabolic Syndrome and Its Influence on Nonalcoholic Steatohepatitis. Clin. Liver Dis. 2016, 20, 225–243. [Google Scholar] [CrossRef]
- Vanni, E.; Bugianesi, E.; Kotronen, A.; De Minicis, S.; Yki-Järvinen, H.; Svegliati-Baroni, G. From the metabolic syndrome to NAFLD or vice versa? Dig. Liver Dis. 2010, 42, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Dumas, M.E.; Kinross, J.; Nicholson, J.K. Metabolic phenotyping and systems biology approaches to understanding metabolic syndrome and fatty liver disease. Gastroenterology 2014, 146, 46–62. [Google Scholar] [CrossRef]
- Sachdeva, S.; Khandait, H.; Kopel, J.; Aloysius, M.M.; Desai, R.; Goyal, H. NAFLD and COVID-19: A Pooled Analysis. Gastroenterology 2020, 2, 2726–2729. [Google Scholar] [CrossRef]
- Bao, Y.; Sun, Y.; Meng, S.; Shi, J.; Lu, L. 2019-nCoV epidemic: Address mental health care to empower society. Lancet 2020, 395, e37–e38. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.M.; Kamel, M.M. Dietary habits in adults during quarantine in the context of COVID-19 pandemic. Obes. Med. 2020, 19, 100254. [Google Scholar] [CrossRef]
- Pellegrini, M.; Ponzo, V.; Rosato, R.; Scumaci, E.; Goitre, I.; Benso, A.; Belcastro, S.; Crespi, C.; De Michieli, F.; Ghigo, E.; et al. Changes in weight and nutritional habits in adults with obesity during the “lockdown” period caused by the COVID-19 virus emergency. Nutrients 2020, 12, 2016. [Google Scholar] [CrossRef]
- Galanakis, C.M. The food systems in the era of the coronavirus (COVID-19) pandemic crisis. Foods 2020, 9, 523. [Google Scholar] [CrossRef]
- Pérez-Rodrigo, C.; Gianzo-Citores, M.; Hervás-Bárbara, G.; Ruis-Litago, F.; Casís-Sáenz, L.; Arija, V.; López-Sobaler, A.M.; Martínez de Victoria, E.; Ortega, R.M.; Partearroyo, T.; et al. Patterns of Change in Dietary Habits and Physical Activity during Lockdown in Spain Due to the COVID-19 Pandemic. Nutrients 2021, 13, 300. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, E.; Ramirez-Vargas, G.; Avellaneda-López, Y.; Orellana-Pecino, J.I.; García-Marín, E.; Díaz-Jiménez, J. Eating Habits and Physical Activity of the Spanish Population during the COVID-19 Pandemic Period. Nutrients 2020, 12, 2826. [Google Scholar] [CrossRef]
- Mattioli, A.V.; Sciomer, S.; Cocchi, C.; Maffei, S.; Gallina, S. Quarantine during COVID-19 outbreak changes in diet and physical activity increase the risk of cardiovascular disease. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1409–1417. [Google Scholar] [CrossRef]
- Casas, R.; Raicó-Quintana, B.; Ruiz-León, A.M.; Castro-Barquero, S.; Bertomeu, I.; González-Juste, J.; Campolier, M.; Estruch, R. Changes in Spanish lifestyle and dietary habits during the COVID-19 lockdown. Eur. J. Nutr. 2022, 61, 2417–2434. [Google Scholar] [CrossRef]
- Mascherini, G.; Catelan, D.; Pellegrini-Giampietro, D.E.; Petri, C.; Scaletti, C.; Gulisano, M. Changes in physical activity levels, eating habits and psychological well-being during the Italian COVID-19 pandemic lockdown: Impact of socio-demographic factors on the Florentine academic population. PLoS ONE 2021, 16, e0252395. [Google Scholar] [CrossRef]
- Lombardo, M.; Guseva, E.; Perrone, M.A.; Müller, A.; Rizzo, G.; Storz, M.A. Changes in Eating Habits and Physical Activity after COVID-19 Pandemic Lockdowns in Italy. Nutrients 2021, 13, 4522. [Google Scholar] [CrossRef]
- Bracale, R.; Vaccaro, C.M. Changes in food choice following restrictive measures due to COVID-19. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1423–1426. [Google Scholar] [CrossRef]
- Scarmozzino, F.; Visioli, F. COVID-19 and the subsequent lockdown modified dietary habits of almost half the population in an Italian sample. Foods 2020, 9, 675. [Google Scholar] [CrossRef]
- Di Renzo, L.; Gualtieri, P.; Cinelli, G.; Bigioni, G.; Soldati, L.; Attinà, A.; Bianco, F.F.; Caparello, G.; Camodeca, V.; Carrano, E.; et al. Psychological aspects and eating habits during COVID-19 home confinement: Results of EHLC-COVID-19 Italian online survey. Nutrients 2020, 12, 2152. [Google Scholar] [CrossRef]
- NNCT04442620; Prevention and Reversion of NAFLD in Obese Patients with Metabolic Syndrome by Mediterranean Diet and Physical Activity (FLIPAN). 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04442620 (accessed on 5 May 2022).
- Consensus International Diabetic Federation (IDF). Consensus Statement—The IDF Consensus Worldwide Definition of the Metabolic Syndrome. 2006. Available online: https://www.idf.org/e-library/consensus-statements/60-idfconsensus-worldwidedefinitionof-the-metabolic-syndrome.html (accessed on 23 August 2022).
- Willett, W.C.; Sampson, L.; Stampfer, M.J.; Rosner, B.; Bain, C.; Witschi, J.; Hennekens, C.H.; Speizer, F.E. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am. J. Epidemiol. 1985, 122, 51–65. [Google Scholar] [CrossRef]
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Food Composition Tables (Spanish), 19th ed.; Pirámide: Madrid, Spain, 2018. [Google Scholar]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Kim, D.; Kim, H.J.; Lee, C.H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.H.; Cho, S.H.; Sung, M.W.; et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef]
- Tang, A.; Tan, J.; Sun, M.; Hamilton, G.; Bydder, M.; Wolfson, T.; Gamst, A.C.; Middleton, M.; Brunt, E.M.; Loomba, R.; et al. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 2013, 267, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Cinque, F.; Cespiati, A.; Lombardi, R.; Costantino, A.; Maffi, G.; Alletto, F.; Colavolpe, L.; Francione, P.; Oberti, G.; Fatta, E.; et al. Interaction between Lifestyle Changes and PNPLA3 Genotype in NAFLD Patients during the COVID-19 Lockdown. Nutrients 2022, 14, 556. [Google Scholar] [CrossRef]
- Shanmugam, H.; Di Ciaula, A.; Di Palo, D.M.; Molina-Molina, E.; Garruti, G.; Faienza, M.F.; van Erpecum, K.; Portincasa, P. Multiplying effects of COVID-19 lockdown on metabolic risk and fatty liver. Eur. J. Clin. Investig. 2021, 51, e13597. [Google Scholar] [CrossRef]
- Khan, M.A.; Menon, P.; Govender, R.; Samra, A.M.A.; Allaham, K.K.; Nauman, J.; Östlundh, L.; Mustafa, H.; Smith, J.E.M.; AlKaabi, J.M. Systematic review of the effects of pandemic confinements on body weight and their determinants. Br. J. Nutr. 2022, 127, 298–317. [Google Scholar] [CrossRef]
- Bennett, G.; Young, E.; Butler, I.; Coe, S. The Impact of Lockdown During the COVID-19 Outbreak on Dietary Habits in Various Population Groups: A Scoping Review. Front. Nutr. 2021, 8, 626432. [Google Scholar] [CrossRef]
- European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. Diabetologia 2016, 59, 1121–1140. [Google Scholar] [CrossRef] [Green Version]
- Vilar-Gomez, E.; Martinez-Perez, Y.; Calzadilla-Bertot, L.; Torres-Gonzalez, A.; Gra-Oramas, B.; Gonzalez-Fabian, L.; Friedman, S.L.; Diago, M.; Romero-Gomez, M. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology 2015, 149, 367–378.e15. [Google Scholar] [CrossRef]
- Ji, D.; Qin, E.; Xu, J.; Zhang, D.; Cheng, G.; Wang, Y.; Lau, G. Non-alcoholic fatty liver diseases in patients with COVID-19: A retrospective study. J. Hepatol. 2020, 73, 451–453. [Google Scholar] [CrossRef]
- Ahmed, M.; Ahmed, M.H. Nonalcoholic fatty liver disease and COVID-19: An epidemic that begets pandemic. World. J. Clin. Cases. 2021, 9, 4133–4142. [Google Scholar] [CrossRef]
- Smirne, C.; Croce, E.; Di Benedetto, D.; Cantaluppi, V.; Comi, C.; Sainaghi, P.P.; Minisini, R.; Grossini, E.; Pirisi, M. Oxidative Stress in Non-Alcoholic Fatty Liver Disease. Livers 2022, 2, 30–76. [Google Scholar] [CrossRef]
- Galli, F.; Marcantonini, G.; Giustarini, D.; Albertini, M.C.; Migni, A.; Zatini, L.; Gioiello, A.; Rossi, R.; Bartolini, D. How Aging and Oxidative Stress Influence the Cytopathic and Inflammatory Effects of SARS-CoV-2 Infection: The Role of Cellular Glutathione and Cysteine Metabolism. Antioxidants 2022, 11, 1366. [Google Scholar] [CrossRef]
- Buonaurio, F.; Borra, F.; Pigini, D.; Paci, E.; Spagnoli, M.; Astolfi, M.L.; Giampaoli, O.; Sciubba, F.; Miccheli, A.; Canepari, S.; et al. Biomonitoring of Exposure to Urban Pollutants and Oxidative Stress during the COVID-19 Lockdown in Rome Residents. Toxics 2022, 10, 267. [Google Scholar] [CrossRef]
- Janssen, M.; Chang, B.P.I.; Hristov, H.; Pravst, I.; Profeta, A.; Millard, J. Changes in Food Consumption During the COVID-19 Pandemic: Analysis of Consumer Survey Data from the First Lockdown Period in Denmark, Germany, and Slovenia. Front. Nutr. 2021, 8, 635859. [Google Scholar] [CrossRef]
- Michel, M.; Schattenberg, J.M. Effectiveness of lifestyle interventions in NAFLD (nonalcoholic fatty liver disease)-how are clinical trials affected? Expert. Opin. Investig. Drugs. 2020, 29, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Abenavoli, L.; Procopio, A.C.; Medić-Stojanoska, M.; Luzza, F. Non-alcoholic fatty liver disease and primary care physicians. Minerva. Gastroenterol. Dietol. 2020, 66, 4–5. [Google Scholar] [CrossRef]
- Krawczyk, M.; Maciejewska, D.; Ryterska, K.; Czerwińka-Rogowska, M.; Jamioł-Milc, D.; Skonieczna-Żydecka, K.; Milkiewicz, P.; Raszeja-Wyszomirska, J.; Stachowska, E. Gut Permeability Might be Improved by Dietary Fiber in Individuals with Nonalcoholic Fatty Liver Disease (NAFLD) Undergoing Weight Reduction. Nutrients 2018, 10, 1793. [Google Scholar] [CrossRef] [Green Version]
- Parnell, J.A.; Raman, M.; Rioux, K.P.; Reimer, R.A. The potential role of prebiotic fibre for treatment and management of non-alcoholic fatty liver disease and associated obesity and insulin resistance. Liver Int. 2011, 32, 701–711. [Google Scholar] [CrossRef]
- Rietman, A.; Sluik, D.; Feskens, E.J.M.; Kok, F.J.; Mensink, M. Associations between dietary factors and markers of NAFLD in a general Dutch adult population. Eur. J. Clin. Nutr. 2018, 72, 117–123. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, S.; Zhang, Q.; Liu, L.; Meng, G.; Wu, H.; Bao, X.; Gu, Y.; Sun, S.; Wang, X.; et al. Insoluble dietary fibre intake is associated with lower prevalence of newly-diagnosed non-alcoholic fatty liver disease in Chinese men: A large population-based cross-sectional study. Nutr. Metab. 2020, 17, 4. [Google Scholar] [CrossRef]
- Zolfaghari, H.; Askari, G.; Siassi, F.; Feizi, A.; Sotoudeh, G. Intake of nutrients, fiber, and sugar in patients with nonalcoholic fatty liver disease in comparison to healthy individuals. Int. J. Prev. Med. 2016, 7, 98. [Google Scholar]
- Zelber-Sagi, S.; Nitzan-Kaluski, D.; Goldsmith, R.; Webb, M.; Blendis, L.; Halpern, Z.; Oren, R. Long term nutritional intake and the risk for non-alcoholic fatty liver disease (NAFLD): A population based study. J. Hepatol. 2007, 47, 711–717. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, J.; Li, X.; Xie, D.; Wang, Y.; Yang, T. Association between dietary iron intake and the prevalence of nonalcoholic fatty liver disease: A cross-sectional study. Medicine 2019, 98, e17613. [Google Scholar] [CrossRef]
- Moller, N.P.; Scholz-Ahrens, K.E.; Roos, N.; Schrezenmeir, J. Bioactive peptides and proteins from foods: Indication for health effects. Eur. J. Nutr. 2008, 47, 171–182. [Google Scholar] [CrossRef]
- Koutnikova, H.; Genser, B.; Monteiro-Sepulveda, M.; Faurie, J.M.; Rizkalla, S.; Schrezenmeir, J.; Clément, K. Impact of bacterial probiotics on obesity, diabetes and non-alcoholic fatty liver disease related variables: A systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2019, 9, e017995. [Google Scholar] [CrossRef]
- Higurashi, S.; Ogawa, A.; Nara, T.Y.; Kato, K.; Kadooka, Y. Cheese consumption prevents fat accumulation in the liver and improves serum lipid parameters in rats fed a high-fat diet. Dairy Sci. Technol. 2016, 96, 539–549. [Google Scholar] [CrossRef] [Green Version]
- St-Onge, M.P.; Farnworth, E.R.; Jones, P.J. Consumption of fermented and nonfermented dairy products: Effects on cholesterol concentrations and metabolism. Am. J. Clin. Nutr. 2000, 71, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lee, H.S.; Ahn, S.B.; Kwon, Y.J. Dairy protein intake is inversely related to development of non-alcoholic fatty liver disease. Clin. Nutr. 2021, 40, 5252–5260. [Google Scholar] [CrossRef] [PubMed]
- Alasalvar, C.; Bolling, B.W. Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. Br. J. Nutr. 2015, 1132, S68–S78. [Google Scholar] [CrossRef] [PubMed]
- Alasalvar, C.; Salas-Salvadó, J.; Ros, E. Bioactives and health benefits of nuts and dried fruits. Food Chem. 2020, 314, 126192. [Google Scholar] [CrossRef]
- Chen, B.B.; Han, Y.; Pan, X.; Yan, J.; Liu, W.; Li, Y.; Lin, X.; Xu, S.; Peng, X.E. Association between nut intake and non-alcoholic fatty liver disease risk: A retrospective case-control study in a sample of Chinese Han adults. BMJ Open. 2019, 9, e028961. [Google Scholar] [CrossRef]
- Asbaghi, O.; Emamat, H.; Kelishadi, M.R.; Hekmatdoost, A. The Association between Nuts Intake and Non-Alcoholic Fatty Liver Disease (NAFLD) Risk: A Case-Control Study. Clin. Nutr. Res. 2020, 9, 195–204. [Google Scholar] [CrossRef]
- Grosso, G.; Yang, J.; Marventano, S.; Micek, A.; Galvano, F.; Kales, S.N. Nut consumption on all-cause, cardiovascular, and cancer mortality risk: A systematic review and meta-analysis of epidemiologic studies. Am. J. Clin. Nutr. 2015, 101, 783–793. [Google Scholar] [CrossRef] [Green Version]
- Tindall, A.M.; Johnston, E.A.; Kris-Etherton, P.M.; Petersen, K.S. The effect of nuts on markers of glycemic control: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2019, 109, 297–314. [Google Scholar] [CrossRef]
- Del Gobbo, L.C.; Falk, M.C.; Feldman, R.; Lewis, K.; Mozaffarian, D. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: Systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. Am. J. Clin. Nutr. 2015, 102, 1347–1356. [Google Scholar] [CrossRef] [Green Version]
- Molloy, J.W.; Calcagno, C.J.; Williams, C.D.; Jones, F.J.; Torres, D.M.; Harrison, S.A. Association of coffee and caffeine consumption with fatty liver disease, nonalcoholic steatohepatitis, and degree of hepatic fibrosis. Hepatology 2012, 55, 429–436. [Google Scholar] [CrossRef]
- Birerdinc, A.; Stepanova, M.; Pawloski, L.; Younossi, Z.M. Caffeine is protective in patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2012, 35, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Catalano, D.; Martines, G.F.; Tonzuso, A.; Pirri, C.; Trovato, F.M.; Trovato, G.M. Protective role of coffee in non-alcoholic fatty liver disease (NAFLD). Dig. Dis. Sci. 2010, 55, 3200–3206. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Grobe, Y.; Chávez-Tapia, N.; Sánchez-Valle, V.; Gavilanes-Espinar, J.G.; Ponciano-Rodríguez, G.; Uribe, M.; Méndez-Sánchez, N. High coffee intake is associated with lower grade nonalcoholic fatty liver disease: The role of peripheral antioxidant activity. Ann. Hepatol. 2012, 11, 350–355. [Google Scholar] [CrossRef]
- Shen, H.; Rodriguez, A.C.; Shiani, A.; Lipka, S.; Shahzad, G.; Kumar, A.; Mustacchia, P. Association between caffeine consumption and nonalcoholic fatty liver disease: A systemic review and meta-analysis. Therap. Adv. Gastroenterol. 2016, 9, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Kerimi, A.; Williamson, G. The cardiovascular benefits of dark chocolate. Vascul. Pharmacol. 2015, 71, 11–15. [Google Scholar] [CrossRef] [Green Version]
- McShea, A.; Ramiro-Puig, E.; Munro, S.B.; Casadesus, G.; Castell, M.; Smith, M.A. Clinical benefit and preservation of flavonols in dark chocolate manufacturing. Nutr. Rev. 2008, 66, 630–641. [Google Scholar] [CrossRef]
- Leyva-Soto, A.; Chavez-Santoscoy, R.A.; Lara-Jacobo, L.R.; Chavez-Santoscoy, A.V.; Gonzalez-Cobian, L.N. Daily Consumption of Chocolate Rich in Flavonoids Decreases Cellular Genotoxicity and Improves Biochemical Parameters of Lipid and Glucose Metabolism. Molecules 2018, 23, 2220. [Google Scholar] [CrossRef]
- Di Renzo, L.; Rizzo, M.; Sarlo, F.; Colica, C.; Iacopino, L.; Domino, E.; Sergi, D.; De Lorenzo, A. Effects of dark chocolate in a population of Normal Weight Obese women: A pilot study. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 2257–2266. [Google Scholar]
- Lv, S.; Jiang, S.; Liu, S.; Dong, Q.; Xin, Y.; Xuan, S. Non-invasive quantitative detection methods of liver fat content in non-alcoholic fatty liver disease. J. Clin. Transl. Hepatol. 2018, 6, 217–221. [Google Scholar] [CrossRef] [Green Version]
IIFC n = 39 | RIFC n = 20 | p-Value * | |
---|---|---|---|
Females (n; %) | 15 (25.9) | 6 (10.3) | 0.362 |
Females on menopause (n; %) | 6 (10.3) | 4 (6.9) | 0.385 |
Age (y) (mean ± SD) | 51.4 ± 6.3 | 54.7 ± 6.7 | 0.072 |
Marital Status | 0.842 | ||
Single (n; %) | 3 (5.2) | 1 (1.7) | |
Married/domestic partnership (n; %) | 26 (44.8) | 16 (27.6) | |
Divorced/separated/widowed (n; %) | 10 (17.2) | 3 (5.2) | |
Employment | 0.254 | ||
Working (n; %) | 32 (55.2) | 15 (25.9) | |
Unemployed/retired/housewife (n; %) | 7 (12.1) | 5 (8.5) | |
Education Level | 0.637 | ||
University/post-university (n; %) | 3 (5.2) | 1 (1.7) | |
Secondary education (n; %) | 9 (15.5) | 7 (12.1) | |
Primary education (n; %) | 15 (25.8) | 10 (17.2) | |
None (n; %) | 12 (20.7) | 2 (3.4) | |
Currently smoking (n; %) | 7 (12.1) | 0 (0.0) | 0.190 |
Regular Physical Activity | 0.253 | ||
None (n; %) | 19 (32.8) | 7 (12.1) | |
Light (n; %) | 15 (25.9) | 9 (15.5) | |
Moderate (n; %) | 4 (6.9) | 4 (6.9) | |
Vigorous (n; %) | 1 (1.7) | 0 (0.0) | |
T2DM (n; %) | 10 (17.2) | 8 (13.8) | 0.381 |
High BP (n; %) | 15 (30.6) | 10 (20.4) | 0.858 |
IIFC Mean (SD) | RIFC Mean (SD) | t*g† | ||
---|---|---|---|---|
BMI (kg/m2) | Pre-lockdown | 31.7 ± 3.3 | 33.0 ± 3.6 | 0.241 |
Post-lockdown | 32.7 ± 3.5 | 44.9 ± 56.0 | ||
Δ | +1.1 ± 1.9 * | +11.9 ± 55.6 | ||
Body weight (kg) | Pre-lockdown | 89.0 ± 11.8 | 91.9 ± 10.1 | <0.001 |
Post-lockdown | 91.8 ± 12.0 | 90.5 ± 12.2 | ||
Δ | +2.8 ± 2.9 * | −1.4 ± 4.2 | ||
WC (cm) | Pre-lockdown | 106.9 ± 8.1 | 111.4 ± 9.3 | 0.002 |
Post-lockdown | 108.1 ± 7.9 | 108.6 ± 9.0 | ||
Δ | +1.2 ± 4.4 | −2.9 ± 4.4 * | ||
SBP (mmHg) | Pre-lockdown | 131.1 ± 12.9 | 131.3 ± 17.4 | 0.129 |
Post-lockdown | 136.3 ± 18.4 | 130.5 ± 18.0 | ||
Δ | +5.2 ± 13.3 * | −0.8 ± 13.0 | ||
DBP (mmHg) | Pre-lockdown | 80.4 ± 7.4 | 78.7 ± 7.6 | 0.215 |
Post-lockdown | 85.9 ± 11.5 | 81.1 ± 10.8 | ||
Δ | +5.5 ± 8.0 * | +2.4 ± 9.1 | ||
Fasting glucose (mg/dL) | Pre-lockdown | 100.5 ± 14.0 | 118.4 ± 42.1 | 0.019 |
Post-lockdown | 107.3 ± 19.3 | 112.6 ± 41.5 | ||
Δ | +6.8 ± 13.5 * | −5.8 ± 25.3 | ||
HDL-c (mg/dL) | Pre-lockdown | 47.0 ± 10.9 | 42.8 ± 6.5 | 0.605 |
Post-lockdown | 45.3 ± 9.6 | 41.8 ± 6.4 | ||
Δ | −1.7 ± 5.8 | −1.0 ± 4.3 | ||
TG (mg/dL) | Pre-lockdown | 166.9 ± 121.3 | 154.9 ± 80.7 | 0.410 |
Post-lockdown | 216.5 ± 266.9 | 163.8 ± 63.8 | ||
Δ | +49.6 ± 215.7 | +8.9 ± 77.4 |
IIFC Mean (SD) | RIFC Mean (SD) | t*g† | ||
---|---|---|---|---|
AST (U/L) | Pre-lockdown | 21.7 ± 6.7 | 25.9 ± 7.9 | 0.077 |
Post-lockdown | 27.9 ± 19.4 | 24.4 ± 7.2 | ||
Δ | +6.2 ± 16.6 | −1.6 ± 5.3 | ||
ALT (U/L) | Pre-lockdown | 25.0 ± 9.8 | 32.0 ± 14.0 | 0.020 |
Post-lockdown | 36.1 ± 30.6 | 29.1 ± 14.0 | ||
Δ | +11.1 ± 25.4 * | −2.9 ± 11.2 * | ||
GGT (U/L) | Pre-lockdown | 36.1 ± 22.6 | 38.4 ± 24.3 | 0.196 |
Post-lockdown | 50.8 ± 52.3 | 41.0 ± 39.3 | ||
Δ | +14.7 ± 38.6 * | +2.6 ± 22.0 | ||
IFC-MRI (%) | Pre-lockdown | 10.0 ± 7.7 | 14.4 ± 8.7 | <0.001 |
Post-lockdown | 14.0 ± 9.6 | 11.3 ± 7.2 | ||
Δ | +4.0 ± 3.4 * | −3.0 ± 3.3 * | ||
FLI (U) | Pre-lockdown | 77.2 ± 15.7 | 83.1 ± 12.1 | 0.013 |
Post-lockdown | 82.9 ± 14.8 | 82.4 ± 17.2 | ||
Δ | +5.7 ± 7.7 * | −0.7 ± 10.8 | ||
HIS (U) | Pre-lockdown | 42.3 ± 4.7 | 43.8 ± 5.8 | 0.255 |
Post-lockdown | 44.4 ± 5.0 | 59.2 ± 63.2 | ||
Δ | +2.0 ± 2.6 * | +15.4 ± 62.9 |
IIFC Mean (SD) | RIFC Mean (SD) | t*g† | ||
---|---|---|---|---|
Carbohydrates (g/d) per 1000 kcal | Pre-lockdown | 210.0 ± 81.0 | 214.0 ± 62.2 | 0.943 |
Post-lockdown | 189.1 ± 65.0 | 194.2 ± 62.9 | ||
Δ | −20.9 ± 55.6 | −19.8 ± 49.6 | ||
Fibre (g/d) per 1000 kcal | Pre-lockdown | 31.8 ± 12.5 | 31.9 ± 12.3 | 0.343 |
Post-lockdown | 28.8 ± 12.2 | 31.1 ± 10.8 | ||
Δ | −3.0 ± 7.1 * | −0.8 ± 8.5 | ||
Protein (g/d) per 1000 kcal | Pre-lockdown | 98.2 ± 26.8 | 91.1 ± 27.1 | 0.508 |
Post-lockdown | 90.5 ± 28.2 | 88.3 ± 22.4 | ||
Δ | −7.6 ± 26.8 | −2.8 ± 20.3 | ||
Lipids (g/d) per 1000 kcal | Pre-lockdown | 82.9 ± 23.9 | 89.8 ± 27.6 | 0.385 |
Post-lockdown | 92.5 ± 32.2 | 92.0 ± 27.5 | ||
Δ | +9.6 ± 32.6 | +2.2 ± 21.3 | ||
Trans fats (g/d) per 1000 kcal | Pre-lockdown | 5.6 ± 6.5 | 7.9 ± 6.8 | 0.979 |
Post-lockdown | 9.4 ± 4.3 | 11.7 ± 5.6 | ||
Δ | +3.8 ± 7.1 * | +3.8 ± 7.6 * |
IIFC Mean (SD) | RIFC Mean (SD) | t*g† | ||
---|---|---|---|---|
Fruits + vegetables (g/d) per 1000kcal | Pre-lockdown | 715.0 ± 304.9 | 693.2 ± 258.8 | 0.805 |
Post-lockdown | 666.6 ± 321.9 | 660.4 ± 212.6 | ||
Δ | −48.5 ± 227.3 | −32.8 ± 192.0 | ||
Cereals (g/d) per 1000 kcal | Pre-lockdown | 125.9 ± 67.6 | 144.1 ± 67.8 | 0.530 |
Post-lockdown | 113.4 ± 57.5 | 119.9 ± 67.0 | ||
Δ | −12.6 ± 70.8 | −24.2 ± 46.0 * | ||
Legumes (g/d) per 1000 kcal | Pre-lockdown | 31.2 ± 17.8 | 30.2 ± 24.3 | 0.802 |
Post-lockdown | 34.4 ± 25.7 | 31.8 ± 27.0 | ||
Δ | +3.1 ± 21.8 | +1.6 ± 19.1 | ||
Milk and yogurt (mL/d) per 1000 kcal | Pre-lockdown | 264.2 ± 189.4 | 232.4 ± 141.4 | 0.299 |
Post-lockdown | 239.6 ± 158.2 | 262.8 ± 185.8 | ||
Δ | −24.5 ± 183.9 | +30.3 ± 165.0 | ||
Cheese (g/d) per 1000 kcal | Pre-lockdown | 9.6 ± 9.7 | 8.6 ± 10.2 | 0.011 |
Post-lockdown | 6.0 ± 7.6 | 10.9 ± 10.4 | ||
Δ | −3.6 ± 8.4 * | +2.3 ± 5.9 | ||
Meats and meat products (g/d) per 1000 kcal | Pre-lockdown | 126.1 ± 65.2 | 130.6 ± 69.8 | 0.615 |
Post-lockdown | 111.2 ± 69.0 | 126.9 ± 48.3 | ||
Δ | −14.9 ± 84.6 | −3.7 ± 57.0 | ||
Fish (g/d) per 1000 kcal | Pre-lockdown | 147.2 ± 76.5 | 101.5 ± 60.1 | 0.639 |
Post-lockdown | 146.3 ± 82.9 | 94.0 ± 62.9 | ||
Δ | −0.9 ± 40.4 | −7.5 ± 56.9 | ||
Nuts (g/d) per 1000 kcal | Pre-lockdown | 25.2 ± 29.3 | 27.3 ± 23.6 | 0.233 |
Post-lockdown | 14.6 ± 16.4 | 26.3 ± 24.8 | ||
Δ | −10.5 ± 26.3 * | -1.0 ± 27.2 | ||
Cooking oils (mg/d) per 1000 kcal | Pre-lockdown | 32.4 ± 15.1 | 35.3 ± 16.4 | 0.934 |
Post-lockdown | 33.6 ± 13.2 | 35.6 ± 16.0 | ||
Δ | +1.2 ± 13.8 | +0.3 ± 16.6 | ||
Sweets and pastries (g/d) per 1000 kcal | Pre-lockdown | 7.6 ± 8.0 | 7.5 ± 11.8 | 0.040 |
Post-lockdown | 17.7 ± 35.7 | 14.4 ± 26.1 | ||
Δ | +10.1 ± 32.1 * | +6.9 ± 23.8 | ||
Chocolates (g/d) per 1000 kcal | Pre-lockdown | 3.4 ± 6.8 | 2.4 ± 5.3 | 0.047 |
Post-lockdown | 5.0 ± 6.1 | 12.6 ± 34.6 | ||
Δ | +1.6 ± 8.2 | +10.2 ± 29.6 | ||
Soft drinks (mL/d) per 1000 kcal | Pre-lockdown | 94.3 ± 126.8 | 86.1 ± 130.1 | 0.645 |
Post-lockdown | 129.1 ± 181.6 | 99.3 ± 158.1 | ||
Δ | +34.8 ± 166.7 | +13.3 ± 141.3 | ||
Caffeinated coffee (mL/d) per 1000 kcal | Pre-lockdown | 67.1 ± 73.3 | 36.5 ± 50.4 | 0.006 |
Post-lockdown | 40.5 ± 48.8 | 41.9 ± 54.1 | ||
Δ | −26.6 ± 46.5 * | +5.5 ± 18.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montemayor, S.; Mascaró, C.M.; Ugarriza, L.; Casares, M.; Gómez, C.; Martínez, J.A.; Tur, J.A.; Bouzas, C. Intrahepatic Fat Content and COVID-19 Lockdown in Adults with NAFLD and Metabolic Syndrome. Nutrients 2022, 14, 3462. https://doi.org/10.3390/nu14173462
Montemayor S, Mascaró CM, Ugarriza L, Casares M, Gómez C, Martínez JA, Tur JA, Bouzas C. Intrahepatic Fat Content and COVID-19 Lockdown in Adults with NAFLD and Metabolic Syndrome. Nutrients. 2022; 14(17):3462. https://doi.org/10.3390/nu14173462
Chicago/Turabian StyleMontemayor, Sofía, Catalina M. Mascaró, Lucía Ugarriza, Miguel Casares, Cristina Gómez, J. Alfredo Martínez, Josep A. Tur, and Cristina Bouzas. 2022. "Intrahepatic Fat Content and COVID-19 Lockdown in Adults with NAFLD and Metabolic Syndrome" Nutrients 14, no. 17: 3462. https://doi.org/10.3390/nu14173462
APA StyleMontemayor, S., Mascaró, C. M., Ugarriza, L., Casares, M., Gómez, C., Martínez, J. A., Tur, J. A., & Bouzas, C. (2022). Intrahepatic Fat Content and COVID-19 Lockdown in Adults with NAFLD and Metabolic Syndrome. Nutrients, 14(17), 3462. https://doi.org/10.3390/nu14173462