Polysaccharides from Hericium erinaceus Fruiting Bodies: Structural Characterization, Immunomodulatory Activity and Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Isolation and Purification of Polysaccharides
2.3. General Analytical Methods
2.3.1. Determination of Chemical Properties
2.3.2. Determination of Homogeneity and Molecular Weight
2.3.3. Monosaccharides Composition
2.3.4. Fourier Transform Infrared (FT-IR) Spectroscopy
2.3.5. Methylation Analysis
2.3.6. Nuclear Magnetic Resonance (NMR) Spectroscopy
2.4. Immunomodulatory Activity Analysis
2.4.1. Cell lines and Culture
2.4.2. Cytotoxicity Assay by CCK-8
2.4.3. Nitric Oxide Production
2.4.4. Assay for Phagocytic Activity
2.4.5. Caco-2/RAW264.7 Co-Culture System and Cytokine Secretions in RAW264.7 Cells
2.4.6. Western Blotting
2.4.7. Statistical Analysis
3. Results
3.1. Isolation, Purification and Chemical Components of Polysaccharides
3.2. Structural Characterization of HEPs
3.3. Methylation Analysis
3.4. NMR Analysis
3.5. Effect of HEPs Fractions on Cytotoxicity, Nitric Oxide and Phagocytic Activity in RAW264.7 Cells
3.6. Effect of HEP-1 on the Production of Cytokines in RAW264.7/Caco-2 Cells Model
3.7. Effect of HEP-1 on the Expression of NF-κB, MAPK and PI3K/Akt Pathways
3.8. The Role of NF-KB, MAPK and PI3K/Akt Pathways in HEP-1 Activation of Macrophages
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mizuno, T.; Saito, H.; Nishitoba, T.; Kawagishi, H. Antitumor-active substances from mushrooms. Food Rev. Int. 1995, 11, 23–61. [Google Scholar] [CrossRef]
- Yeh, S.P.; Hsia, L.F.; Chiu, C.S.; Chiu, S.T.; Liu, C.H. A smaller particle size improved the oral bioavailability of monkey head mushroom, Hericium erinaceum, powder resulting in enhancement of the immune response and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2011, 30, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Lin, H.C.; Mau, J.L. Antioxidant properties of several commercial mushrooms. Food Chem. 2002, 77, 229–235. [Google Scholar] [CrossRef]
- Kuwahara, S.; Morihiro, E.; Nemoto, A.; Hiramatsu, A. Synthesis and Absolute Configuration of a Cytotoxic Fatty Acid Isolated from the Mushroom, Hericium erinaceum. J. Agric. Chem. Soc. Jpn. 2008, 56, 1417–1419. [Google Scholar] [CrossRef]
- Kawagishi, H.; Shimada, A.; Shirai, R.; Okamoto, K.; Furukawa, S. Erinacines A, B and C, strong stimulators of nerve growth factor (NGF)-synthesis, from the mycelia of Hericium erinaceum. Tetrahedron Lett. 1994, 37, 7399–7402. [Google Scholar] [CrossRef]
- Wang, Z.J.; Luo, D.H.; Liang, Z.Y. Structure of polysaccharides from the fruiting body of Hericium erinaceus Pers. Carbohydr. Polym. 2004, 57, 241–247. [Google Scholar] [CrossRef]
- Takashi, M.; Tetsuya, W.; Hitoshi, I.; Chilharu, S.; Nobuo, U. Antitumor-active Polysaccharides Isolated from the Fruiting Body of Hericium erinaceum, an Edible and Medicianl Mushroom Called yamabushitake or houtou. Biosci. Biotechnol. Biochem. 1992, 34, 543–546. [Google Scholar]
- Li, K.; He, Y. Chemical studies on polysaccharides from mycelium of Hericium erinaceum (Bull. Ex Fr.) Pers. China J. Chin. Mater. Med. 1999, 24, 742–744. [Google Scholar]
- Hu, W.; Jiang, Y.; Xue, Q.; Sun, F.; Shen, T. Structural characterisation and immunomodulatory activity of a polysaccharide isolated from lotus (Nelumbo nucifera Gaertn.) root residues. J. Funct. Foods 2019, 60, 103457. [Google Scholar] [CrossRef]
- Wen, Y.; Peng, D.; Li, C.; Hu, X.; Yu, R. A new polysaccharide isolated from Morchella importuna fruiting bodies and its immunoregulatory mechanism. Int. J. Biol. Macromol. 2019, 137, 8–19. [Google Scholar] [CrossRef]
- Ghosh, S.; Khatua, S.; Acharya, K. Crude polysaccharide from a wild mushroom enhances immune response in murine macrophage cells by TLR/NF-κB pathway. J. Pharm. Pharmacol. 2019, 71, 1311–1323. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Tang, C.; Liu, Y.; Li, Q.; Wang, W.; Zhou, S.; Zhang, Z.; Cui, F.; Yang, Y. Structural elucidation and immunomodulatory activity of a β-D-glucan prepared by freeze-thawing from Hericium erinaceus. Carbohydr. Polym. 2019, 222, 114996. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, P.; Huang, T.; Yu, W.; Lin, J.; Li, P.; Chen, K. Polysaccharides from Rhizopus nigricans mycelia induced apoptosis and G2/M arrest in BGC-823 cells. Carbohydr. Polym. 2013, 97, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Terho, T.T.; Hartiala, K. Method for determination of the sulfate content of glycosaminoglycans. Anal. Biochem. 1971, 41, 471–476. [Google Scholar] [CrossRef]
- Bystricky, S.; Szu, S.C. O-acetylation affects the binding properties of the carboxyl groups on the Vi bacterial polysaccharide. Biophys. Chem. 1994, 51, 1–7. [Google Scholar] [CrossRef]
- Wu, M.; Li, W.; Zhang, Y. Structure characteristics, hypoglycemic and immuno-modulatory activities of pectic polysaccharides from Rosa setate x Rosa rugosa waste. Carbohydr. Polym. 2021, 253, 117190. [Google Scholar] [CrossRef] [PubMed]
- Tong, D.; Chen, G.; Yi, S.; Ou, S.; Zeng, X.; Hong, Y. Antioxidant and immunostimulating activities in vitro of sulfated polysaccharides isolated from Gracilaria rubra. J. Funct. Foods 2017, 28, 64–75. [Google Scholar]
- Liu, H.; Jiang, Y.; Yang, H.; Yang, B. Structure characteristics of an acidic polysaccharide purified from banana (Musa nana Lour.) pulp and its enzymatic degradation. Int. J. Biol. Macromol. 2017, 101, 299–303. [Google Scholar] [CrossRef]
- Yongshuai, J.; Lijiao, H.; Wenjie, L.; Hui, T.; Liyan, S.; Xuqiao, H.; Rongmin, Y. Structural characterization of a novel polysaccharide from pulp tissues of Litchi chinensis and its immunomodulatory activity. J. Agric. Food Chem. 2014, 62, 902–911. [Google Scholar]
- Hakomori, S. A Rapid Permethylation of Glycolipid, and Polysaccharide Catalyzed by Methylsulfinyl Carbanion in Dimethyl Sulfoxide. J. Biochem. 1964, 55, 205–208. [Google Scholar] [PubMed]
- Luo, A.X.; He, X.J.; Zhou, S.D.; Fan, Y.J.; He, T.; Chun, Z. In vitro antioxidant activities of a water-soluble polysaccharide derived from Dendrobium nobile Lindl. extracts. Int. J. Biol. Macromol. 2009, 45, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.J.; Song, W.; Yang, N.; Liu, Y.J.; Zhang, G.R. Cartilage polysaccharide induces apoptosis in human leukemia K562 cells. Cell Biol. Toxicol. 2007, 23, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Yang, J.; Ning, Z.; Zhang, X. Lentinula edodes-derived polysaccharide rejuvenates mice in terms of immune responses and gut microbiota. Food Funct. 2015, 6, 2653–2655. [Google Scholar] [CrossRef]
- Kang, S.M.; Kim, K.N.; Lee, S.H.; Ahn, G.; Cha, S.H.; Kim, A.D.; Yang, X.D.; Kang, M.C.; Jeon, Y.J. Anti-inflammatory activity of polysaccharide purified from AMG-assistant extract of Ecklonia cava in LPS-stimulated RAW 264.7 macrophages. Carbohydr. Polym. 2011, 85, 80–85. [Google Scholar] [CrossRef]
- Jingmin, Y.; Lei, Z.; Yunhe, Q.; Xian, Q.; Lin, S. Analyses of active antioxidant polysaccharides from four edible mushrooms. Int. J. Biol. Macromol. 2019, 123, 945–956. [Google Scholar]
- Hou, G.; Chen, X.; Li, J.; Ye, Z.; Zong, S.; Ye, M. Physicochemical properties, immunostimulatory activity of the Lachnum polysaccharide and polysaccharide-dipeptide conjugates. Carbohydr. Polym. 2018, 206, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.Q.; Zhang, J.S.; Tang, Q.J.; Jia, W.; Yang, Y.; Liu, Y.F.; Fan, J.M.; Pan, Y.J. Structural elucidation of a novel fucogalactan that contains 3-O-methyl rhamnose isolated from the fruiting bodies of the fungus, Hericium erinaceus. Carbohydr. Res. 2006, 341, 645–649. [Google Scholar] [CrossRef]
- Ruthes, A.C.; Smiderle, F.R.; Iacomini, M. Mushroom heteropolysaccharides: A review on their sources, structure and biological effects. Carbohydr. Polym. 2016, 136, 358–375. [Google Scholar] [CrossRef]
- Maity, P.; Pattanayak, M.; Maity, S.; Nandi, A.K.; Sen, I.K.; Behera, B.; Maiti, T.K.; Mallick, P.; Sikdar, S.R.; Islam, S.S. A partially methylated mannogalactan from hybrid mushroom pfle 1p: Purification, structural characterization, and study of immunoactivation. Carbohydr. Res. 2014, 395, 1–8. [Google Scholar] [CrossRef]
- Wang, D.; Sun, S.; Wu, W.; Yang, S.; Tan, J. Characterization of a water-soluble polysaccharide from Boletus edulis and its antitumor and immunomodulatory activities on renal cancer in mice. Carbohydr. Polym. 2014, 105, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Sun, Q.; Wu, L.; Yang, Z. Structural characterization of an immunoregulatory polysaccharide from the fruiting bodies of Lepista sordida. Carbohydr. Polym. 2012, 88, 820–824. [Google Scholar] [CrossRef]
- Li, Q.; Wu, D.; Zhou, S.; Liu, Y.F.; Li, Z.P.; Feng, J.; Yang, Y. Structure elucidation of a bioactive polysaccharide from fruiting bodies of Hericium erinaceus in different maturation stages. Carbohydr. Polym. Sci. Technol. Asp. Ind. Important Polysacch. 2016, 144, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Ohta, T.; Ido, A.; Kusano, K.; Miura, C.; Miura, T. A Novel Polysaccharide in Insects Activates the Innate Immune System in Mouse Macrophage RAW264 Cells. PLoS ONE 2014, 125, e114823. [Google Scholar] [CrossRef]
- Qin, J.; Wang, H.-y.; Zhuang, D.; Meng, F.-c.; Zhang, X.; Huang, H.; Lv, G.-p. Structural characterization and immunoregulatory activity of two polysaccharides from the rhizomes of Atractylodes lancea (Thunb.) DC. Int. J. Biol. Macromol. 2019, 136, 341–351. [Google Scholar] [CrossRef]
- Beinke, S.; Ley, S.C. Functions of NF-κB1 and NF-κB2 in immune cell biology. Biochem. J. 2004, 382, 393–396. [Google Scholar] [CrossRef]
- Li, Q.; Chen, Z.; Xu, Z.; Han, S.; Hao, H.; Wu, J.; Sun, F.; Fu, X.; Li, R.; Zheng, B.; et al. Binding of the polysaccharide from Acanthopanax giraldii Harms to toll-like receptor 4 activates macrophages. J. Ethnopharmacol. 2019, 241, 112011. [Google Scholar] [CrossRef]
- Chakraborty, N.; Banerjee, A.; Sarkar, A.; Ghosh, S.; Acharya, K. Mushroom Polysaccharides: A Potent Immune-Modulator. Biointerface Res. Appl. Chem. 2020, 11, 8915–8930. [Google Scholar]
- Brown, G.D.; Taylor, P.; Reid, D.M.; Willment, J.; Williams, D.L.; Martinez-Pomares, L.; Wong, S.Y.; Gordon, S. Dectin-1 Is A Major β-Glucan Receptor On Macrophages. J. Exp. Med. 2002, 196, 407–412. [Google Scholar] [CrossRef]
- Mocellin, S.; Rossi, C.R.; Pilati, P.; Nitti, D. Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev. 2005, 16, 35–53. [Google Scholar] [CrossRef]
- Wu, F.; Zhou, C.; Zhou, D.; Ou, S.; Liu, Z.; Huang, H. Immune-enhancing activities of chondroitin sulfate in murine macrophage RAW 264.7 cells. Carbohydr. Polym. 2018, 198, 611–619. [Google Scholar] [CrossRef] [PubMed]
Sample | Average Retention Time | Average Molecular Weight (Da) |
---|---|---|
HEP-1 | 22.05 | 2.12 × 106 |
HEP-2 | 23.26 | 9.27 × 105 |
HEP-3 | 26.37 | 1.10 × 105 |
HEP-4 | 28.87 | 1.99 × 104 |
HEP-5 | 29.75 | 1.09 × 104 |
Methylation Sugar | Linkages | Molar Ratios | ||||
---|---|---|---|---|---|---|
HEP-1 | HEP-2 | HEP-3 | HEP-4 | HEP-5 | ||
2,3,4,6-Me4-Glc | T→ | - | 1.09 | 0.23 | 0.06 | 0.04 |
2,3,6-Me3-Glc | 1→4 | - | - | - | - | 0.24 |
2,3-Me2-Glc | 1→4,6 | - | - | - | - | 0.09 |
2,3,4-Me3-Glc | 1→6 | 0.85 | - | - | 0.04 | - |
2,4,6-Me3-Glc | 1→3 | 2.07 | 2.99 | 0.96 | 0.37 | - |
2,4-Me2-Glc | 1→3,6 | 0.28 | 0.21 | 0.11 | 0.10 | - |
2,3,4-Me3-Gal | 1→6 | 6.18 | 5.37 | 1.99 | - | - |
3,4-Me2-Gal | 1→2,6 | 0.73 | 0.61 | 0.21 | - | - |
2,3,4-Me3-Fuc | T→ | 1.33 | - | - | - | - |
3,4,6-Me3-Fru | 1→2 | - | 0.98 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Li, J.; Hong, Q.; Zhang, X.; Liu, Z.; Zhang, T. Polysaccharides from Hericium erinaceus Fruiting Bodies: Structural Characterization, Immunomodulatory Activity and Mechanism. Nutrients 2022, 14, 3721. https://doi.org/10.3390/nu14183721
Yang Y, Li J, Hong Q, Zhang X, Liu Z, Zhang T. Polysaccharides from Hericium erinaceus Fruiting Bodies: Structural Characterization, Immunomodulatory Activity and Mechanism. Nutrients. 2022; 14(18):3721. https://doi.org/10.3390/nu14183721
Chicago/Turabian StyleYang, Yang, Jihong Li, Qing Hong, Xuehong Zhang, Zhenmin Liu, and Tiehua Zhang. 2022. "Polysaccharides from Hericium erinaceus Fruiting Bodies: Structural Characterization, Immunomodulatory Activity and Mechanism" Nutrients 14, no. 18: 3721. https://doi.org/10.3390/nu14183721
APA StyleYang, Y., Li, J., Hong, Q., Zhang, X., Liu, Z., & Zhang, T. (2022). Polysaccharides from Hericium erinaceus Fruiting Bodies: Structural Characterization, Immunomodulatory Activity and Mechanism. Nutrients, 14(18), 3721. https://doi.org/10.3390/nu14183721