Influences of the COVID-19 Pandemic on Obesity and Weight-Related Behaviors among Chinese Children: A Multi-Center Longitudinal Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measures and Procedure
2.2.1. Weight Status Variables
2.2.2. Weight-Related Behaviors
2.2.3. Demographics
2.3. Data Analysis
3. Results
3.1. Demographics
3.2. Changes in Weight Status
3.3. Changes in Weight-Related Behaviors
3.4. Influencing Factors of Childhood Obesity
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Report of the Commission On Ending Childhood Obesity; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Sawyer, S.M.; Azzopardi, P.S.; Wickremarathne, D.; Patton, G.C. The age of adolescence. Lancet Child Adolesc. Health 2018, 2, 223–228. [Google Scholar] [CrossRef]
- Heitkamp, M.; Siegrist, M.; Molnos, S.; Brandmaier, S.; Wahl, S.; Langhof, H.; Grallert, H.; Halle, M. Obesity genes and weight loss during lifestyle intervention in children with obesity. JAMA Pediatr. 2021, 175, e205142. [Google Scholar] [CrossRef]
- Stabouli, S.; Erdine, S.; Suurorg, L.; Jankauskienė, A.; Lurbe, E. Obesity and Eating Disorders in Children and Adolescents: The Bidirectional Link. Nutrients 2021, 13, 4321. [Google Scholar] [CrossRef]
- Pan, X.-F.; Wang, L.; Pan, A. Epidemiology and determinants of obesity in China. Lancet Diabetes Endocrinol. 2021, 9, 373–392. [Google Scholar] [CrossRef]
- Ells, L.J.; Rees, K.; Brown, T.; Mead, E.; Al-Khudairy, L.; Azevedo, L.; McGeechan, G.J.; Baur, L.; Loveman, E.; Clements, H. Interventions for treating children and adolescents with overweight and obesity: An overview of Cochrane reviews. Int. J. Obes. 2018, 42, 1823–1833. [Google Scholar] [CrossRef] [PubMed]
- Bradwisch, S.A.; Smith, E.M.; Mooney, C.; Scaccia, D. Obesity in children and adolescents: An overview. Nursing 2020, 50, 60–66. [Google Scholar] [CrossRef]
- Grossman, D.C.; Bibbins-Domingo, K.; Curry, S.J.; Barry, M.J.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W.; Kemper, A.R.; Krist, A.H.; Kurth, A.E. Screening for obesity in children and adolescents: US Preventive Services Task Force recommendation statement. JAMA 2017, 317, 2417–2426. [Google Scholar] [PubMed]
- Bleich, S.N.; Vercammen, K.A.; Zatz, L.Y.; Frelier, J.M.; Ebbeling, C.B.; Peeters, A. Interventions to prevent global childhood overweight and obesity: A systematic review. Lancet Diabetes Endocrinol. 2018, 6, 332–346. [Google Scholar] [CrossRef]
- Martin, A.; Booth, J.N.; Laird, Y.; Sproule, J.; Reilly, J.J.; Saunders, D.H. Physical activity, diet and other behavioural interventions for improving cognition and school achievement in children and adolescents with obesity or overweight. Cochrane Database Syst. Rev. 2018, 3, Cd009728. [Google Scholar] [CrossRef]
- Bodrud-Doza, M.; Shammi, M.; Bahlman, L.; Islam, A.R.M.; Rahman, M. Psychosocial and socio-economic crisis in Bangladesh due to COVID-19 pandemic: A perception-based assessment. Front. Public Health 2020, 8, 341. [Google Scholar] [CrossRef]
- Wong, C.K.; Wong, J.Y.; Tang, E.H.; Au, C.H.; Lau, K.T.; Wai, A.K. Impact of national containment measures on decelerating the increase in daily new cases of COVID-19 in 54 countries and 4 epicenters of the pandemic: Comparative observational study. J. Med. Internet Res. 2020, 22, e19904. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhang, Y.; Zhao, J.; Zhang, J.; Jiang, F. Mitigate the effects of home confinement on children during the COVID-19 outbreak. Lancet 2020, 395, 945–947. [Google Scholar] [CrossRef]
- Pietrobelli, A.; Pecoraro, L.; Ferruzzi, A.; Heo, M.; Faith, M.; Zoller, T.; Antoniazzi, F.; Piacentini, G.; Fearnbach, S.N.; Heymsfield, S.B. Effects of COVID-19 Lockdown on Lifestyle Behaviors in Children with Obesity Living in Verona, Italy: A Longitudinal Study. Obesity 2020, 28, 1382–1385. [Google Scholar] [CrossRef]
- Jia, P.; Zhang, L.; Yu, W.; Yu, B.; Liu, M.; Zhang, D.; Yang, S. Impact of COVID-19 lockdown on activity patterns and weight status among youths in China: The COVID-19 Impact on Lifestyle Change Survey (COINLICS). Int. J. Obes. 2021, 45, 695–699. [Google Scholar] [CrossRef]
- Androutsos, O.; Perperidi, M.; Georgiou, C.; Chouliaras, G. Lifestyle changes and determinants of children’s and adolescents’ body weight increase during the first COVID-19 lockdown in Greece: The COV-EAT study. Nutrients 2021, 13, 930. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Lee, S.; Han, H.; Jung, J.; Yang, S.-J.; Shin, Y. Parental mental health and children’s behaviors and media usage during COVID-19-related school closures. J. Korean Med. Sci. 2021, 36, e184. [Google Scholar] [CrossRef]
- Neshteruk, C.D.; Zizzi, A.; Suarez, L.; Erickson, E.; Kraus, W.E.; Li, J.S.; Skinner, A.C.; Story, M.; Zucker, N.; Armstrong, S.C. Weight-related behaviors of children with obesity during the COVID-19 pandemic. Child. Obes. 2021, 17, 371–378. [Google Scholar] [CrossRef]
- Bakaloudi, D.R.; Barazzoni, R.; Bischoff, S.C.; Breda, J.; Wickramasinghe, K.; Chourdakis, M. Impact of the first COVID-19 lockdown on body weight: A combined systematic review and a meta-analysis. Clin. Nutr. 2021; online ahead of print. [Google Scholar] [CrossRef]
- Rawat, D.; Dixit, V.; Gulati, S.; Gulati, S.; Gulati, A. Impact of COVID-19 outbreak on lifestyle behaviour: A review of studies published in India. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 331–336. [Google Scholar] [CrossRef]
- Zhao, L.; Shek, D.T.; Zou, K.; Lei, Y.; Jia, P. Cohort profile: Chengdu Positive Child Development (CPCD) survey. Int. J. Epidemiol. 2021, 51, e95–e107. [Google Scholar] [CrossRef]
- Rodriguez-Martinez, A.; Zhou, B.; Sophiea, M.K.; Bentham, J.; Paciorek, C.J.; Iurilli, M.L.; Carrillo-Larco, R.M.; Bennett, J.E.; Di Cesare, M.; Taddei, C. Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: A pooled analysis of 2181 population-based studies with 65 million participants. Lancet 2020, 396, 1511–1524. [Google Scholar] [CrossRef]
- Tai, H.C.; Tzeng, I.S.; Liang, Y.C.; Liao, H.H.; Su, C.H.; Kung, W.M. Interventional Effects of Weight-Loss Policy in a Healthy City among Participants with Metabolic Syndrome. Int. J. Environ. Res. Public Health 2019, 16, 323. [Google Scholar] [CrossRef] [PubMed]
- Shalitin, S.; Phillip, M.; Yackobovitch-Gavan, M. Changes in body mass index in children and adolescents in Israel during the COVID-19 pandemic. Int. J. Obes. 2022, 46, 1160–1167. [Google Scholar] [CrossRef] [PubMed]
- Woolford, S.J.; Sidell, M.; Li, X.; Else, V.; Young, D.R.; Resnicow, K.; Koebnick, C. Changes in body mass index among children and adolescents during the COVID-19 pandemic. JAMA 2021, 326, 1434–1436. [Google Scholar] [CrossRef] [PubMed]
- Fei, S.; Ni, J.; Santini, G. Local food systems and COVID-19: An insight from China. Resour. Conserv. Recycl. 2020, 162, 105022. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Min, J.; Xue, H.; Wang, W.; Wang, Y. Parenting practices and overweight status of junior high school students in China: A nationally representative study of 19,487 students from 112 schools. Prev. Med. 2018, 107, 1–7. [Google Scholar] [CrossRef]
- De Moraes, A.C.F.; Forkert, E.C.O.; Vilanova-Campelo, R.C.; González-Zapata, L.I.; Azzaretti, L.; Iguacel, I.; Huicho, L.; Moliterno, P.; Moreno, L.A.; Carvalho, H.B. Measuring Socioeconomic Status and Environmental Factors in the SAYCARE Study in South America: Reliability of the Methods. Obesity 2018, 26 (Suppl. S1), S14–S22. [Google Scholar] [CrossRef]
- Leon Guerrero, R.T.; Barber, L.R.; Aflague, T.F.; Paulino, Y.C.; Hattori-Uchima, M.P.; Acosta, M.; Wilkens, L.R.; Novotny, R. Prevalence and Predictors of Overweight and Obesity among Young Children in the Children’s Healthy Living Study on Guam. Nutrients 2020, 12, 2527. [Google Scholar] [CrossRef] [PubMed]
- Farsalinos, K.; Poulas, K.; Kouretas, D.; Vantarakis, A.; Leotsinidis, M.; Kouvelas, D.; Docea, A.O.; Kostoff, R.; Gerotziafas, G.T.; Antoniou, M.N. Improved strategies to counter the COVID-19 pandemic: Lockdowns vs. primary and community healthcare. Toxicol. Rep. 2021, 8, 1–9. [Google Scholar] [CrossRef]
- Yang, S.; Guo, B.; Ao, L.; Yang, C.; Zhang, L.; Zhou, J.; Jia, P. Obesity and activity patterns before and during COVID-19 lockdown among youths in China. Clin. Obes. 2020, 10, e12416. [Google Scholar] [CrossRef]
- Medrano, M.; Cadenas-Sanchez, C.; Oses, M.; Arenaza, L.; Amasene, M.; Labayen, I. Changes in lifestyle behaviours during the COVID-19 confinement in Spanish children: A longitudinal analysis from the MUGI project. Pediatr. Obes. 2021, 16, e12731. [Google Scholar] [CrossRef]
- Ventura, P.S.; Ortigoza, A.F.; Castillo, Y.; Bosch, Z.; Casals, S.; Girbau, C.; Siurana, J.M.; Arce, A.; Torres, M.; Herrero, F.J. Children’s Health Habits and COVID-19 Lockdown in Catalonia: Implications for Obesity and Non-Communicable Diseases. Nutrients 2021, 13, 1657. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, A.S.; Schmidt, L.; Beck, A.; Kepper, M.M.; Mazzucca, S.; Eyler, A. Associations of physical activity and sedentary behaviors with child mental well-being during the COVID-19 pandemic. BMC Public Health 2021, 21, 1770. [Google Scholar] [CrossRef] [PubMed]
- Nagata, J.M.; Abdel Magid, H.S.; Pettee Gabriel, K. Screen Time for Children and Adolescents During the Coronavirus Disease 2019 Pandemic. Obesity 2020, 28, 1582–1583. [Google Scholar] [CrossRef] [PubMed]
- Jahrami, H.; BaHammam, A.S.; Bragazzi, N.L.; Saif, Z.; Faris, M.; Vitiello, M.V. Sleep problems during the COVID-19 pandemic by population: A systematic review and meta-analysis. J. Clin. Sleep Med. 2021, 17, 299–313. [Google Scholar] [CrossRef] [PubMed]
- Janssen, X.; Martin, A.; Hughes, A.R.; Hill, C.M.; Kotronoulas, G.; Hesketh, K.R. Associations of screen time, sedentary time and physical activity with sleep in under 5s: A systematic review and meta-analysis. Sleep Med. Rev. 2020, 49, 101226. [Google Scholar] [CrossRef] [PubMed]
- Yang-Huang, J.; van Grieken, A.; Wang, L.; Jansen, W.; Raat, H. Clustering of Sedentary Behaviours, Physical Activity, and Energy-Dense Food Intake in Six-Year-Old Children: Associations with Family Socioeconomic Status. Nutrients 2020, 12, 1722. [Google Scholar] [CrossRef]
- Lissak, G. Adverse physiological and psychological effects of screen time on children and adolescents: Literature review and case study. Environ. Res. 2018, 164, 149–157. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, Y.; Jiang, F.; Ip, P.; Ho, F.K.W.; Zhang, Y.; Huang, H. Excessive Screen Time and Psychosocial Well-Being: The Mediating Role of Body Mass Index, Sleep Duration, and Parent-Child Interaction. J. Pediatr. 2018, 202, 157–162.e1. [Google Scholar] [CrossRef]
- Oude Groeniger, J.; de Koster, W.; van der Waal, J. Time-varying Effects of Screen Media Exposure in the Relationship Between Socioeconomic Background and Childhood Obesity. Epidemiology 2020, 31, 578–586. [Google Scholar] [CrossRef]
Boys | Girls | Included Sample | Excluded Sample | |
---|---|---|---|---|
Variable | (n = 2973) | (n = 2990) | (n = 5963) | (n = 937) |
Age (years) | 10.6 ± 2.2 | 10.6 ± 2.2 | 10.7 ± 2.2 | 10.8 ± 1.7 |
Ethnicity | ||||
Han | 2946(99.1) | 2969(99.3) | 5915(99.2) | 928(99.1) |
Minority | 27(0.9) | 21(0.7) | 48(0.8) | 9(0.9) |
District | ||||
Urban | 1975(66.4) | 1948(65.2) | 3923(65.8) | 618(66.0) |
Rural | 998(33.6) | 1042(34.8) | 2040(34.2) | 319(34.0) |
Education | ||||
Primary school | 2042(68.7) | 1960(65.6) | 4002(67.1) | 642(68.5) |
Junior high school | 931(31.3) | 1030(34.4) | 1961(32.9) | 295(31.5) |
Pocket money (yuan/mouth) | ||||
0–10 | 1445(48.6) | 1501(50.2) | 2946(49.4) | 469(50.1) |
11–30 | 1025(34.5) | 1007(33.7) | 2032(34.1) | 317(33.8) |
>30 | 503(16.9) | 482(16.1) | 985(16.5) | 151(16.1) |
Household income(yuan/mouth) | ||||
<1000 | 50(1.7) | 45(1.5) | 95(1.6) | 19(2.0) |
≥1000–5000 | 552(18.5) | 568(19.0) | 1120(18.9) | 174(18.6) |
≥5000–10,000 | 1242(41.8) | 1272(42.5) | 2514(42.1) | 403(43.0) |
≥10,000–20,000 | 777(26.2) | 753(25.2) | 1530(25.6) | 239(25.5) |
≥20,000 | 352(11.8) | 352(11.8) | 704(11.8) | 102(10.9) |
Father’s career | ||||
Farmer | 264(8.9) | 314(10.5) | 578(9.7) | 97(10.3) |
Worker | 401(13.5) | 464(15.5) | 865(14.5) | 141(15.1) |
Merchant | 247(8.3) | 278(9.3) | 525(8.8) | 80(8.5) |
Public servant | 668(22.4) | 578(19.3) | 1246(20.9) | 185(19.8) |
Office clerk | 510(17.2) | 468(15.7) | 978(16.4) | 170(18.1) |
Technical personnel | 738(24.8) | 723(24.2) | 1461(24.5) | 217(23.2) |
Retired | 91(3.1) | 124(4.1) | 215(3.6) | 31(3.3) |
Unemployed | 54(1.8) | 41(1.4) | 95(1.6) | 16(1.7) |
Mother’s career | ||||
Farmer | 319(10.7) | 361(12.1) | 680(11.4) | 98(10.5) |
Worker | 333(11.2) | 323(10.8) | 656(11.0) | 110(11.7) |
Merchant | 356(12.0) | 300(10.0) | 656(11.0) | 93(10.0) |
Public servant | 599(20.1) | 611(20.4) | 1210(20.3) | 199(21.2) |
Office clerk | 550(18.5) | 547(18.3) | 1097(18.4) | 167(17.8) |
Technical personnel | 652(22.0) | 642(21.5) | 1294(21.7) | 211(22.5) |
Retired | 96(3.2) | 107(3.6) | 203(3.4) | 26(2.8) |
Unemployed | 68(2.3) | 99(3.3) | 167(2.8) | 33(3.5) |
Body composition | ||||
Height (cm) | 142.6 ± 13.5 | 142.4 ± 13.7 | 142.5 ± 13.6 | 142.1 ± 14.1 |
Weight (kg) | 39.9 ± 10.6 | 40.7 ± 11.1 | 40.3 ± 10.9 | 41.3 ± 9.4 |
BMI (kg/m2) | 18.4 ± 3.2 | 18.4 ± 3.1 | 18.4 ± 3.2 | 18.6 ± 2.9 |
SBP (mmHg) | 103.2 ± 14.7 | 102.6 ± 14.1 | 102.9 ± 14.4 | 103.0 ± 13.9 |
DBP (mmHg) | 71.1 ± 15.8 | 71.6 ± 15.9 | 71.4 ± 15.7 | 71.2 ± 15.3 |
BMI categories | ||||
Underweight | 42(1.4) | 15(0.5) | 57(0.9) | 11(1.2) |
Normal weight | 2383(80.2) | 2465(82.4) | 4848(81.3) | 756(80.7) |
Overweight | 302(10.1) | 244(8.2) | 546(9.2) | 90(9.6) |
Obesity | 246(8.3) | 266(8.9) | 512(8.6) | 80(8.5) |
BMI | Prevalence of Overweight | Prevalence of Obesity | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
N | 2019 | 2020 | p 1 | 2019 | 2020 | p 2 | 2019 | 2020 | p 3 | |
Total | 5963 | 18.4 ± 3.2 | 18.5 ± 3.2 | 0.013 | 546(9.2) | 627(10.5) | <0.001 | 512(8.6) | 634(10.6) | <0.001 |
Gender | ||||||||||
Boys | 2973 | 18.4 ± 3.2 | 18.5 ± 3.3 | <0.001 | 302(10.1) | 370(12.4) | 0.005 | 246(8.3) | 359(12.1) | <0.001 |
Girls | 2990 | 18.4 ± 3.2 | 18.4 ± 3.2 | 0.730 | 244(8.2) | 257(8.6) | 0.544 | 266(8.9) | 275(9.2) | 0.685 |
Ethnicity | ||||||||||
Han | 5915 | 18.4 ± 3.2 | 18.5 ± 3.2 | 0.014 | 539(9.1) | 622(10.5) | 0.010 | 502(8.5) | 623(10.5) | <0.001 |
Minority | 48 | 19.3 ± 4.2 | 19.3 ± 4.3 | 0.892 | 7(14.6) | 5(10.4) | 0.537 | 10(20.8) | 11(22.9) | 0.847 |
District | ||||||||||
Urban | 3923 | 18.4 ± 3.2 | 18.5 ± 3.2 | 0.012 | 377(9.6) | 410(10.5) | 0.215 | 203(4.7) | 219(5.6) | 0.423 |
Rural | 2040 | 18.5 ± 3.2 | 18.4 ± 3.2 | 0.432 | 169(8.3) | 217(10.6) | 0.010 | 309(15.1) | 415(24.5) | <0.001 |
Education | ||||||||||
Primary school | 4002 | 17.2 ± 2.3 | 17.2 ± 2.4 | 0.055 | 240(6.0) | 245(6.1) | 0.815 | 273(6.8) | 286(7.1) | 0.569 |
Junior high school | 1961 | 20.9 ± 3.5 | 21.0 ± 3.1 | 0.116 | 306(15.6) | 382(19.5) | <0.001 | 239(12.2) | 348(23.5) | <0.001 |
Pocket money (yuan/mouth) | ||||||||||
0–10 | 2946 | 18.0 ± 3.2 | 18.3 ± 3.1 | <0.001 | 236(8.0) | 269(9.1) | 0.125 | 225(7.6) | 277(9.4) | 0.015 |
11–30 | 2032 | 18.7 ± 3.3 | 19.0 ± 3.2 | <0.001 | 247(12.1) | 280(13.8) | 0.123 | 213(10.5) | 267(14.6) | 0.009 |
>30 | 985 | 18.2 ± 3.1 | 18.5 ± 3.1 | <0.001 | 63(6.4) | 78(8.0) | 0.190 | 74(7.5) | 90(9.1) | 0.192 |
Household income (yuan/mouth) | ||||||||||
<1000 | 95 | 18.2 ± 3.1 | 18.3 ± 3.3 | 0.539 | 6(6.3) | 11(11.6) | 0.204 | 11(11.6) | 10(10.5) | 0.817 |
≥1000–5000 | 1120 | 18.3 ± 3.2 | 18.5 ± 3.2 | <0.001 | 84(7.5) | 114(10.2) | 0.026 | 86(7.7) | 106(9.5) | 0.131 |
≥5000–10,000 | 2514 | 18.4 ± 3.3 | 18.5 ± 3.2 | 0.142 | 261(10.4) | 257(10.2) | 0.853 | 218(8.7) | 270(10.7) | 0.013 |
≥10,000–20,000 | 1530 | 18.4 ± 3.2 | 18.4 ± 3.2 | 0.418 | 138(9.0) | 161(10.5) | 0.161 | 133(8.7) | 164(10.7) | <0.001 |
≥20,000 | 704 | 18.4 ± 3.1 | 18.5 ± 3.2 | 0.294 | 57(8.1) | 84(11.9) | 0.017 | 64(9.1) | 84(11.9) | 0.082 |
Physical Activity | Sleep Duration | Screen Time | Sugar-Sweetened Beverage Consumption | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | 2019 | 2020 | p | 2019 | 2020 | p | 2019 | 2020 | p | 2019 | 2020 | p | |
Total | 5963 | 90.4 ± 50.9 | 83.1 ± 50.6 | <0.001 | 549.7 ± 65.0 | 534.6 ± 71.8 | <0.001 | 85.3 ± 74.5 | 100.1 ± 73.9 | <0.001 | 1.5 ± 1.9 | 1.1 ± 1.7 | <0.001 |
Gender | |||||||||||||
Boys | 2973 | 90.2 ± 50.8 | 83.9 ± 51.9 | <0.001 | 548.4 ± 65.7 | 535.8 ± 72.6 | <0.001 | 87.8 ± 76.0 | 100.3 ± 73.6 | <0.001 | 1.5 ± 1.9 | 1.1 ± 1.6 | <0.001 |
Girls | 2990 | 90.6 ± 51.1 | 82.4 ± 49.4 | <0.001 | 551.1 ± 64.2 | 533.5 ± 71.0 | <0.001 | 82.9 ± 73.0 | 99.9 ± 74.1 | <0.001 | 1.5 ± 1.8 | 1.1 ± 1.7 | <0.001 |
Ethnicity | |||||||||||||
Han | 5915 | 90.4 ± 50.8 | 83.1 ± 50.6 | <0.001 | 549.7 ± 65.0 | 534.6 ± 71.8 | <0.001 | 85.5 ± 74.5 | 100.1 ± 73.9 | <0.001 | 1.5 ± 1.9 | 1.1 ± 1.7 | <0.001 |
Minority | 48 | 93.2 ± 67.3 | 88.3 ± 54.2 | 0.605 | 556.0 ± 60.4 | 543.6 ± 70.7 | 0.249 | 68.3 ± 71.4 | 92.8 ± 71.7 | 0.053 | 1.6 ± 1.8 | 1.1 ± 1.6 | 0.005 |
District | |||||||||||||
Urban | 3923 | 90.7 ± 51.2 | 83.2 ± 51.1 | <0.001 | 549.5 ± 65.4 | 534.4 ± 71.9 | <0.001 | 80.5 ± 72.9 | 93.9 ± 71.5 | <0.001 | 1.5 ± 1.8 | 1.1 ± 1.7 | <0.001 |
Rural | 2040 | 89.7 ± 50.5 | 83.1 ± 49.7 | <0.001 | 550.2 ± 64.1 | 535.1 ± 71.6 | <0.001 | 94.6 ± 76.7 | 111.9 ± 76.8 | <0.001 | 1.7 ± 2.1 | 1.2 ± 1.7 | <0.001 |
Education | |||||||||||||
Primary school | 4002 | 90.8 ± 50.7 | 83.7 ± 50.8 | <0.001 | 551.6 ± 64.8 | 537.8 ± 71.4 | <0.001 | 83.4 ± 74.1 | 97.3 ± 72.9 | <0.001 | 1.5 ± 1.8 | 1.1 ± 1.6 | <0.001 |
Junior high school | 1961 | 89.6 ± 51.4 | 82.0 ± 50.3 | <0.001 | 546.0 ± 65.1 | 528.2 ± 72.2 | <0.001 | 89.2 ± 75.4 | 105.7 ± 75.5 | <0.001 | 1.6 ± 2.1 | 1.2 ± 1.8 | <0.001 |
Pocket money (yuan/mouth) | |||||||||||||
0–10 | 2946 | 92.3 ± 51.7 | 83.6 ± 51.1 | <0.001 | 556.0 ± 63.5 | 541.6 ± 70.7 | <0.001 | 85.2 ± 75.0 | 100.2 ± 73.5 | <0.001 | 1.5 ± 1.8 | 1.1 ± 1.6 | <0.001 |
11–30 | 2032 | 88.2 ± 50.2 | 82.6 ± 49.3 | <0.001 | 543.3 ± 65.7 | 526.3 ± 71.4 | <0.001 | 84.7 ± 74.7 | 100.4 ± 75.5 | <0.001 | 1.5 ± 1.9 | 1.1 ± 1.6 | <0.001 |
>30 | 985 | 89.3 ± 50.0 | 82.7 ± 51.9 | <0.001 | 544.3 ± 66.1 | 531.2 ± 73.8 | <0.001 | 86.9 ± 73.1 | 98.7 ± 71.5 | <0.001 | 1.5 ± 2.0 | 1.2 ± 1.9 | <0.001 |
Household income (yuan/mouth) | |||||||||||||
<1000 | 95 | 83.3 ± 51.2 | 73.3 ± 52.9 | 0.048 | 548.1 ± 69.5 | 530.5 ± 69.0 | 0.013 | 88.8 ± 79.2 | 104.2 ± 82.9 | 0.066 | 1.7 ± 2.7 | 1.1 ± 1.6 | 0.010 |
≥1000–5000 | 1120 | 90.5 ± 50.9 | 84.5 ± 49.8 | <0.001 | 548.5 ± 63.7 | 531.3 ± 72.9 | <0.001 | 85.9 ± 76.1 | 98.8 ± 74.4 | <0.001 | 1.5 ± 1.8 | 1.1 ± 1.7 | <0.001 |
≥5000–10,000 | 2514 | 90.9 ± 51.5 | 83.4 ± 51.6 | <0.001 | 547.8 ± 64.8 | 534.6 ± 70.7 | <0.001 | 83.8 ± 73.3 | 99.8 ± 73.3 | <0.001 | 1.5 ± 1.8 | 1.1 ± 1.6 | <0.001 |
≥10,000–20,000 | 1530 | 89.5 ± 48.9 | 82.1 ± 49.7 | <0.001 | 552.6 ± 67.0 | 536.5 ± 73.2 | <0.001 | 89.1 ± 76.7 | 101.9 ± 73.8 | <0.001 | 1.5 ± 1.9 | 1.1 ± 1.6 | <0.001 |
≥20,000 | 704 | 91.3 ± 53.2 | 83.4 ± 50.1 | <0.001 | 552.7 ± 62.0 | 536.4 ± 71.4 | <0.001 | 81.1 ± 70.7 | 98.6 ± 74.2 | <0.001 | 1.6 ± 2.1 | 1.2 ± 1.8 | <0.001 |
Variables | β | SE | Wald χ2 | p | OR |
---|---|---|---|---|---|
Gender = boy | −0.071 | 0.041 | 3.083 | 0.079 | 0.966 |
Ethnicity = Han | −0.882 | 0.278 | 10.072 | 0.002 | 0.451 |
District = urban | −0.030 | 0.044 | 0.462 | 0.497 | 0.989 |
Education = primary school | −1.684 | 0.062 | 749.309 | <0.001 | 0.186 |
Infection history = yes | −4.060 | 0.463 | 76.768 | <0.001 | 0.017 |
Time point = wave 1 | −0.064 | 0.031 | 4.109 | 0.043 | 0.938 |
Age | 1.060 | 0.011 | 8593.779 | <0.001 | 2.187 |
Physical activity | −0.001 | 0.001 | 5.564 | 0.018 | 0.999 |
Sleep duration | −0.002 | 0.001 | 38.032 | <0.001 | 0.998 |
Screen time | 0.001 | 0.000 | 30.473 | <0.001 | 1.001 |
Sugar-sweetened beverage consumption | 0.009 | 0.011 | 0.593 | 0.441 | 1.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Luo, B.; Zhao, L.; Liao, S. Influences of the COVID-19 Pandemic on Obesity and Weight-Related Behaviors among Chinese Children: A Multi-Center Longitudinal Study. Nutrients 2022, 14, 3744. https://doi.org/10.3390/nu14183744
He Y, Luo B, Zhao L, Liao S. Influences of the COVID-19 Pandemic on Obesity and Weight-Related Behaviors among Chinese Children: A Multi-Center Longitudinal Study. Nutrients. 2022; 14(18):3744. https://doi.org/10.3390/nu14183744
Chicago/Turabian StyleHe, Yirong, Biru Luo, Li Zhao, and Shujuan Liao. 2022. "Influences of the COVID-19 Pandemic on Obesity and Weight-Related Behaviors among Chinese Children: A Multi-Center Longitudinal Study" Nutrients 14, no. 18: 3744. https://doi.org/10.3390/nu14183744
APA StyleHe, Y., Luo, B., Zhao, L., & Liao, S. (2022). Influences of the COVID-19 Pandemic on Obesity and Weight-Related Behaviors among Chinese Children: A Multi-Center Longitudinal Study. Nutrients, 14(18), 3744. https://doi.org/10.3390/nu14183744