Scrutinizing the Nutritional Aspects of Asian Mushrooms, Its Commercialization and Scope for Value-Added Products
Abstract
:1. Introduction
2. Comprehensive Listing of Edible Mushrooms
3. An Overview of the Nutritional Value of Mushrooms
4. Commercialization of Mushroom and Mushroom Products
5. Current Knowledge, Future Trends and Recommendations
6. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Flegg, P.B.; Maw, G.A. Mushrooms and their possible contribution to world protein needs. Mushroom J. 1976, 48, 396–397. [Google Scholar]
- Kalac, P. Chemical composition and nutritional value of european species of wild growing mushrooms: A review. Food Chem. 2009, 113, 9–16. [Google Scholar] [CrossRef]
- Leskosek-Cukalovic, I.; Despotovic, S.; Lakic, N.; Niksic, M.; Nedovic, V.; Tesevic, V. Ganoderma lucidum—medical mushroom as a raw material for beer with enhanced functional properties. Food Res. Int. 2010, 43, 2262–2269. [Google Scholar] [CrossRef]
- Agrahar-Murugkar, D.; Subbulakshmi, G. Nutritional value of edible wild mushrooms collected from the khasi hills of meghalaya. Food Chem. 2005, 89, 599–603. [Google Scholar] [CrossRef]
- Diez, V.A.; Alvarez, A. Compositional and nutritional studies on two wild edible mushrooms from northwest spain. Food Chem. 2001, 75, 417–422. [Google Scholar] [CrossRef]
- Heleno, S.A.; Barros, L.; Sousa, M.J.; Martins, A.; Ferreira, I.C.F.R. Study and characterization of selected nutrients in wild mushrooms from portugal by gas chromatography and high performance liquid chromatography. Microchem. J. 2009, 93, 195–199. [Google Scholar] [CrossRef]
- Longvah, T.; Deosthale, Y.G. Compositional and nutritional studies on edible wild mushroom from northeast india. Food Chem. 1998, 63, 331–334. [Google Scholar] [CrossRef]
- Bano, Z.; Rajarathnam, S. Pleurotus mushrooms. 2. Chemical-composition, nutritional-value, post-harvest physiology, preservation, and role as human food. Crit. Rev. Food Sci. 1988, 27, 87–158. [Google Scholar] [CrossRef]
- Barros, L.; Cruz, T.; Baptista, P.; Estevinho, L.M.; Ferreira, I.C.F.R. Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem. Toxicol. 2008, 46, 2742–2747. [Google Scholar] [CrossRef]
- Manzi, P.; Gambelli, L.; Marconi, S.; Vivanti, V.; Pizzoferrato, L. Nutrients in edible mushrooms: An inter-species comparative study. Food Chem. 1999, 65, 477–482. [Google Scholar] [CrossRef]
- Mattila, P.; Konko, K.; Eurola, M.; Pihlava, J.M.; Astola, J.; Vahteristo, L.; Hietaniemi, V.; Kumpulainen, J.; Valtonen, M.; Piironen, V. Contents of vitamins, mineral elements, sand some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem. 2001, 49, 2343–2348. [Google Scholar] [CrossRef]
- Lin, B.; Li, S. Herbal Medicine: Biomolecular and Clinical Aspects; Iris, F.F., Benzie, S.W.-G., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Oxfordshire, UK, 2011. [Google Scholar]
- Loria-Kohen, V.; Lourenço-Nogueira, T.; Espinosa-Salinas, I.; Marín, F.R.; Soler-Rivas, C.; de Molina, A.R. Nutritional and functional properties of edible mushrooms: A food with promising health claims. J. Pharm. Nutr. Sci. 2014, 4, 187–198. [Google Scholar] [CrossRef]
- Van Griensven, L.J.L.D. Culinary-medicinal mushrooms: Must action be taken? Int. J. Med. Mushrooms 2009, 11, 281–286. [Google Scholar] [CrossRef]
- Boa, E.R. Wild edible fungi: A global overview of their use and importance to people. In Edible Mushrooms: An Alternative Food Item, Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7), Arcachon, France, 4–7 October 2011; FAO: Rome, Italy, 2004. [Google Scholar]
- Guillamon, E.; Garcia-Lafuente, A.; Lozano, M.; D’Arrigo, M.; Rostagno, M.A.; Villares, A.; Martinez, J.A. Edible mushrooms: Role in the prevention of cardiovascular diseases. Fitoterapia 2010, 81, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Cheung, L.M.; Cheung, P.C.K.; Ooi, V.E.C. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem. 2003, 81, 249–255. [Google Scholar] [CrossRef]
- Kalaras, M.D.; Richie, J.P.; Calcagnotto, A.; Beelman, R.B. Mushrooms: A rich source of the antioxidants ergothioneine and glutathione. Food Chem. 2017, 233, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Lallawmsanga; Leo, V.V.; Passari, A.K.; Muniraj, I.K.; Uthandi, S.; Hashem, A.; Abd Allah, E.F.; Alqarawi, A.A.; Singh, B.P. Elevated levels of laccase synthesis by pleurotus pulmonarius bpsm10 and its potential as a dye decolorizing agent. Saudi. J. Biol. Sci. 2019, 26, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Leo, V.V.; Passari, A.K.; Joshi, J.B.; Mishra, V.K.; Uthandi, S.; Ramesh, N.; Gupta, V.K.; Saikia, R.; Sonawane, V.C.; Singh, B.P. A novel triculture system (cc3) for simultaneous enzyme production and hydrolysis of common grasses through submerged fermentation. Front. Microbiol. 2016, 7, 447. [Google Scholar] [CrossRef]
- Mishra, V.K.; Passari, A.K.; Leo, V.V.; Singh, B.P. Molecular diversity and detection of endophytic fungi based on their antimicrobial biosynthetic genes. In Molecular Markers in Mycology. Fungal Biology; Singh, B.P., Gupta, V.K., Eds.; Springer: Cham, Switzerland, 2017; pp. 1–35. [Google Scholar]
- Valverde, M.E.; Hernandez-Perez, T.; Paredes-Lopez, O. Edible mushrooms: Improving human health and promoting quality life. Int. J. Microbiol. 2015, 2015, 376387. [Google Scholar] [CrossRef]
- Mujić, Z.; Zeković, Ž.; Lepojević, S.; Vidović, J.; Živković, J. Antioxidant properties of selected edible mushroom species. J. Cent. Eur. Agric. 2010, 4, 387–392. [Google Scholar]
- Zekovic, D.B.; Kwiatkowski, S.; Vrvic, M.M.; Jakovljevic, D.; Moran, C.A. Natural and modified (1→3)-beta-d-glucans in health promotion and disease alleviation. Crit. Rev. Biotechnol. 2005, 25, 205–230. [Google Scholar] [CrossRef]
- Khan, M.A.; Tania, M.; Liu, R.; Rahman, M.M. Hericium erinaceus: An edible mushroom with medicinal values. J. Complementary Integr. Med. 2013, 10, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Rasmy, G.; Botros, W.A.; Kabeil, S.; Daba, A. Preparation of glucan from lentinula edodes edible mushroom and elucidation of its medicinal value. Aust. J. Basic Appl. Sci. 2010, 4, 5717–5726. [Google Scholar]
- Ishibashi, K.; Miura, N.N.; Adachi, Y.; Ohno, N.; Yadomae, T. Relationship between solubility of grifolan, a fungal 1,3-beta-d-glucan, and production of tumor necrosis factor by macrophages in vitro. Biosci. Biotechnol. Biochem. 2001, 65, 1993–2000. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, K.; Muta, T.; Yamazaki, S.; Takeshige, K. Activation of macrophages by linear (1→3)-beta-d-glucans—Implications for the recognition of fungi by innate immunity. J. Biol. Chem. 2002, 277, 36825–36831. [Google Scholar] [CrossRef] [PubMed]
- Lau, C.C.; Abdullah, N.; Shuib, A.S.; Aminudin, N. Proteomic analysis of antihypertensive proteins in edible mushrooms. J. Agric. Food Chem. 2012, 60, 12341–12348. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.; Chopra, A.; Lavekar, G.; Padhi, M.; Srikanth, N.; Ota, S.; Jain, S. Effect of oyster mushroom on glycemia, lipid profile and quality of life in type 2 diabetic patients. Aust. J. Med. Herbal. 2010, 22, 50–54. [Google Scholar]
- Li, H.P.; Zhang, M.M.; Ma, G.J. Hypolipidemic effect of the polysaccharide from pholiota nameko. Nutrition 2010, 26, 556–562. [Google Scholar] [CrossRef]
- Diaz, J.H. Amatoxin-containing mushroom poisonings: Species, toxidromes, treatments, and outcomes. Wilderness Environ. Med. 2018, 29, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.; Costa, V.M.; Carvalho, A.; Baptista, P.; de Pinho, P.G.; Bastos, M.D.; Carvalho, F. Amanita phalloides poisoning: Mechanisms of toxicity and treatment. Food Chem. Toxicol. 2015, 86, 41–55. [Google Scholar] [CrossRef]
- Horowitz, K.M.; Kong, E.L.; Horowitz, B.Z. Gyromitra mushroom toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Saviuc, P.; Harry, P.; Pulce, C.; Garnier, R.; Cochet, A. Can morels (Morchella sp.) induce a toxic neurological syndrome? Clin. Toxicol. 2010, 48, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Trakulsrichai, S.; Sriapha, C.; Tongpoo, A.; Udomsubpayakul, U.; Wongvisavakorn, S.; Srisuma, S.; Wananukul, W. Clinical characteristics and outcome of toxicity from amanita mushroom poisoning. Int. J. Gen. Med. 2017, 10, 395–400. [Google Scholar] [CrossRef]
- Han, N.S.; Ahmad, W.A.N.W.; Ishak, W.R.W. Quality characteristics of pleurotus sajor-caju powder: Study on nutritional compositions, functional properties and storage stability. Sains Malays. 2016, 45, 1617–1623. [Google Scholar]
- Kayode, R.; Olakulehin, T.; Adedeji, B.; Ahmed, O.; Aliyu, T.; Badmos, A. Evaluation of amino acid and fatty acid profiles of commercially cultivated oyster mushroom (pleurotus sajor-caju) grown on gmelina wood waste. Niger. Food J. 2015, 33, 18–21. [Google Scholar] [CrossRef]
- Samsudin, N.I.P.; Abdullah, N. Edible mushrooms from malaysia; a literature review on their nutritional and medicinal properties. Int. Food Res. J. 2019, 26, 11–31. [Google Scholar]
- Aremu, M.O.; Jr Basu, S.K.; Gyar, S.D.; Goyal, A.; Bhowmik, P.K.; Datta Banik, S. Proximate composition and functional properties of mushroom flours from Ganoderma spp., omphalotus olearius (dc.) sing. And hebeloma mesophaeum (pers.) quel. Used in nasarawa state, nigeria. Malays. J. Nutr. 2009, 15, 233–241. [Google Scholar] [PubMed]
- Chang, S.; Miles, P. Recent trends in world production of cultivated edible mushrooms. Mushroom J. 1991, 504, 15–18. [Google Scholar]
- Farzana, T.; Mohajan, S. Effect of incorporation of soy flour to wheat flour on nutritional and sensory quality of biscuits fortified with mushroom. Food Sci. Nutr. 2015, 3, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.M.; Zhang, J.; Wu, L.H.; Zhao, Y.L.; Li, T.; Li, J.Q.; Wang, Y.Z.; Liu, H.G. A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from china. Food Chem. 2014, 151, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.Y.; Tsai, H.L.; Mau, J.L. Non-volatile taste components of agaricus blazei, agrocybe cylindracea and boletus edulis. Food Chem. 2008, 107, 977–983. [Google Scholar] [CrossRef]
- Naeem, M.Y.; OZGENS; Sumayya, R. Emerging role of edible mushrooms in food industry and its nutritional and medicinal consequences. Eur. Food Res. Technol. 2020, 4, 6–23. [Google Scholar]
- Riaz, S.; Ahmad, A.; Farooq, R.; Ahmed, M.; Shaheryar, M.; Hussain, M. Edible Mushrooms, a Sustainable Source of Nutrition, Biochemically Active Compounds and Its Effect on Human Health. In Functional Food; Savitskaya, A., Ed.; IntechOpen: London, UK, 2022; pp. 1–29. [Google Scholar]
- Elleuch, M.; Bedigian, D.; Roiseux, O.; Besbes, S.; Blecker, C.; Attia, H. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chem. 2011, 124, 411–421. [Google Scholar] [CrossRef]
- Oluwafemi, G.; Seidu, K.; Fagbemi, T. Chemical composition, functional properties and protein fractionation of edible oyster mushroom (pleurotus ostreatus). Annals. Food Sci. Technol. 2016, 17, 218–223. [Google Scholar]
- Alexopoulos, C.J.; Mims, C.W.; Blackwell, M. Introductory Mycology; John Wiley and Sons: New York, NY, USA, 1996. [Google Scholar]
- Kalac, P. A review of chemical composition and nutritional value of wild-growing and cultivated mushrooms. J. Sci. Food Agric. 2013, 93, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Kian Shin, C.; Fook Yee, C.; Jau Shya, L.; Atong, M. Nutritional properties of some edible wild mushrooms in sabah. J. Appl. Sci. 2007, 7, 2216–2221. [Google Scholar] [CrossRef]
- Chye, F.Y.; Wong, J.Y.; Lee, J.S. Nutritional quality and antioxidant activity of selected edible wild mushrooms. Food Sci. Technol. Int. 2008, 14, 375–384. [Google Scholar] [CrossRef]
- Keegan, R.J.; Lu, Z.; Bogusz, J.M.; Williams, J.E.; Holick, M.F. Photobiology of vitamin d in mushrooms and its bioavailability in humans. Dermatoendocrinology 2013, 5, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Tapwal, A.; Pandey, S.; Borah, R.K.; Borah, D.; Borgohain, J. Macro-fungal diversity and nutrient content of some edible mushrooms of nagaland, india. Nusant. Biosci. 2013, 5, 1–7. [Google Scholar] [CrossRef]
- Rzymski, P.; Mleczek, M.; Siwulski, M.; Jasinska, A.; Budka, A.; Niedzielski, P.; Kalac, P.; Gasecka, M.; Budzynska, S. Multielemental analysis of fruit bodies of three cultivated commercial agaricus species. J. Food Compos. Anal. 2017, 59, 170–178. [Google Scholar] [CrossRef]
- Petrovic, J.; Glamoclija, J.; Stojkovic, D.; Ciric, A.; Barros, L.; Ferreira, I.C.F.R.; Sokovic, M. Nutritional value, chemical composition, antioxidant activity and enrichment of cream cheese with chestnut mushroom agrocybe aegerita (brig.) sing. J. Food Sci. Technol. Mysore 2015, 52, 6711–6718. [Google Scholar] [CrossRef] [PubMed]
- Landi, N.; Pacifico, S.; Ragucci, S.; Di Giuseppe, A.M.A.; Iannuzzi, F.; Zarrelli, A.; Piccolella, S.; Di Maro, A. Pioppino mushroom in southern italy: An undervalued source of nutrients and bioactive compounds. J. Sci. Food Agric. 2017, 97, 5388–5397. [Google Scholar] [CrossRef]
- Reis, F.S.; Barros, L.; Martins, A.; Ferreira, I.C.F.R. Chemical composition and nutritional value of the most widely appreciated cultivated mushrooms: An inter-species comparative study. Food Chem. Toxicol. 2012, 50, 191–197. [Google Scholar] [CrossRef]
- Bernas, E.; Jaworska, G. Vitamins profile as an indicator of the quality of frozen agaricus bisporus mushrooms. J. Food Compos. Anal. 2016, 49, 1–8. [Google Scholar] [CrossRef]
- Pirkani, Z.A.; Asrar, M.; Leghari, S.K.; Dashti, M.A.; Manzoor, M. Nutritional and mineral content of three wild agaricus species of district mastung balochistan, pakistan. FUUAST J. Biol. 2019, 9, 227–231. [Google Scholar]
- Wang, J.B.; Li, W.; Li, Z.P.; Wu, W.H.; Tang, X.M. Analysis and evaluation of the characteristic taste components in portobello mushroom. J. Food Sci. 2018, 83, 1542–1551. [Google Scholar] [CrossRef] [PubMed]
- Jacinto-Azevedo, B.; Valderrama, N.; Henriquez, K.; Aranda, M.; Aqueveque, P. Nutritional value and biological properties of chilean wild and commercial edible mushrooms. Food Chem. 2021, 356, 129651. [Google Scholar] [CrossRef]
- Saini, R.K.; Rauf, A.; Khalil, A.A.; Ko, E.Y.; Keum, Y.S.; Anwar, S.; Alamri, A.; Rengasamy, K.R.R. Edible mushrooms show significant differences in sterols and fatty acid compositions. S. Afr. J. Bot. 2021, 141, 344–356. [Google Scholar] [CrossRef]
- Aboubakr, A.; Zeitoun, A.; Abdalla, A.E. Chemical composition and bioactive compounds of wild edible mushroom (agaricus bisporus) from al-jabal alakhdar in libya. J. Adv. Agric. Res. 2018, 23, 444–465. [Google Scholar]
- Zheng, H.Q.; Guo, Z.J.; Cai, Z.X.; Lu, Y.P.; Liao, J.H.; Chen, M.Y. Analysis and evaluation of nutrient components in agaricus bisporus wild germplasm resource. Biotechnol. Bull. 2021, 37, 109–118. [Google Scholar]
- Turfan, N.; Ayan, S.; Akın, Ş.S.; Akın, E. Nutritional and antioxidant variability of some wild and cultivated edible mushrooms from kastamonu rural areas. Turk. J. Agric. Food Sci. Technol. 2019, 7, 11–16. [Google Scholar] [CrossRef]
- Haro, A.; Trescastro, A.; Lara, L.; Fernandez-Figares, I.; Nieto, R.; Seiquer, I. Mineral elements content of wild growing edible mushrooms from the southeast of spain. J. Food Compos. Anal. 2020, 91, 103504. [Google Scholar] [CrossRef]
- Keleş, A.; Gençcelep, H. Determination of elemental composition of some wild growing edible mushrooms. Mantar Derg. 2020, 11, 129–137. [Google Scholar]
- Bengü, A.S.; Hakan, I.; Türkekul, I.; Yilmaz, H.C. Some minerals and fatty acid compositions of five different wild edible mushrooms species collected in tokat and yozgat provinces in turkey. Anatol. J. Bot. 2021, 5, 58–64. [Google Scholar] [CrossRef]
- Erbiai, E.; da Silva, L.P.; Saidi, R.; Lamrani, Z.; da Silva, J.C.G.E.; Maouni, A. Chemical composition, bioactive compounds, and antioxidant activity of two wild edible mushrooms armillaria mellea and macrolepiota procera from two countries (morocco and portugal). Biomolecules 2021, 11, 575. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Shi, S.; Xie, T.; Zhang, H.; Zhao, X.; Jing, R.W. Evaluation of auricularia auricula-judae nutrient quality of different origins in heilongjiang province based on principal component analysis. J. Agric. Sci. Technol. 2019, 21, 94–100. [Google Scholar]
- Oli, A.N.; Edeh, P.A.; Al-Mosawi, R.M.; Mbachu, N.A.; Al-Dahmoshi, H.O.M.; Al-Khafaji, N.S.K.; Ekuma, U.O.; Okezie, U.M.; Saki, M. Evaluation of the phytoconstituents of auricularia auricula-judae mushroom and antimicrobial activity of its protein extract. Eur. J. Integr. Med. 2020, 38, 101176. [Google Scholar] [CrossRef] [PubMed]
- Mleczek, M.; Budka, A.; Kalac, P.; Siwulski, M.; Niedzielski, P. Family and species as determinants modulating mineral composition of selected wild-growing mushroom species. Environ. Sci. Pollut. Res. 2021, 28, 389–404. [Google Scholar] [CrossRef]
- Pereira, E.; Barros, L.; Martins, A.; Ferreira, I.C.F.R. Towards chemical and nutritional inventory of portuguese wild edible mushrooms in different habitats. Food Chem. 2012, 130, 394–403. [Google Scholar] [CrossRef]
- Grangeia, C.; Heleno, S.A.; Barros, L.; Martins, A. Ferreira ICFR. Effects of trophism on nutritional and nutraceutical potential of wild edible mushrooms. Food Res. Int. 2011, 44, 1029–1035. [Google Scholar] [CrossRef]
- Cohen, N.; Cohen, J.; Asatiani, M.D.; Varshney, V.K.; Yu, H.T.; Yang, Y.C.; Li, Y.H.; Mau, J.L.; Wasser, S.P. Chemical composition and nutritional and medicinal value of fruit bodies and submerged cultured mycelia of culinary-medicinal higher basidiomycetes mushrooms. Int. J. Med. Mushrooms 2014, 16, 273–291. [Google Scholar] [CrossRef] [PubMed]
- Stilinovic, N.; Capo, I.; Vukmirovic, S.; Raskovic, A.; Tomas, A.; Popovic, M.; Sabo, A. Chemical composition, nutritional profile and in vivo antioxidant properties of the cultivated mushroom coprinus comatus. R. Soc. Open Sci. 2020, 7, 200900. [Google Scholar] [CrossRef] [PubMed]
- Li, F.L.; Li, L.; Jiang, X.K.; Liang, Y.; Liu, H.W. Analysis of seven mineral elements in cultivated fruiting bodies of cordyceps militaris. E3S Web Conf. 2020, 185, 04019. [Google Scholar]
- Chen, C.; Han, Y.L.; Li, S.Y.; Wang, R.R.; Tao, C. Nutritional, antioxidant, and quality characteristics of novel cookies enriched with mushroom (cordyceps militaris) flour. CyTA J. Food 2021, 19, 137–145. [Google Scholar] [CrossRef]
- Diallo, I.; Morel, S.; Vitou, M.; Michel, A.; Rapior, S.; Traoré, L.; Poucheret, P.; Fons, F. Ergosterol and amino acids contents of culinary-medicinal shiitake from various culture conditions. Multidiscip. Digit. Publ. Inst. Proc. 2020, 70, 78. [Google Scholar]
- Choi, J.Y.; Kim, M.-S. Comparison of the physicochemical components of lentinula edodes cultivars cultivated in sawdust medium. J. Mushroom 2021, 19, 184–190. [Google Scholar]
- Ekute, B. Nutritional profile of two nigerian edible mushrooms: Pleurotus ostreatus and pleurotus pulmonarius. J. Appl. Sci. Environ. Manag. 2018, 22, 1745–1747. [Google Scholar] [CrossRef]
- Yang, R.L.; Li, Q.; Hu, Q.P. Physicochemical properties, microstructures, nutritional components, and free amino acids of pleurotus eryngii as affected by different drying methods. Sci. Rep. 2020, 10, 121. [Google Scholar] [CrossRef] [Green Version]
- Rajesh, K.; Ashwani, T.; Bisht, N.; Shailesh, P.; Raja, R. Nutritive 2019.value and cultivation of pleurotus pulmonarius an edible mushroom from nagaland, India. Indian For. 2015, 141, 961–965. [Google Scholar]
- Kozarski, M.; Klaus, A.; Jakovljevic, D.; Todorovic, N.; Vunduk, J.; Petrovic, P.; Niksic, M.; Vrvic, M.M.; van Griensven, L. Antioxidants of edible mushrooms. Molecules 2015, 20, 19489–19525. [Google Scholar] [CrossRef] [PubMed]
- Rathore, H.; Prasad, S.; Sharma, S. Mushroom nutraceuticals for improved nutrition and better human health: A review. Pharmanutrition 2017, 5, 35–46. [Google Scholar] [CrossRef]
- Sanchez, C. Reactive oxygen species and antioxidant properties from mushrooms. Synth. Syst. Biotechnol. 2017, 2, 13–22. [Google Scholar] [CrossRef]
- Ruiz-Rodriguez, A.; Santoyo, S.; Soler-Rivas, C. Antioxidant properties of edible mushrooms. Funct. Plant Sci. Biotechnol. 2009, 3, 92–102. [Google Scholar]
- Keleş, A.; Koca, I.; Gençcelep, H. Antioxidant properties of wild edible mushrooms. J. Food Process. Technol. 2011, 2, 1–6. [Google Scholar]
- Heleno, S.A.; Barros, L.; Martins, A.; Queiroz, M.J.R.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Phenolic, polysaccharidic, and lipidic fractions of mushrooms from northeastern portugal: Chemical compounds with antioxidant properties. J. Agric. Food Chem. 2012, 60, 4634–4640. [Google Scholar] [CrossRef]
- Amin, M.Z.M.; Harun, A.; Wahab, M.A.M.A. Status and potential of mushroom industry in malaysia. Econ. Technol. Manag. Rev. 2014, 9, 103–111. [Google Scholar]
- Akbarirad, H.; Kazemeini, S.M.; Shariaty, M.A. Deterioration and some of applied preservation techniques for common mushrooms (agaricus bisporus, followed by lentinus edodes, Pleurotus spp.). J. Microbiol. Biotechnol. Food Sci. 2021, 2021, 2398–2402. [Google Scholar]
- Alam, N.; Yoon, K.N.; Lee, J.S.; Cho, H.J.; Shim, M.J.; Lee, T.S. Dietary effect of pleurotus eryngii on biochemical function and histology in hypercholesterolemic rats. Saudi J. Biol. Sci. 2011, 18, 403–409. [Google Scholar] [CrossRef]
- Cardwell, G.; Bornman, J.F.; James, A.P.; Black, L.J. A review of mushrooms as a potential source of dietary vitamin d. Nutrients 2018, 10, 1498. [Google Scholar] [CrossRef]
- Dai, X.S.; Stanilka, J.M.; Rowe, C.A.; Esteves, E.A.; Nieves, C.; Spaiser, S.J.; Christman, M.C.; Langkamp-Henken, B.; Percival, S.S. Consuming lentinula edodes (shiitake) mushrooms daily improves human immunity: A randomized dietary intervention in healthy young adults. J. Am. Coll. Nutr. 2015, 34, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Monira, S.; Haque, A.; Muhit, A.; Sarker, N.; Alam, A.; Rahman, A.; Khondkar, P. Antimicrobial, antioxidant and cytotoxic properties of hypsizygus tessulatus cultivated in bangladesh. Res. J. Med. Plants 2012, 6, 300–308. [Google Scholar]
- Tang, C.; Hoo, P.C.X.; Tan, L.T.H.; Pusparajah, P.; Khan, T.M.; Lee, L.H.; Goh, B.H.; Chan, K.G. Golden needle mushroom: A culinary medicine with evidenced-based biological activities and health promoting properties. Front. Pharmacol. 2016, 7, 474. [Google Scholar] [CrossRef]
- Jiao, G.L.; Yu, G.L.; Zhang, J.Z.; Ewart, H.S. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar. Drugs 2011, 9, 196–223. [Google Scholar] [CrossRef]
- Süfer, Ö.; Bozok, F.; Demir, H. Usage of edible mushrooms in various food products. Turk. J. Food Agric. Sci. 2016, 4, 144–149. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.E.; Rowan, N.J.; Sullivan, R. Medicinal Mushrooms: Their Therapeutic Properties and Current Medical Usage with Special Emphasis on Cancer Treatments; University of Strathclyde & Cancer Research: London, UK, 2002. [Google Scholar]
- Chang, S.T.; Buswell, J.A. 1996. Mushroom nutriceuticals. World J. Microbiol. Biotechnol. 1991, 12, 473–476. [Google Scholar] [CrossRef]
- Chang, S.-T.; Miles, P.G. Mushrooms: Cultivation, Nutritional Value, Medicinal Effect, and Environmental Impact; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Wyness, L.; Weichselbaum, E.; O’connor, A.; Williams, E.; Benelam, B.; Riley, H.; Stanner, S. Red meat in the diet: An update. Nutr. Bull. 2011, 36, 34–77. [Google Scholar] [CrossRef]
- Aishah, M.; Wan Rosli, W. The effect of addition of oyster mushroom (pleurotus sajor-caju) on nutrient composition and sensory acceptation of selected wheat-and rice-based products. Int. Food Res. J. 2013, 20, 183–188. [Google Scholar]
- Farooq, M.; Rakha, A.; Hassan, J.U.; Fazal, R.; Saleem, M.; Saboor, A.; Ahmed, S.; Ilyas, N.; Bakhtiar, M.; Khan, S. Physicochemical and nutritional characterization of mushroom powder enriched muffins. J. Innov. Sci. 2021, 7, 110–120. [Google Scholar] [CrossRef]
- Gadallah, M.G.; Ashoush, I.S. Value addition on nutritional and sensory properties of biscuit using desert truffle (terfezia claveryi) powder. Food Nutr. Sci. 2016, 7, 1171–1181. [Google Scholar]
- Wahyono, A.; Bakri, A. In physicochemical and sensorial characteristics of noodle enriched with oyster mushroom (Pleorotus ostreatus) powder. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Coelho, M.S.; Salas-Mellado, M.D.M. Effects of substituting chia (Salvia hispanica L.) flour or seeds for wheat flour on the quality of the bread. LWT Food Sci. Technol. 2015, 60, 729–736. [Google Scholar] [CrossRef]
- Ishara, J.R.; Sila, D.N.; Kenji, G.M.; Buzera, A.K. Nutritional and functional properties of mushroom (Agaricus bisporus & Pleurotus ostreatus) and their blends with maize flour. J. Food Sci. Technol. 2018, 6, 3–41. [Google Scholar]
- Chun, S.; Chambers, E.; Chambers, D. Perception of pork patties with shiitake (Lentinus edode P.) mushroom powder and sodium tripolyphosphate as measured by korean and united states consumers. J. Sens. Stud. 2005, 20, 156–166. [Google Scholar] [CrossRef]
- Shang, X.; Enkhtaivan, G.; Chun, S.; Gopal, J.; Keum, Y.S. Transubstantiating commercial mushroom market with ultrasonically ultrasized mushroom powders showcasing higher bioactivity. Int. J. Biol. Macromol. 2016, 92, 1082–1094. [Google Scholar] [CrossRef] [PubMed]
- Hourant, P. General properties of the alkaline phosphates:-major food and technical applications. Phosphorus Res. Bull. 2004, 15, 85–94. [Google Scholar] [CrossRef]
- Waltz, E. Gene-edited crispr mushroom escapes us regulation. Nature 2016, 532, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Edible Mushrooms | Common Name | Proteins (g/100 g DW) | AA (g/100 g DW) | Ash (g/100 g DW) | CH (g/100 g DW) | Fats (g/100 g DW) | Fibers (g/100 g DW) | Sugars (g/100 g DW) | Vitamins (Units/100 g DW) | Minerals (mg/Kg DW) | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
Agaricus arvensis | Horse mushroom | 32.87 | ND | 0.18 | 32.91 | ND | 0.14 | ND | ND | ND | [54] |
Agaricus arvensis | Horse mushroom | ND | ND | ND | ND | ND | ND | ND | ND | Ca (1090–1280), K (43,432), Mg (890–1070), Na (230 N-83), P (13,419), B (3.35), Cu (45–187), Fe (740–1056), Mn (33–87.5) | [55] |
Agrocybe aegerita | Pioppino mushroom | 6.68 | 6.69 | 84.5 | 2.13 | 13.42 | ND | ND | [56] | ||
Agrocybe aegerita | Pioppino mushroom | 2.05 † | 1.42 † | 087 † | 6.07 † | 0.51 † | ND | Glucose (0.0203) †, fructose (0.0114) † | Ascorbic acid (0.0082) † | NH4 (0.196), Ca (0.098), Mg (0.563) †, K (3.359) †, Na (0.004) † g/kg | [57] |
Agaricus bisporus | Brown button mushroom | 1.29 † | 0.95 † | 5.98 † | 0.14 † | 4.27 † | ND | ND | [58] | ||
Agaricus bisporus | Button mushroom | 26.7% | ND | 11.5% | 57.2% | 4.6% | ND | ND | B1 (1.24), B2 (5.06), B3 (362), ascorbic acid (80) mg/100 g DM. Pyridoxine (3), pyridoxal (12), pyridoxamine (937) µg | ND | [59] |
Agaricus bisporus | Wild/button mushroom | ND | ND | ND | ND | ND | ND | ND | ND | Ca (860–1400), K (38,105–40,371), Mg (1099–1400), Na (545–957), P (10,430–12,475), B (3.7–19.4), Cu (3–65), Fe (44–190), Mn (5.7–28.8) mg/kg | [55] |
Agaricus bisporus | Wild button mushroom | 29.5 | ND | 10.0% | 2.1% | 0.1% | 1.23% | ND | ND | K (15.5), Ca (7.5), Mg (6.3), Zn (1.5), Mn (0.4), Ni (0.2)% | [60] |
Agaricus bisporus | Brown button mushroom | 33.61–53.7 | 0.028–0.051 | 7.01–13.26 | ND | 0.85–1.74 | 4.99–8.41 | Fructose (0.33–3.58), glucose (2.17–6.59), mannose (0.02–0.1) | ND | ND | [61] |
Agaricus bisporus | Brown button mushroom | 17.25 | ND | 13.84 | 66.33 | 2.58 | 11.58 | ND | ND | ND | [62] |
Agaricus bisporus | White button mushroom | ND | ND | ND | ND | 1515.7 | ND | ND | ND | ND | [63] |
Agaricus bisporus | White button mushroom | 1.23 † | ND | 0.85 † | 6.46 † | 0.19 † | 5.79 † | ND | ND | [58] | |
Agaricus bisporus | Wild button mushroom | 30.44 | Essential amino acids (34.64) and non essential amino acids (31.91) | 9.25 | ND | ND | ND | ND | Ascorbic acid (920 µg) | K (27,940), Ca (2505), Na (1988), Mg (1450), Fe (554), P (452), Zn (139), Cu (68), Mn (4.32), Se (0.62) mg/kg) | [64] |
Agaricus bisporus | White button mushroom | 18.53 | ND | 12.68 | 66.75 | 2.04 | 10.28 | ND | ND | ND | [62] |
Agaricus bisporus | Button mushroom | 29.5–37.6 | 4.51–8.89 | ND | ND | 0.0056–0.0174 | ND | ND | ND | ND | [65] |
Agaricus bitorquis | Pavement mushroom | 23.2 | ND | 8.56% | 1.51% | 0.08% | 1.33% | ND | ND | K (15.5), Ca (5.9), Mg (7.3), Zn (1.8), Mn (0.5), Cr (0.01), Cd (0.01), Ni (0.4)% | [60] |
Agaricus campestris | Field mushroom | 25.7 | ND | 11.4% | 1.0% | 0.04% | 1.45% | ND | ND | K (16.3), Ca (6.0), Mg (5.5), Zn (1.2), Mn (0.6), Cr (0.05), Ni (0.3)% | [60] |
Agaricus campestris | Field mushroom | 0.0506–0.0555 | Proline (147.1–149.61 µmol/g) | ND | 5.062–7.489 | ND | ND | Glucose (20.25–29.96), sucrose (24.55–34.56) | ND | ND | [66] |
Agaricus campestris | Field mushroom | 16.7 | K (44.4), P (1.46), Ca (380), Na (114), Fe (752), Cu (452) mg/kg | [67] | |||||||
Agaricus langei | The great wood mushroom | 35.14 | ND | 14.1 | 34.83 | ND | 3.28 | ND | ND | ND | [54] |
Agaricus langei | The great wood mushroom | K (5386), Mg (1273), Ca (238), Mn (13.98), Fe (104.18), Zn (47.19), Cu (46.85) mg/kg | [68] | ||||||||
Agrocybe cylindracea | Chestnut mushroom | 19.65 | ND | 8.75 | 70.95 | 1.05 | 7.94 | ND | ND | ND | [62] |
Amanita vaginata | The grisette | ND | ND | ND | ND | ND | ND | ND | ND | Cu (60.25), Mn (69.9), Zn (104.61), Ni (15.29), Fe (1631.86), Al (3349.02) mg/kg | [69] |
Armillaria mellea | Honey fungus | ND | 1.34–10.7% | ND | ND | ND | ND | 48.93–62.9% | Ascorbic acid (2.55–2.99 mg AAE) | ND | [70] |
Auricularia auricula-judae | Jelly ear | 36.3 | ND | 7.07 | 33.23 | ND | 2.81 | ND | ND | ND | [54] |
Auricularia auricula-judae | Jelly ear | 6.49–11.71 | 5.10–9.75% | 3.56–5.61% | ND | 0.50–0.81% | 6.10–9.20% | ND | ND | ND | [71] |
Auricularia auricula-judae | Jelly ear | 23.75 | ND | 10.4% | 38.3% | 6.6% | 6.45% | ND | ND | ND | [72] |
Auricularia polytricha | Wood ear | ND | ND | ND | ND | 531.3 | ND | ND | ND | ND | [63] |
Boletus aestivalis | Summer Bolete | 32.76 | ND | 14.97 | 52.07 | ND | 12.13 | ND | ND | ND | [54] |
Boletus loyo | Chilean porcini | 21.25 | ND | 7.56 | 67.94 | 3.25 | 15.65 | ND | ND | ND | [62] |
Cantharellus cibarius | Girolle | 34.17 | ND | 7.78 | 47.0 | ND | 1.4 | ND | ND | ND | [54] |
Cantharellus cibarius | Girolle | 4.75–4.78 | Proline (114–122.49 µmol/g) | ND | 4.653–6.692 | ND | ND | Glucose (18.61–26.77) sucrose (34.93–38.41) µg/g DW | ND | ND | [66] |
Cantharellus cibarius | Girolle | ND | ND | ND | ND | ND | ND | ND | ND | K (15,747), Mg (686), Ca (439), Mn (18.73), Fe (174.42), Zn (82.22), Cu (2.91) mg/kg DW | [68] |
Cantharellus cibarius | Girolle | ND | ND | ND | ND | ND | ND | ND | ND | Ca (47.2), Mg (572), K (39,600), Na (181), P (4690), B (4.03), Cu (34.8), Fe (142), Mn (62.2), Zn (108) | [73] |
Clavariadelphus pistillaris | Giant club | 16.27 | ND | 20.77 | 62.37 | 0.59 | ND | ND | ND | ND | [74] |
Clitopilus prunulus | The miller | 18.13 | ND | 30.19 | 50.66 | 1.01 | ND | ND | ND | ND | [75] |
Coprinus comatus | Shaggy ink cap | 15.67 | ND | 12.85 | 70.36 | 1.13 | ND | ND | ND | ND | [76] |
Coprinus comatus | Shaggy ink cap | 23.07 | ND | 13.24 | 40.42 | 2.04 | 21.13 | ND | ND | Pb (0.172), Cd (0.14), Hg (0.019), As (0.38), Fe (1471), Mg (1334), Cu (10.17), Zn (31.73), Se (0.51) mg/kg DW | [77] |
Coprinus comatus | Shaggy ink cap | ND | ND | 14.6% | ND | ND | ND | ND | ND | K (35.4), P (8.64), Ca (2840), Na (547), Fe (584), Cu (74.8) | [67] |
Cordyceps militaris | Scarlet caterpillar club | ND | ND | ND | ND | ND | ND | ND | ND | As (0.0047), Pb (0.22), Cd (0.0041), Cu (9.1), Ag (0.024), Zn (5.2), Mn (1.6) | [78] |
Cordyceps militaris | Scarlet caterpillar club | 33.44 | ND | 0.49 | 53.31 | 2.3 | 6.02 | ND | ND | ND | [79] |
Cortinarius lebre | Lebre (Chilean name) | 23.88 | ND | 8.8 | 66.32 | 1.0 | 11.92 | ND | ND | ND | [62] |
Cyttaria espinosae | Digüẽne (Chilean name) | 17.46 | ND | 4.9 | 71.55 | 6.09 | 8.05 | ND | ND | ND | [62] |
Flammulina velutipes | Golden needle mushroom | 0.47 | ND | 0.88 † | 10.57 † | 0.21 † | ND | 8.29 † | ND | ND | [58] |
Flammulina velutipes | Golden needle mushroom | 17.89 | ND | 9.42 | 70.85 | 1.84 | 10.36 | ND | ND | ND | [62] |
Grifola gargal | Gargal (Chilean name) | 9.9 | ND | 5.31 | 82.6 | 2.19 | 14.09 | ND | ND | ND | [62] |
Hericium erinaceus | Lion’s mane | ND | ND | ND | ND | 1.599 | ND | ND | ND | ND | [63] |
Hypsizigus marmoreus | Beech mushroom | ND | ND | ND | ND | 1.245–1.738 | ND | ND | ND | ND | [63] |
Hypsizygus tessulatus | Beech mushroom | 37.8 | ND | 9.09 | 51.2 | ND | 12.9 | ND | ND | ND | [54] |
Lactarius deliciosus | Red pine mushroom | ND | ND | 7.16% | ND | ND | ND | ND | ND | K (25.4), P (5.07), Ca (430), Na (86.3), Fe (1190), Cu (8.05) mg/kg DM | [67] |
Lactarius deliciosus | Red pine mushroom | ND | ND | ND | ND | ND | ND | ND | ND | K (7121), Mg (579), Ca (222), Mn (12.45), Fe (144.01), Zn (57.12), Cu (8.85) | [67] |
Lactarius deliciosus | Red pinemushroom | 18.02 | ND | 11.04 | 67.36 | 3.58 | 10.45 | ND | ND | ND | [62] |
Lactarius hygrophoroides | Hygrophorus milky | 44.93 | ND | 2.0 | 42.0 | ND | 10.58 | ND | ND | ND | [54] |
Leccinum aurantiacum | Red-capped scaber stalk | ND | ND | ND | ND | ND | ND | ND | ND | Cu (41.11), Mn (19.3), Zn (77.33), Ni (9.1), Fe (227.38), Al (480.28) | [69] |
Lentinula edodes | Shiitake | ND | ND | 8.42% | ND | ND | ND | ND | ND | K (31.6), P (8.8), Mg (1.46), Ca (83.3), Na (119), Fe (36.9), Cu (12.2), Zn (74.6) | [67] |
Lentinus edodes | Shiitake | 16.14 | ND | 6.74 | 74.34 | 1.78 | 15.24 | ND | ND | ND | [62] |
Lentinus edodes | Shiitake | ND | Alanine (0.853) †, valine (0.371) †, and isoleucine (0.619) † | ND | ND | ND | ND | ND | ND | ND | [80] |
Lentinula edodes | Shiitake | ND | ND | ND | ND | 1.244–1.388 | ND | ND | ND | ND | [63] |
Lentinula edodes | Shiitake | 0.89 † | ND | 1.36 † | 17.62 † | 0.35 † | ND | 14.08 † | ND | ND | [58] |
Lentinula edodes | Shiitake | 21.24–29.15 | 11,778–19,792 | 4.06–5.92 | ND | 0.75–1.02 | ND | Arabitol (3.15–7.78), fructose (0.12–1.51), mannitol (5.46–8.3), glucose (0.81–1.2), trehalose (5.37–9.6) | ND | ND | [81] |
Lepiota magnispora | Yellow foot dapperling | 27.55 | ND | 3.05 | 35.0 | ND | 5.2 | ND | ND | ND | [54] |
Lepista irina | Flowery blewit | 26.12 | ND | 3.16 | 50.2 | ND | 6.08 | ND | ND | ND | [54] |
Macrolepiota procera | Parasol mushroom | ND | ND | 11.6% | ND | ND | ND | ND | ND | K (33.1), P (11.9), Ca (1340), Na (124), Fe (617), Cu (83.8). | [67] |
Macrolepiota procera | Parasol mushroom | 8.56 | ND | 5.69 | 83.65 | 2.1 | 16.31 | ND | ND | ND | [62] |
Morchella conica | Morel | ND | ND | 15.0% | ND | ND | ND | ND | ND | K (25.9), P (14.6), Mg (6.71), Ca (12,900), Na (86.7), Fe (1110), Cu (128), Zn (195) | [67] |
Morchella conica | Morel | 20.56 | ND | 9.87 | 68.05 | 1.52 | 21.63 | ND | ND | ND | [62] |
Panus fulvus | Trumpet-like mushroom | 27.06 | ND | 3.11 | 33.04 | ND | 6.08 | ND | ND | ND | [54] |
Pleurotus ostreatus | Oyster mushroom | 8.68 | ND | 9.33 | 70.03 | 1.34 | 11.1 | ND | ND | ND | [82] |
Pleurotus ostreatus | Oyster mushroom | ND | ND | ND | ND | 0.933–1.791 | ND | ND | ND | ND | [63] |
Pleurotus ostreatus | Oyster mushroom | 18.35 | ND | 7.82 | 71.25 | 2.58 | 14.31 | ND | ND | ND | [62] |
Pleurotus ostreatus | Oyster mushroom | 0.76 † | ND | 0.62 † | 9.30 † | 0.15 † | ND | 4.97 † | ND | ND | [58] |
Pleurotus eryngii | King oyster mushroom | ND | ND | ND | ND | 1.215 | ND | ND | ND | ND | [63] |
Pleurotus eryngii | King oyster mushroom | 1.21 † | ND | 0.68 † | 8.95 † | 0.16 † | ND | 8.67 † | ND | ND | [58] |
Pleurotus eryngii | King oyster mushroom | 22.1 | Essential aminoacids (2.631) and non--essential amino acids (3.279) | 6.5 | 63.4 | 2.5 | ND | 2.9 | ND | ND | [83] |
Pleurotus eryngii | King oyster mushroom | ND | ND | 8.77% | ND | ND | ND | ND | ND | K (25.3), P (9.19), Mg (2.07), Ca (240), Na (579), Fe (189), Cu (11.2), Zn (57.6) | [67] |
Pleurotus eryngii | King oyster mushroom | ND | ND | ND | ND | ND | ND | ND | ND | K (7839), Mg (1838), Ca (205), Mn (8.15), Fe (103.86), Zn (56.69), Cu (9.39) | [68] |
Pleurotus pulmonarius | Santali | 37.63 | ND | 10.17 | 43.4 | ND | 4.12 | ND | ND | ND | [54] |
Pleurotus pulmonarius | Santali | 37.63 | ND | ND | 43.4% | 1.93% | 4.12% | ND | ND | ND | [84] |
Pleurotus pulmonarius | Santali | 7.88 | ND | 9.31 | 60.8 | 1.7 | 11.54 | ND | ND | ND | [82] |
Pleurotus pulmonarius | Santali | ND | ND | ND | ND | 1.719 | ND | ND | ND | ND | [63] |
Pleurotus tuberregium | King tuber mushroom | 3.53 | ND | 1.27 | 85.81 | 0.11 | 9.29 | ND | ND | Ca (1.283), Mg (1.121), K 3.743), Mn (0.003), Cu (0.0018), Zn (0.0047), Fe (0.027) | [82] |
Ramaria flava | Changle (Chilean name) | 16.92 | ND | 8.83 | 72.1 | 2.15 | 11.81 | ND | ND | ND | [62] |
Ramaria botrytis | Changle (Chilean name) | 16.85 | ND | 7.91 | 74.0 | 1.24 | 9.98 | ND | ND | ND | [62] |
Ramaria subaurantiaca | Changle (Chilean name) | 15.87 | ND | 8.25 | 74.0 | 1.88 | 10.3 | ND | ND | ND | [62] |
Sarcodon imbricatus | Scaly hedgehog | ND | ND | ND | ND | ND | ND | ND | ND | Cu (66.16), Mn (7.18), Zn (112.29), Ni (5.38), Fe (35.45), Al (94.49) | [69] |
Schizophyllum commune | Split gill | 22.5 | ND | 10.1 | 32.43 | ND | 6.5 | ND | ND | ND | [54] |
Suillus bovinus | Jersey cow mushroom | 14.25 | ND | 11.24 | 71.23 | 3.28 | 11.23 | ND | ND | ND | [62] |
Suillus granulatus | Weeping bolete | 16.54 | ND | 12.25 | 67.7 | 3.51 | 12.58 | ND | ND | ND | [62] |
Suillus lakei | Matte Jack | 17.9 | ND | 13.35 | 64.71 | 4.04 | 12.74 | ND | ND | ND | [62] |
Suillus luteus | Slippery Jack | ND | ND | 8.08% | ND | ND | ND | ND | ND | K (19.2), P (5.3), Mg (1.22), Ca (260), Na (175), Fe (819), Cu (8.16), Zn (51.1) | [67] |
Suillus luteus | Slippery Jack | ND | ND | ND | ND | ND | ND | ND | ND | K (6449), Mg (736), Ca (184), Mn (7.53), Fe (113.96), Zn (52.3), Cu (14.84) | [67] |
Suillus luteus | Slippery Jack | 13.58 | ND | 6.74 | 76.23 | 3.45 | 11.85 | ND | ND | ND | [62] |
Tricholoma terreum | Grey knight | 18.72 | ND | 13.49 | 65.93 | 1.86 | 12.3 | ND | ND | ND | [62] |
Xerocomus chrysenteron | Red cracking bolete | 20.5 | ND | 13.69 | 62.97 | 2.84 | 8.33 | ND | ND | ND | [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gopal, J.; Sivanesan, I.; Muthu, M.; Oh, J.-W. Scrutinizing the Nutritional Aspects of Asian Mushrooms, Its Commercialization and Scope for Value-Added Products. Nutrients 2022, 14, 3700. https://doi.org/10.3390/nu14183700
Gopal J, Sivanesan I, Muthu M, Oh J-W. Scrutinizing the Nutritional Aspects of Asian Mushrooms, Its Commercialization and Scope for Value-Added Products. Nutrients. 2022; 14(18):3700. https://doi.org/10.3390/nu14183700
Chicago/Turabian StyleGopal, Judy, Iyyakkannu Sivanesan, Manikandan Muthu, and Jae-Wook Oh. 2022. "Scrutinizing the Nutritional Aspects of Asian Mushrooms, Its Commercialization and Scope for Value-Added Products" Nutrients 14, no. 18: 3700. https://doi.org/10.3390/nu14183700
APA StyleGopal, J., Sivanesan, I., Muthu, M., & Oh, J. -W. (2022). Scrutinizing the Nutritional Aspects of Asian Mushrooms, Its Commercialization and Scope for Value-Added Products. Nutrients, 14(18), 3700. https://doi.org/10.3390/nu14183700