Association between Circulating Levels of 25-Hydroxyvitamin D3 and Matrix Metalloproteinase-10 (MMP-10) in Patients with Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Study Population
2.3. Data Acquisition and Measurement
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, N.; Hu, M.; Khalil, R.A. Biochemical and Biological Attributes of Matrix Metalloproteinases. Prog. Mol. Biol. Transl. Sci. 2017, 147, 1–73. [Google Scholar] [PubMed]
- Garcia-Fernandez, N.; Jacobs-Cachá, C.; Mora-Gutiérrez, J.M.; Vergara, A.; Orbe, J.; Soler, M.J. Matrix Metalloproteinases in Diabetic Kidney Disease. J. Clin. Med. 2020, 9, 472. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Xiao, L.; Xiao, P.; Yang, S.; Chen, G.; Liu, F.; Kanwar, Y.S.; Sun, L. A Glimpse of Matrix Metalloproteinases in Diabetic Nephropathy. Curr. Med. Chem. 2014, 21, 3244–3260. [Google Scholar] [CrossRef]
- Wozniak, J.; Floege, J.; Ostendorf, T.; Ludwig, A. Key metalloproteinase-mediated pathways in the kidney. Nat. Rev. Nephrol. 2021, 17, 513–527. [Google Scholar] [CrossRef] [PubMed]
- Bäck, M.; Ketelhuth, D.F.J.; Agewall, S. Matrix Metalloproteinases in Atherothrombosis. Prog. Cardiovasc. Dis. 2010, 52, 410–428. [Google Scholar] [CrossRef] [PubMed]
- Coll, B.; Rodríguez, J.A.; Craver, L.; Orbe, J.; Martínez-Alonso, M.; Ortiz, A.; Díez, J.; Beloqui, O.; Borras, M.; Valdivielso, J.M.; et al. Serum levels of matrix metalloproteinase-10 are associated with the severity of atherosclerosis in patients with chronic kidney disease. Kidney Int. 2010, 78, 1275–1280. [Google Scholar] [CrossRef]
- Toni, M.; Hermida, J.; Goñi, M.J.; Fernández, P.; Parks, W.C.; Toledo, E.; Montes, R.; Díez, N. Matrix metalloproteinase-10 plays an active role in microvascular complications in type 1 diabetic patients. Diabetologia 2013, 56, 2743–2752. [Google Scholar] [CrossRef]
- Mora-Gutiérrez, J.M.; Rodríguez, J.A.; Fernández-Seara, M.A.; Orbe, J.; Escalada, F.J.; Soler, M.J.; Slon Roblero, M.F.; Riera, M.; Páramo, J.A.; Garcia-Fernandez, N. MMP-10 is Increased in Early Stage Diabetic Kidney Disease and can be Reduced by Renin-Angiotensin System Blockade. Sci. Rep. 2020, 10, 26. [Google Scholar] [CrossRef]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, treatment, and prevention of vitamin D deficiency: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef]
- Sempos, C.T.; Heijboer, A.C.; Bikle, D.D.; Bollerslev, J.; Bouillon, R.; Brannon, P.M.; DeLuca, H.F.; Jones, G.; Munns, C.F.; Bilezikian, J.P.; et al. Vitamin D assays and the definition of hypovitaminosis D: Results from the First International Conference on Controversies in Vitamin D. Br. J. Clin. Pharmacol. 2018, 84, 2194–2207. [Google Scholar] [CrossRef]
- Bouillon, R.; Marcocci, C.; Carmeliet, G.; Bikle, D.; White, J.H.; Dawson-Hughes, B.; Lips, P.; Munns, C.F.; Lazaretti-Castro, M.; Giustina, A.; et al. Skeletal and Extraskeletal Actions of Vitamin D: Current Evidence and Outstanding Questions. Endocr. Rev. 2019, 40, 1109–1151. [Google Scholar] [CrossRef] [PubMed]
- Ahmadieh, H.; Azar, S.T.; Lakkis, N.; Arabi, A. Hypovitaminosis D in Patients with Type 2 Diabetes Mellitus: A Relation to Disease Control and Complications. ISRN Endocrinol. 2013, 2013, 641098. [Google Scholar] [CrossRef] [PubMed]
- Tabesh, M.; Azadbakht, L.; Faghihimani, E.; Tabesh, M.; Esmaillzadeh, A. Calcium-vitamin D cosupplementation influences circulating inflammatory biomarkers and adipocytokines in vitamin D-insufficient diabetics: A randomized controlled clinical trial. J. Clin. Endocrinol. Metab. 2014, 99, E2485–E2493. [Google Scholar] [CrossRef]
- Zhou, C.; Lu, F.; Cao, K.; Xu, D.; Goltzman, D.; Miao, D. Calcium-independent and 1,25(OH)2D3-dependent regulation of the renin-angiotensin system in 1α-hydroxylase knockout mice. Kidney Int. 2008, 74, 170–179. [Google Scholar] [CrossRef] [PubMed]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C–Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Ambrosi, J.; Silva, C.; Galofré, J.C.; Escalada, J.; Santos, S.; Millán, D.; Vila, N.; Ibañez, P.; Gil, M.J.; Valentí, V.; et al. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int. J. Obes. 2012, 36, 286–294. [Google Scholar] [CrossRef]
- Gómez-Ambrosi, J.; Silva, C.; Catalán, V.; Rodríguez, A.; Galofré, J.C.; Escalada, J.; Valentí, V.; Rotellar, F.; Romero, S.; Ramírez, B.; et al. Clinical usefulness of a new equation for estimating body fat. Diabetes Care. 2012, 35, 383–388. [Google Scholar] [CrossRef]
- Varsavsky, M.; Moreno, P.R.; Fernández, A.B.; Fernández, I.L.; Gómez, J.M.Q.; Rubio, V.Á.; Martín, A.G.; Berdonces, M.C.; Cortés, S.N.; Muñoz, M.R.; et al. Recommended vitamin D levels in the general population. Endocrinol. Diabetes Nutr. 2017, 64, 7–14. [Google Scholar] [CrossRef]
- Giustina, A.; Bouillon, R.; Binkley, N.; Sempos, C.; Adler, R.A.; Bollerslev, J.; Dawson-Hughes, B.; Ebeling, P.R.; Feldman, D.; Heijboer, A.; et al. Controversies in Vitamin D: A Statement from the Third International Conference. JBMR Plus 2020, 4, 1–13. [Google Scholar] [CrossRef]
- Jiang, C.Q.; Chan, Y.H.; Xu, L.; Jin, Y.L.; Zhu, T.; Zhang, W.S.; Cheng, K.K.; Lam, T.H. Smoking and serum Vitamin D in older Chinese people: Cross-sectional analysis based on the Guangzhou Biobank Cohort Study. BMJ Open 2016, 6, 6–10. [Google Scholar] [CrossRef] [Green Version]
- Serra-Planas, E.; Aguilera, E.; Granada, M.L.; Soldevila, B.; Salinas, I.; Reverter, J.L.; Pizarro, E.; Pellitero, S.; Alonso, N.; Mauricio, D.; et al. High prevalence of vitamin D deficiency and lack of association with subclinical atherosclerosis in asymptomatic patients with Type 1 Diabetes Mellitus from a Mediterranean area. Acta Diabetol. 2015, 52, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Górriz, J.L.; Molina, P.; Bover, J.; Barril, G.; Martín-de Francisco, Á.L.; Caravaca, F.; Hervás, J.; Piñera, C.; Escudero, V.; Molinero, L.M. Characteristics of bone mineral metabolism in patients with stage 3-5 chronic kidney disease not on dialysis: Results of the OSERCE study. Nefrologia 2013, 33, 46–60. [Google Scholar] [PubMed]
- Restrepo Valencia, C.A.; Aguirre Arango, J.V. Vitamin D (25(OH)D) in patients with chronic kidney disease stages 2-5 [published correction appears in Colomb Med (Cali). 2019 Mar 30;50(1):49]. Colomb. Med. 2016, 47, 160–166. [Google Scholar] [CrossRef]
- Martin, K.J.; Floege, J.; Ketteler, M. Bone and Mineral Metabolism in Chronic Kidney Disease. In Comprehensive Clinical Nephrology, 4th ed.; Floege, J., Johnson, R.J., Feehally, J., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2010; pp. 969–984. [Google Scholar]
- Bahar-Shany, K.; Ravid, A.; Koren, R. Upregulation of MMP-9 production by TNFα in keratinocytes and its attenuation by vitamin D. J. Cell. Physiol. 2010, 222, 729–737. [Google Scholar] [PubMed]
- Coussens, A.; Timms, P.M.; Boucher, B.J.; Venton, T.R.; Ashcroft, A.T.; Skolimowska, K.H.; Newton, S.M.; Wilkinson, K.A.; Davidson, R.N.; Griffiths, C.J.; et al. 1α,25-dihydroxyvitamin D3 inhibits matrix metalloproteinases induced by Mycobacterium tuberculosis infection. Immunology 2009, 127, 539–548. [Google Scholar] [CrossRef]
- Wasse, H.; Cardarelli, F.; De Staercke, C.; Hooper, C.; Veledar, E.; Guessous, I. 25-hydroxyvitamin D concentration is inversely associated with serum MMP-9 in a cross-sectional study of African American ESRD patients. BMC Nephrol. 2011, 12, 24. [Google Scholar] [CrossRef]
- Timms, P.M.; Mannan, N.; Hitman, G.A.; Noonan, K.; Mills, P.G.; Syndercombe-Court, D.; Aganna, E.; Price, C.P.; Boucher, B.J. Circulating MMP9, vitamin D and variation in the TIMP-1 response with VDR genotype: Mechanisms for inflammatory damage in chronic disorders? QJM 2002, 95, 787–796. [Google Scholar] [CrossRef]
- Ghezel, A.; Salekzamani, S.; Mehralizadeh, H.; Jafarabadi, M.A.; Gargari, B.P. Vitamin D supplementation has no effect on matrix metalloproteinases-2, -9, and tissue inhibitor matrix metalloproteinase-1 in subjects with metabolic syndrome: A pilot study. Int. J. Vitam. Nutr. Res. 2019, 89, 227–237. [Google Scholar] [CrossRef]
- Ávila-Rubio, V.; García-Fontana, B.; Novo-Rodríguez, C.; Cantero-Hinojosa, J.; Reyes-García, R.; Muñoz-Torres, M. Higher Levels of Serum 25-Hydroxyvitamin D Are Related to Improved Glucose Homeostasis in Women with Postmenopausal Osteoporosis. J. Women’s Health 2018, 27, 1007–1015. [Google Scholar] [CrossRef]
All Patients | Normal >30 ng/mL | Insufficiency 20–30 ng/mL | Deficiency <20 ng/mL | |
---|---|---|---|---|
n (%) | 256 (100.0) | 66 (25.8) | 63 (24.6) | 127 (49.6) |
Age, years | 67 (60; 74) | 67 (62; 72) | 68 (57; 75) | 67 (59; 76) |
Diabetes duration, years | 10 (5; 16) | 10 (5; 15) | 7 (3; 13) | 11 (7; 19) |
Sex, % male/female | 73/27 | 50/50 | 73/27 | 84/16 |
BMI, kg/m2 | 28.5 (25.7; 31.1) | 27.3 (25.2; 30.0) | 29.1 (26.9; 31.5) | 28.9 (25.9; 31.3) |
CKD, % | 48.4 | 30.3 | 46.0 | 59.1 |
Hypertension, % | 76.2 | 71.2 | 68.2 | 82.7 |
CVD, % | 37.1 | 40.9 | 27.0 | 40.2 |
Smokers, % | ||||
Current | 18.0 | 15.1 | 20.6 | 18.1 |
Former | 28.5 | 28.8 | 30.2 | 27.6 |
Non-smoker | 53.5 | 56.1 | 49.2 | 54.3 |
Serum creatinine, mg/dL | 1.0 (0.8; 1.3) | 0.8 (0.7; 1.1) | 0.9 (0.7; 1.2) | 1.1 (0.8; 1.6) |
Serum cystatin, mg/dL | 1.01 (0.81; 1.45) | 0.87 (0.77; 1.13) | 1.01 (0.82; 1.40) | 1.10 (0.86; 1.74) |
eGFRcr, mL/min/1.73 m2 | ||||
2009 CKD-EPI | 78 (47; 94) | 83 (67; 94) | 86 (50; 96) | 69 (41; 88) |
2021 CKD-EPI | 83 (50; 98) | 88 (72; 99) | 90 (53; 101) | 73 (45; 93) |
Urea, mg/dL | 42 (32; 60) | 40 (30; 50) | 38 (32; 52) | 46 (34; 78) |
Urate, mg/dL (n = 217) | 5.7 (4.7; 6.8) | 5.3 (4.6; 6.3) | 5.9 (5.1; 6.9) | 5.8 (4.6; 7.0) |
Plasma glucose, mg/dL | 130 (108; 158) | 122 (102; 142) | 128 (104; 161) | 134 (112; 167) |
Serum HbA1c, % | 6.6 (6.0; 7.4) | 6.3 (5.8; 6.9) | 6.7 (6.0; 7.4) | 6.8 (6.1; 7.7) |
Total cholesterol, mg/dL | 156 (132; 178) | 160 (136; 182) | 152 (132; 178) | 152 (131; 177) |
HDL, mg/dL | 47 (38; 57) | 54 (43; 64) | 47 (39; 55) | 45 (36; 54) |
LDL, mg/dL | 82 (61; 98) | 79 (62; 100) | 84 (60; 101) | 81 (61; 96) |
Triglycerides, mg/dL | 108 (80; 147) | 96 (73; 128) | 97 (76; 138) | 117 (86; 175) |
Hb, g/dL | 13.9 (1.6) | 14.1 (1.3) | 14.2 (1.6) | 13.6 (1.6) |
Calcium, mg/dL (n = 201) | 9.4 (9.0; 9.8) | 9.4 (9.1; 9.8) | 9.6 (9.1; 9.8) | 9.3 (8.9; 9.7) |
Albumin, g/dL (n = 202) | 4.2 (3.9; 4.5) | 4.3 (4.0; 4.7) | 4.3 (4.0; 4.6) | 4.1 (3.8; 4.4) |
Calciumcorr, mg/dL (n = 191) | 9.2 (8.7; 9.7) | 9.2 (8.8; 9.6) | 9.2 (8.9; 9.7) | 9.2 (8.8; 9.7) |
Phosphate, mg/dL (n = 149) | 3.5 (3.1; 3.8) | 3.4 (3.1; 3.8) | 3.5 (3.1; 3.8) | 3.5 (3.1; 3.8) |
Intact PTH, pg/mL (n = 145) | 63.8 (38.7; 132.0) | 44.5 (29.7; 70.0) | 49.9 (40.0; 97.3) | 112.1 (53.7; 201.0) |
CRP, mg/dL (n = 171) | 0.30 (0.10; 1.40) | 0.23 (0.10; 0.47) | 0.20 (0.12; 0.90) | 0.40 (0.10; 2.00) |
UACR | 18.3 (7.0; 112.2) | 10.5 (6.4; 48.0) | 14.3 (6.5; 124.0) | 24.8 (9.0; 212.0) |
Loop diuretics, % | 22.3 | 16.7 | 20.7 | 26.0 |
Thiazides, % | 27.0 | 22.7 | 20.6 | 32.3 |
CCB, % | 33.7 | 27.3 | 31.8 | 38.1 |
RAAS blockage, % | 69.9 | 66.7 | 63.5 | 74.8 |
ACEI | 14.1 | 10.6 | 11.1 | 17.3 |
ARA | 41.4 | 34.9 | 33.3 | 48.8 |
Other | 14.4 | 21.2 | 19.1 | 8.8 |
Paricalcitol, % | 7.4 | 6.1 | 4.8 | 9.5 |
Vitamin D supplement, % | 20.3 | 40.9 | 28.6 | 5.5 |
All Patients | Normal >30 ng/mL | Insufficiency 20–30 ng/mL | Deficiency <20 ng/mL | p-Value | |
---|---|---|---|---|---|
n | 256 | 66 | 63 | 127 | |
25(OH)D3 [ng/mL], Median (IQR) | 20.3 (12.8; 30.8) | 37.9 (34.7; 43.0) | 25.3 (23.1; 27.2) | 12.8 (9.1; 15.8) | <0.001 * |
MMP-10 [pg/mL], Median (IQR) | 410 (295; 564) | 363 (282; 521) | 393 (256; 518) | 486 (336; 625) | <0.001 ** |
TIMP-1 [pg/mL], Median (IQR) | 546 (377; 776) | 503 (317; 669) | 546 (380; 827) | 593 (421; 818) | 0.034 * |
N | Spearman’s Rho (CI *) | p-Value | ||
---|---|---|---|---|
Overall | 256 | −0.25 (−0.36; −0.13) | <0.001 | |
Subgroup analysis by vitD3 status | Normal > 30 ng/mL | 66 | −0.16 (−0.39; 0.07) | 0.174 |
Insufficiency 20–30 ng/mL | 63 | 0.00 (−0.23; 0.24) | 0.985 | |
Deficiency < 20 ng/mL | 127 | −0.24 (−0.40; −0.07) | 0.005 | |
Subgroup analysis by CKD | CKD | 124 | −0.28 (−0.46; −0.11) | 0.001 |
No CKD | 132 | −0.03 (−0.20; 0.14) | 0.746 |
N | Spearman’s Rho (CI *) | p-Value | ||
---|---|---|---|---|
Overall | 256 | −0.20 (−0.32; −0.08) | 0.001 | |
Subgroup analysis by vitD3 status | >30 ng/mL | 66 | 0.10 (−0.17; 0.37) | 0.453 |
20–30 ng/mL | 63 | 0.12 (−0.14; 0.38) | 0.353 | |
<20 ng/mL | 127 | −0.28 (−0.45; −0.12) | 0.001 | |
Subgroup analysis by CKD | CKD | 124 | −0.24 (−0.40; −0.07) | 0.005 |
132 | −0.02 (−0.20; 0.15) | 0.795 |
Beta * (95% CI) | p-Value | |
---|---|---|
Crude model | −128.2 (−194.4; −62.0) | <0.001 |
Model 1 | −55.2 (−106.7; −3.8) | 0.035 |
Model 2 | −68.7 (−117.8; −19.7) | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abasheva, D.; Dolcet-Negre, M.M.; Fernández-Seara, M.A.; Mora-Gutiérrez, J.M.; Orbe, J.; Escalada, F.J.; Garcia-Fernandez, N. Association between Circulating Levels of 25-Hydroxyvitamin D3 and Matrix Metalloproteinase-10 (MMP-10) in Patients with Type 2 Diabetes. Nutrients 2022, 14, 3484. https://doi.org/10.3390/nu14173484
Abasheva D, Dolcet-Negre MM, Fernández-Seara MA, Mora-Gutiérrez JM, Orbe J, Escalada FJ, Garcia-Fernandez N. Association between Circulating Levels of 25-Hydroxyvitamin D3 and Matrix Metalloproteinase-10 (MMP-10) in Patients with Type 2 Diabetes. Nutrients. 2022; 14(17):3484. https://doi.org/10.3390/nu14173484
Chicago/Turabian StyleAbasheva, Daria, Marta M. Dolcet-Negre, María A. Fernández-Seara, José María Mora-Gutiérrez, Josune Orbe, Francisco Javier Escalada, and Nuria Garcia-Fernandez. 2022. "Association between Circulating Levels of 25-Hydroxyvitamin D3 and Matrix Metalloproteinase-10 (MMP-10) in Patients with Type 2 Diabetes" Nutrients 14, no. 17: 3484. https://doi.org/10.3390/nu14173484
APA StyleAbasheva, D., Dolcet-Negre, M. M., Fernández-Seara, M. A., Mora-Gutiérrez, J. M., Orbe, J., Escalada, F. J., & Garcia-Fernandez, N. (2022). Association between Circulating Levels of 25-Hydroxyvitamin D3 and Matrix Metalloproteinase-10 (MMP-10) in Patients with Type 2 Diabetes. Nutrients, 14(17), 3484. https://doi.org/10.3390/nu14173484