Novel Therapies for Cardiometabolic Disease: Recent Findings in Studies with Hormone Peptide-Derived G Protein Coupled Receptor Agonists
Abstract
:1. Current Challenges in the Treatment of Cardiometabolic Diseases
2. The Biology of the Preproglucagon Derived HORMONES: Glucagon, GIP and GLP-1
2.1. The Biology of Glucagon
2.2. The Biology of the Incretin Hormones GIP and GLP-1
2.3. Metabolic Effects of the GPCR Dependent Signaling
3. Development of GPCR Agonists
3.1. GLP-1R and GIPR Agonists
3.2. GLP-1R and GCGR Dual Agonists
3.3. GLP1R and GIPR Receptor Dual Agonists
3.4. Other-Dual Agonists Peptides Based on GLP-1
3.5. GPCRs Triagonists
4. Studies of GPCR Agonists in Mouse Models
4.1. GPCR Agonists in Monotherapy: Semaglutide and GIPR Agonist Studies in Mouse Models
4.2. Studies in Mouse Models of Dual Agonists of GPCR
4.2.1. Effects of Dual GLP-1R/GCGR Agonists
4.2.2. Studies with GLP-1R/GIPR Dual Agonists
4.3. Studies in Mouse Models with the GLP-1R/GIPR/GCGR Triagonists
5. Clinical Trials Using Class B GPCR Agonists
5.1. Recent Advances in Incretin Hormone Receptor Monoagonists in Humans
5.2. Studies in Humans with Dual Agonists
5.2.1. Clinical Trials Studying GLP-1R/GIPR Dual Agonists
5.2.2. Clinical Trials Evaluating GLP-1R/GCGR Dual Agonists
Peptide-Derived Analogue | Clinical Trial Name and Registration Number | Phase | Subjects Studied and Treatments | CV Risk Reported Effects | References |
---|---|---|---|---|---|
GLP-1/GIP | SURPASS-1 (NCT03954834) | 3 | Drug-naïve people with T2DM/tirzepatide subcutaneous vs. placebo | No association with increased CV risk | [99,103,113] |
SURPASS-2 (NCT03987919) | 3 | People taking metformin/tirzepatide subcutaneous vs. semaglutide | No association with increased CV risk | [65,99,103] | |
SURPASS-3 (NCT03882970) | 3 | People taking metformin with/without an SGLT2 inhibitor/tirzepatide subcutaneous vs. insulin degludec | No association with increased CV risk | [99,103,114] | |
SURPASS-4 (NCT03730662) | 3 | T2DM patients with combinations of oral hypoglucemiants body-mass index >25 kg/m2 and CVD or CV risk Tirzepatide subcutaneous vs. insulin glargine | No association with increased CV risk over an extended follow-up of 104 weeks | [99,103,104] | |
SURPASS-5 (NCT04039503) | 3 | Individuals taking insulin glargine with or without metformin. Tirzepatide subcutaneous vs. placebo | No association with increased CV risk | [99,103,115] | |
SURPASS-6 (NCT04537923) | 3 | Insulin glargine treated subjects, with or without metformin. Tirzepatide vs. Insulin lispro | No association with increased CV risk | [99,103] | |
SURPASS-CVOT (NCT04255433) | T2DM and atherosclerotic disease, and overweight. Tirzepatide subcutaneous vs. dulaglutide | No association with increased CV risk | [99,116] | ||
SURPASS J-mono (NCT03861052) | Japanese individuals who are drug-naïve or taking monotherapy. Tirzepatide vs. Dulaglutide | Not yet published | |||
SURPASS J-combo (NCT03861039) | Japanese people taking antidiabetes medications other than incretin-based classes. Tirzepatide vs. none | Less than 1% has SAEs related to cardiac disorders at doses above 10 mg and between 1.5–3.5% regarding AEs dose-dependent | Not yet published | ||
SURPASS AP-combo (NCT04093752) | Subjects from Australia, China, India, and the Republic of Korea taking metformin with/without a sulfonylurea Tirzepatide vs. Insulin glargine | Not yet published | |||
SURMONT-1 (NCT04184622) | 3 | Subjects with obesity or BMI 27 kg/m2 and related comorbidities. Tirzepatide vs. placebo. | Improvements in all prespecified cardiometabolic measures | [106] | |
SURMONT-2 (NCT04657003) | 3 | Subjects with T2DM and body mass index of ≥27 kg/m2. Tirzepatide vs. placebo. | Not yet published | ||
SURMONT-3 (NCT04657016) | 3 | Subjects with obesity or body mass index of ≥27 kg/m2 and related comorbidities. Tirzepatide vs. placebo | Not yet published | ||
SURMONT-4 (NCT04660643) | 3 | People with obesity or body mass index of 27 kg/m2 and related comorbidities. Tirzepatide vs. placebo | Not yet published | ||
SURMOUNT J (NCT04844918) | 3 | Japanese people with a body mass index of ≥35 kg/m2 and at least one related comorbidity or of 27 –< 35 kg/m2 with two comorbidities. Tirzepatide subcutaneous vs. placebo | Not yet published | ||
SURMOUNT CN (NCT05024032) | 3 | Chinese subjects with a body mass index of 28 kg/m2 or 24 kg/m2 with related comorbidities. Tirzepatide subcutaneous vs. placebo | Not yet published | ||
SUMMIT (NCT04847557) | 3 | Obesity tirzepatide vs. placebo | Not yet published | ||
NCT03861039 | 3 | T2DM patients Tirzepatide + antihyperglycemic medication | Less than 1.5% of SAEs, | Not yet published | |
GLP1/GCG | JNJ-64565111 (NCT03586830) | 2 | Individuals with T2DM and class II/III obesity JNJ-64565111 (different doses) vs. placebo | Not reported | [112] |
SAR425899 (NCT02973321) | 2 | Overweight to obese subjects with T2DM | Not reported | [108] | |
Cotadutide (NCT04515849) | 2 | Participants who have chronic kidney disease with T2DM. Cotadutide (different doses) vs. placebo/semaglutide | Not yet published | ||
Cotadutide (NCT05364931) (PROXYMO-ADV) | 2/3 | Adult participants with non-cirrhotic and non-alcoholic steatohepatitis with fibrosis. Cotadutide vs. placebo | Not yet published | ||
Cotadutide (NCT03555994) | 2 | Overweight and obese subjects with T2DM Cotadutide vs. placebo/liraglutide | Not yet published | ||
Cotadutide (NCT03235050) | 2 | Overweight and obese subjects with T2D Cotadutide (different doses) vs. placebo/liraglutide | SAEs in all groups <1% and those related to CV seems to be slightly higher (but below 1%) in high-cotadutide dose groups | Not yet published | |
Cotadutide (NCT04019561) | 2 | Obese subjects with NAFLD/NASH cotadutide low/high dose vs. placebo | CV-related SAEs around 4% in treatment group and 2–3x AEs in the same group compared to placebo but not CV-related | Not yet published | |
GPI/GLP1/GCG | SAR441255 (NCT04521738) | Lean-to-overweight healthy subjects SAR441255 vs. placebo | No significant changes in blood pressure or in the electrocardiogram parameters | [76] | |
HM15211 (NCT03744182) | 1 | Obese subjects with NAFLD HM15211 vs. placebo | Not reported | [107] | |
HM15211 (NCT04505436) | 2 | Subjects with biopsy confirmed NASH HM15211 vs. placebo | Not reported | [107] |
5.3. Studies and Clinical Trials with GPL-1R/GIPR/GCGR Triagonists
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Joseph, J.J.; Deedwania, P.; Acharya, T.; Aguilar, D.; Bhatt, D.L.; Chyun, D.A.; Di Palo, K.E.; Golden, S.H.; Sperling, L.S. Comprehensive Management of Cardiovascular Risk Factors for Adults with Type 2 Diabetes: A Scientific Statement from the American Heart Association. Circulation 2022, 145, 722–759. [Google Scholar] [CrossRef] [PubMed]
- Timmis, A.; Townsend, N.; Gale, C.; Grobbee, R.; Maniadakis, N.; Flather, M.; Wilkins, E.; Wright, L.; Vos, R.; Bax, J.; et al. European Society of Cardiology: Cardiovascular Disease Statistics 2017. Eur. Heart J. 2018, 39, 508–579. [Google Scholar] [CrossRef] [PubMed]
- Herrington, W.; Lacey, B.; Sherliker, P.; Armitage, J.; Lewington, S. Epidemiology of Atherosclerosis and the Potential to Reduce the Global Burden of Atherothrombotic Disease. Circ. Res. 2016, 118, 535–546. [Google Scholar] [CrossRef]
- Libby, P.; Buring, J.E.; Badimon, L.; Hansson, G.K.; Deanfield, J.; Bittencourt, M.S.; Tokgözoğlu, L.; Lewis, E.F. Atherosclerosis. Nat. Rev. Dis. Prim. 2019, 5, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Saigusa, R.; Winkels, H.; Ley, K. T Cell Subsets and Functions in Atherosclerosis. Nat. Rev. Cardiol. 2020, 17, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Bäck, M.; Yurdagul, A.; Tabas, I.; Öörni, K.; Kovanen, P.T. Inflammation and Its Resolution in Atherosclerosis: Mediators and Therapeutic Opportunities; Nature Publishing Group: Berlin, Germany, 2019; Volume 16, pp. 389–406. [Google Scholar]
- Gomez, D.; Owens, G.K. Smooth Muscle Cell Phenotypic Switching in Atherosclerosis. Cardiovasc. Res. 2012, 95, 156–164. [Google Scholar] [CrossRef]
- Basatemur, G.L.; Jørgensen, H.F.; Clarke, M.C.H.; Bennett, M.R.; Mallat, Z. Vascular Smooth Muscle Cells in Atherosclerosis. Nat. Rev. Cardiol. 2019, 16, 727–744. [Google Scholar] [CrossRef]
- Potekhina, A.V.; Pylaeva, E.; Provatorov, S.; Ruleva, N.; Masenko, V.; Noeva, E.; Krasnikova, T.; Arefieva, T. Treg/Th17 Balance in Stable CAD Patients with Different Stages of Coronary Atherosclerosis. Atherosclerosis 2015, 238, 17–21. [Google Scholar] [CrossRef]
- Chen, W.; Schilperoort, M.; Cao, Y.; Shi, J.; Tabas, I.; Tao, W. Macrophage-Targeted Nanomedicine for the Diagnosis and Treatment of Atherosclerosis. Nat. Rev. Cardiol. 2021, 19, 228–249. [Google Scholar] [CrossRef]
- Hafiane, A. Vulnerable Plaque, Characteristics, Detection, and Potential Therapies. J. Cardiovasc. Dev. Dis. 2019, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Ridker, P.M.; Everett, B.M.; Pradhan, A.; MacFadyen, J.G.; Solomon, D.H.; Zaharris, E.; Mam, V.; Hasan, A.; Rosenberg, Y.; Iturriaga, E.; et al. Low-Dose Methotrexate for the Prevention of Atherosclerotic Events. N. Engl. J. Med. 2019, 380, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.-s.; He, Q.-z.; Qin, C.H.; Little, P.J.; Weng, J.-p.; Xu, S.-w. Therapeutic Potential of Colchicine in Cardiovascular Medicine: A Pharmacological Review. Acta Pharmacol. Sin. 2022, 43, 2173–2190. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Hervás, S.; González-Navarro, H. Anti-Inflammatory Therapies for Cardiovascular Disease: Signaling Pathways and Mechanisms. Rev. Esp. Cardiol. 2019, 72, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Roth, A.E.; Thornley, C.J.; Blackstone, R.P. Outcomes in Bariatric and Metabolic Surgery: An Updated 5-Year Review. Curr. Obes. Rep. 2020, 9, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Evers, S.S.; Sandoval, D.A.; Seeley, R.J. The Physiology and Molecular Underpinnings of the Effects of Bariatric Surgery on Obesity and Diabetes. Annu. Rev. Physiol. 2017, 79, 313–334. [Google Scholar] [CrossRef]
- Finan, B.; Capozzi, M.E.; Campbell, J.E. Repositioning Glucagon Action in the Physiology and Pharmacology of Diabetes. Diabetes 2020, 69, 532–541. [Google Scholar] [CrossRef]
- Campbell, J.E.; Drucker, D.J. Islet α Cells and Glucagon—Critical Regulators of Energy Homeostasis. Nat. Rev. Endocrinol. 2015, 11, 329–338. [Google Scholar] [CrossRef]
- Baggio, L.L.; Drucker, D.J. Biology of Incretins: GLP-1 and GIP. Gastroenterology 2007, 132, 2131–2157. [Google Scholar] [CrossRef]
- Tan, Q.; Akindehin, S.E.; Orsso, C.E.; Waldner, R.C.; DiMarchi, R.D.; Müller, T.D.; Haqq, A.M. Recent Advances in Incretin-Based Pharmacotherapies for the Treatment of Obesity and Diabetes. Front. Endocrinol. 2022, 13, 838410. [Google Scholar] [CrossRef]
- Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; et al. Glucagon-like Peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar]
- El, K.; Campbell, J.E. The Role of GIP in α-Cells and Glucagon Secretion. Peptides 2020, 125, 170213. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.A.; Heimesaat, M.M.; Orskov, C.; Holst, J.J.; Ebert, R.; Creutzfeldt, W. Preserved Incretin Activity of Glucagon-like Peptide 1 [7-36 Amide] but Not of Synthetic Human Gastric Inhibitory Polypeptide in Patients with Type-2 Diabetes Mellitus. J. Clin. Investig. 1993, 91, 301–307. [Google Scholar] [CrossRef] [PubMed]
- El, K.; Gray, S.M.; Capozzi, M.E.; Knuth, E.R.; Jin, E.; Svendsen, B.; Clifford, A.; Brown, J.L.; Encisco, S.E.; Chazotte, B.M.; et al. GIP Mediates the Incretin Effect and Glucose Tolerance by Dual Actions on α Cells and β Cells. Sci. Adv. 2021, 7, eabf1948. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, M.E.; DiMarchi, R.D.; Tschöp, M.H.; Finan, B.; Campbell, J.E. Targeting the Incretin/Glucagon System with Triagonists to Treat Diabetes. Endocr. Rev. 2018, 39, 719–738. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Ballester, M.; Hurtado-Genovés, G.; Taberner-Cortés, A.; Herrero-Cervera, A.; Martínez-Hervás, S.; González-Navarro, H. Therapies for the Treatment of Cardiovascular Disease Associated with Type 2 Diabetes and Dyslipidemia. Int. J. Mol. Sci. 2021, 22, 660. [Google Scholar] [CrossRef] [PubMed]
- Sell, H.; Blüher, M.; Klöting, N.; Schlich, R.; Willems, M.; Ruppe, F.; Knoefel, W.T.; Dietrich, A.; Fielding, B.A.; Arner, P.; et al. Adipose Dipeptidyl Peptidase-4 and Obesity: Correlation with Insulin Resistance and Depot-Specific Release from Adipose Tissue in Vivo and in Vitro. Diabetes Care 2013, 36, 4083–4090. [Google Scholar] [CrossRef]
- Zhong, J.; Maiseyeu, A.; Davis, S.N.; Rajagopalan, S. DPP4 in Cardiometabolic Disease: Recent Insights from the Laboratory and Clinical Trials of DPP4 Inhibition. Circ. Res. 2015, 116, 1491–1504. [Google Scholar] [CrossRef]
- Janah, L.; Kjeldsen, S.; Galsgaard, K.D.; Winther-Sørensen, M.; Stojanovska, E.; Pedersen, J.; Knop, F.K.; Holst, J.J.; Albrechtsen, N.J.W. Glucagon Receptor Signaling and Glucagon Resistance. Int. J. Mol. Sci. 2019, 20, 3314. [Google Scholar] [CrossRef]
- Yan, H.; Gu, W.; Yang, J.; Bi, V.; Shen, Y.; Lee, E.; Winters, K.A.; Komorowski, R.; Zhang, C.; Patel, J.J.; et al. Fully Human Monoclonal Antibodies Antagonizing the Glucagon Receptor Improve Glucose Homeostasis in Mice and Monkeys. J. Pharmacol. Exp. Ther. 2009, 329, 102–111. [Google Scholar] [CrossRef]
- Holst, J.J.; Bolette Hartmann, C.F.D.; Pedersen, J. GLP 1/2, Enteroglucagon, Glicentin, and Oxyntomodulin. Handb. Biol. Act. Pept. 2013, 1241–1250. [Google Scholar] [CrossRef]
- Harada, N.; Inagaki, N. Role of GIP receptor signaling in β-cell survival. Diabetol. Int. 2017, 8, 137–138. [Google Scholar] [CrossRef]
- Campbell, J.E. Targeting the GIPR for Obesity: To Agonize or Antagonize? Potential Mechanisms. Mol. Metab. 2021, 46, 101139. [Google Scholar] [CrossRef]
- Alonso, N.; Teresa Julián, M.; Puig-Domingo, M.; Vives-Pi, M. Incretin Hormones as Immunomodulators of Atherosclerosis. Front. Endocrinol. 2012, 3, 112. [Google Scholar] [CrossRef]
- Killion, E.A.; Chen, M.; Falsey, J.R.; Sivits, G.; Hager, T.; Atangan, L.; Helmering, J.; Lee, J.; Li, H.; Wu, B.; et al. Chronic Glucose-Dependent Insulinotropic Polypeptide Receptor (GIPR) Agonism Desensitizes Adipocyte GIPR Activity Mimicking Functional GIPR Antagonism. Nat. Commun. 2020, 11, 4981. [Google Scholar] [CrossRef]
- Lafferty, R.A.; O’Harte, F.P.M.; Irwin, N.; Gault, V.A.; Flatt, P.R. Proglucagon-Derived Peptides as Therapeutics. Front. Endocrinol. 2021, 12, 689678. [Google Scholar] [CrossRef]
- Drucker, D.J. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018, 27, 740–756. [Google Scholar] [CrossRef]
- Aroda, V.R. A Review of GLP-1 Receptor Agonists: Evolution and Advancement, through the Lens of Randomised Controlled Trials; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2018; Volume 20, pp. 22–33. [Google Scholar]
- Baggio, L.L.; Drucker, D.J. Harnessing the therapeutic potential of glucagon-like peptide-1: A critical review. Treat. Endocrinol. 2002, 1, 117–125. [Google Scholar] [CrossRef]
- Verma, S.; McGuire, D.K.; Bain, S.C.; Bhatt, D.L.; Leiter, L.A.; Mazer, C.D.; Monk Fries, T.; Pratley, R.E.; Rasmussen, S.; Vrazic, H.; et al. Effects of Glucagon-like Peptide-1 Receptor Agonists Liraglutide and Semaglutide on Cardiovascular and Renal Outcomes across Body Mass Index Categories in Type 2 Diabetes: Results of the LEADER and SUSTAIN 6 Trials. Diabetes Obes. Metab. 2020, 22, 2487–2492. [Google Scholar] [CrossRef]
- Andrikou, E.; Tsioufis, C.; Andrikou, I.; Leontsinis, I.; Tousoulis, D.; Papanas, N. GLP-1 Receptor Agonists and Cardiovascular Outcome Trials: An Update. Hell. J. Cardiol. 2019, 60, 347–351. [Google Scholar] [CrossRef]
- Aroda, V.R.; Blonde, L.; Pratley, R.E. A New Era for Oral Peptides : SNAC and the Development of Oral Semaglutide for the Treatment of Type 2 Diabetes. Rev. Endocr. Metab. Disord. 2022, 1–16. [Google Scholar] [CrossRef]
- Lau, J.; Bloch, P.; Schäffer, L.; Pettersson, I.; Spetzler, J.; Kofoed, J.; Madsen, K.; Knudsen, L.B.; McGuire, J.; Steensgaard, D.B.; et al. Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide. J. Med. Chem. 2015, 58, 7370–7380. [Google Scholar] [CrossRef]
- Alhindi, Y.; Avery, A. The Efficacy and Safety of Oral Semaglutide for Glycaemic Management in Adults with Type 2 Diabetes Compared to Subcutaneous Semaglutide, Placebo, and Other GLP-1 RA Comparators: A Systematic Review and Network Meta-Analysis. Contemp. Clin. Trials Commun. 2022, 28, 100944. [Google Scholar] [CrossRef]
- Buckley, S.T.; Bækdal, T.A.; Vegge, A.; Maarbjerg, S.J.; Pyke, C.; Ahnfelt-Rønne, J.; Madsen, K.G.; Schéele, S.G.; Alanentalo, T.; Kirk, R.K.; et al. Transcellular Stomach Absorption of a Derivatized Glucagon-like Peptide-1 Receptor Agonist. Sci. Transl. Med. 2018, 10, eaar7047. [Google Scholar] [CrossRef]
- Bailey, C.J. GIP Analogues and the Treatment of Obesity-Diabetes. Peptides 2020, 125, 170202. [Google Scholar] [CrossRef]
- Müller, T.D.; Clemmensen, C.; Finan, B.; Dimarchi, R.D.; Tschöp, M.H. Anti-Obesity Therapy: From Rainbow Pills to Polyagonists. Pharmacol. Rev. 2018, 70, 712–746. [Google Scholar] [CrossRef]
- Tschöp, M.H.; Finan, B.; Clemmensen, C.; Gelfanov, V.; Perez-Tilve, D.; Müller, T.D.; DiMarchi, R.D. Unimolecular Polypharmacy for Treatment of Diabetes and Obesity. Cell Metab. 2016, 24, 51–62. [Google Scholar] [CrossRef]
- Wynne, K.; Park, A.J.; Small, C.J.; Patterson, M.; Ellis, S.M.; Murphy, K.G.; Wren, A.M.; Frost, G.S.; Meeran, K.; Ghatei, M.A.; et al. Subcutaneous Oxyntomodulin Reduces Body Weight in Overweight and Obese Subjects: A Double-Blind, Randomized, Controlled Trial. Diabetes 2005, 54, 2390–2395. [Google Scholar] [CrossRef]
- Evers, A.; Haack, T.; Lorenz, M.; Bossart, M.; Elvert, R.; Henkel, B.; Stengelin, S.; Kurz, M.; Glien, M.; Dudda, A.; et al. Design of Novel Exendin-Based Dual Glucagon-like Peptide 1 (GLP-1)/Glucagon Receptor Agonists. J. Med. Chem. 2017, 60, 4293–4303. [Google Scholar] [CrossRef]
- Ambery, P.D.; Klammt, S.; Posch, M.G.; Petrone, M.; Pu, W.; Rondinone, C.; Jermutus, L.; Hirshberg, B. MEDI0382, a GLP-1/Glucagon Receptor Dual Agonist, Meets Safety and Tolerability Endpoints in a Single-Dose, Healthy-Subject, Randomized, Phase 1 Study. Br. J. Clin. Pharmacol. 2018, 84, 2325–2335. [Google Scholar] [CrossRef]
- Eriksson, O.; Haack, T.; Hijazi, Y.; Teichert, L.; Tavernier, V.; Laitinen, I.; Berglund, J.E.; Antoni, G.; Velikyan, I.; Johansson, L.; et al. Receptor Occupancy of Dual Glucagon-like Peptide 1/Glucagon Receptor Agonist SAR425899 in Individuals with Type 2 Diabetes. Sci. Rep. 2020, 10, 16758. [Google Scholar] [CrossRef]
- Ward, B.P.; Ottaway, N.L.; Perez-Tilve, D.; Ma, D.; Gelfanov, V.M.; Tschöp, M.H.; DiMarchi, R.D. Peptide Lipidation Stabilizes Structure to Enhance Biological Function. Mol. Metab. 2013, 2, 468–479. [Google Scholar] [CrossRef] [PubMed]
- Chabenne, J.; Chabenne, M.D.M.; Zhao, Y.; Levy, J.; Smiley, D.; Gelfanov, V.; DiMarchi, R. A Glucagon Analog Chemically Stabilized for Immediate Treatment of Life-Threatening Hypoglycemia. Mol. Metab. 2014, 3, 293–300. [Google Scholar] [CrossRef]
- Ji, L.; Jiang, H.; An, P.; Deng, H.; Liu, M.; Li, L.; Feng, L.; Song, B.; Han-Zhang, H.; Ma, Q.; et al. IBI362 (LY3305677), a Weekly-Dose GLP-1 and Glucagon Receptor Dual Agonist, in Chinese Adults with Overweight or Obesity: A Randomised, Placebo-Controlled, Multiple Ascending Dose Phase 1b Study. EClinicalMedicine 2021, 39, 101088. [Google Scholar] [CrossRef] [PubMed]
- Nahra, R.; Wang, T.; Gadde, K.M.; Oscarsson, J.; Stumvoll, M.; Jermutus, L.; Hirshberg, B.; Ambery, P. Effects of Cotadutide on Metabolic and Hepatic Parameters in Adults with Overweight or Obesity and Type 2 Diabetes: A 54-Week Randomized Phase 2b Study. Diabetes Care 2021, 44, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
- Ambery, P.; Parker, V.E.; Stumvoll, M.; Posch, M.G.; Heise, T.; Plum-Moerschel, L.; Tsai, L.F.; Robertson, D.; Jain, M.; Petrone, M.; et al. MEDI0382, a GLP-1 and Glucagon Receptor Dual Agonist, in Obese or Overweight Patients with Type 2 Diabetes: A Randomised, Controlled, Double-Blind, Ascending Dose and Phase 2a Study. Lancet 2018, 391, 2607–2618. [Google Scholar] [CrossRef]
- Henderson, S.J.; Konkar, A.; Hornigold, D.C.; Trevaskis, J.L.; Jackson, R.; Fritsch Fredin, M.; Jansson-Löfmark, R.; Naylor, J.; Rossi, A.; Bednarek, M.A.; et al. Robust Anti-Obesity and Metabolic Effects of a Dual GLP-1/Glucagon Receptor Peptide Agonist in Rodents and Non-Human Primates. Diabetes Obes. Metab. 2016, 18, 1176–1190. [Google Scholar] [CrossRef]
- Kristensen, S.L.; Rørth, R.; Jhund, P.S.; Docherty, K.F.; Sattar, N.; Preiss, D.; Køber, L.; Petrie, M.C.; McMurray, J.J.V. Cardiovascular, Mortality, and Kidney Outcomes with GLP-1 Receptor Agonists in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cardiovascular Outcome Trials. Lancet Diabetes Endocrinol. 2019, 7, 776–785. [Google Scholar] [CrossRef]
- Rizvi, A.A.; Rizzo, M. The Emerging Role of Dual GLP-1 and GIP Receptor Agonists in Glycemic Management and Cardiovascular Risk Reduction. Diabetes, Metab. Syndr. Obes. Targets Ther. 2022, 15, 1023–1030. [Google Scholar] [CrossRef]
- Holst, J.J. The Incretin System in Healthy Humans: The Role of GIP and GLP-1. Metabolism 2019, 96, 46–55. [Google Scholar] [CrossRef]
- Finan, B.; Ma, T.; Ottaway, N.; Müller, T.D.; Habegger, K.M.; Heppner, K.M.; Kirchner, H.; Holland, J.; Hembree, J.; Raver, C.; et al. Unimolecular Dual Incretins Maximize Metabolic Benefits in Rodents, Monkeys, and Humans. Sci. Transl. Med. 2013, 5, 209ra151. [Google Scholar] [CrossRef]
- Knerr, P.J.; Mowery, S.A.; Douros, J.D.; Premdjee, B.; Hjøllund, K.R.; He, Y.; Maria, A.; Hansen, K.; Olsen, A.K.; Perez-tilve, D.; et al. Next Generation GLP-1/GIP/Glucagon Triple Agonists Normalize Body Weight in Obese Mice. Mol. Metab. 2022, 63, 101533. [Google Scholar] [CrossRef] [PubMed]
- Frias, J.P.; Nauck, M.A.; Van, J.; Kutner, M.E.; Cui, X.; Benson, C.; Urva, S.; Gimeno, R.E.; Milicevic, Z.; Robins, D.; et al. Efficacy and Safety of LY3298176, a Novel Dual GIP and GLP-1 Receptor Agonist, in Patients with Type 2 Diabetes: A Randomised, Placebo-Controlled and Active Comparator-Controlled Phase 2 Trial. Lancet 2018, 392, 2180–2193. [Google Scholar] [CrossRef]
- Frias, J.P.; Bastyr, E.J.; Vignati, L.; Tschöp, M.H.; Schmitt, C.; Owen, K.; Christensen, R.H.; DiMarchi, R.D. The Sustained Effects of a Dual GIP/GLP-1 Receptor Agonist, NNC0090-2746, in Patients with Type 2 Diabetes. Cell Metab. 2017, 26, 343–352.e2. [Google Scholar] [CrossRef] [PubMed]
- Christensen, P.; Chavda, V.P.; Ajabiya, J.; Teli, D.; Bojarska, J.; Apostolopoulos, V. Tirzepatide, a New Era of Dual-Targeted Treatment for Diabetes and Obesity: A Mini-Review. Molecules 2022, 27, 4315. [Google Scholar] [CrossRef]
- Østergaard, S.; Paulsson, J.F.; Kofoed, J.; Zosel, F.; Olsen, J.; Jeppesen, C.B.; Spetzler, J.; Ynddal, L.; Schleiss, L.G.; Christoffersen, B.Ø.; et al. The Effect of Fatty Diacid Acylation of Human PYY3-36 on Y2 Receptor Potency and Half-Life in Minipigs. Sci. Rep. 2021, 11, 21179. [Google Scholar] [CrossRef]
- Coskun, T.; Sloop, K.W.; Loghin, C.; Alsina-Fernandez, J.; Urva, S.; Bokvist, K.B.; Cui, X.; Briere, D.A.; Cabrera, O.; Roell, W.C.; et al. LY3298176, a Novel Dual GIP and GLP-1 Receptor Agonist for the Treatment of Type 2 Diabetes Mellitus: From Discovery to Clinical Proof of Concept. Mol. Metab. 2018, 18, 3–14. [Google Scholar] [CrossRef]
- Frederick, M.O.; Boyse, R.A.; Braden, T.M.; Calvin, J.R.; Campbell, B.M.; Changi, S.M.; Coffin, S.R.; Condon, C.; Gowran, O.; McClary Groh, J.; et al. Kilogram-Scale GMP Manufacture of Tirzepatide Using a Hybrid SPPS/LPPS Approach with Continuous Manufacturing. Org. Process Res. Dev. 2021, 25, 1628–1636. [Google Scholar] [CrossRef]
- Schmitt, C.; Portron, A.; Jadidi, S.; Sarkar, N.; DiMarchi, R. Pharmacodynamics, Pharmacokinetics and Safety of Multiple Ascending Doses of the Novel Dual Glucose-Dependent Insulinotropic Polypeptide/Glucagon-like Peptide-1 Agonist RG7697 in People with Type 2 Diabetes Mellitus. Diabetes Obes. Metab. 2017, 19, 1436–1445. [Google Scholar] [CrossRef]
- Portron, A.; Jadidi, S.; Sarkar, N.; DiMarchi, R.; Schmitt, C. Pharmacodynamics, Pharmacokinetics, Safety and Tolerability of the Novel Dual Glucose-Dependent Insulinotropic Polypeptide/Glucagon-like Peptide-1 Agonist RG7697 after Single Subcutaneous Administration in Healthy Subjects. Diabetes Obes. Metab. 2017, 19, 1446–1453. [Google Scholar] [CrossRef]
- Hasib, A. Multiagonist Unimolecular Peptides for Obesity and Type 2 Diabetes: Current Advances and Future Directions. Clin. Med. Insights Endocrinol. Diabetes 2020, 13, 1–8. [Google Scholar] [CrossRef]
- Tschöp, M.; DiMarchi, R. Single-Molecule Combinatorial Therapeutics for Treating Obesity and Diabetes. Diabetes 2017, 66, 1766–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finan, B.; Yang, B.; Ottaway, N.; Smiley, D.L.; Ma, T.; Clemmensen, C.; Chabenne, J.; Zhang, L.; Habegger, K.M.; Fischer, K.; et al. A Rationally Designed Monomeric Peptide Triagonist Corrects Obesity and Diabetes in Rodents. Nat. Med. 2015, 21, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Bhat, V.K.; Kerr, B.D.; Flatt, P.R.; Gault, V.A. A Novel GIP-Oxyntomodulin Hybrid Peptide Acting through GIP, Glucagon and GLP-1 Receptors Exhibits Weight Reducing and Anti-Diabetic Properties. Biochem. Pharmacol. 2013, 85, 1655–1662. [Google Scholar] [CrossRef] [PubMed]
- Bossart, M.; Wagner, M.; Elvert, R.; Evers, A.; Hübschle, T.; Kloeckener, T.; Lorenz, K.; Moessinger, C.; Eriksson, O.; Velikyan, I.; et al. Effects on Weight Loss and Glycemic Control with SAR441255, a Potent Unimolecular Peptide GLP-1/GIP/GCG Receptor Triagonist. Cell Metab. 2022, 34, 59–74.e10. [Google Scholar] [CrossRef]
- Zhao, S.; Yan, Z.; Du, Y.; Li, Z.; Tang, C.; Jing, L.; Sun, L.; Yang, Q.; Tang, X.; Yuan, Y.; et al. A GLP-1/Glucagon (GCG)/CCK2 Receptors Tri-Agonist Provides New Therapy for Obesity and Diabetes. Br. J. Pharmacol. 2022, 179, 4360–4377. [Google Scholar] [CrossRef]
- Rakipovski, G.; Rolin, B.; Nøhr, J.; Klewe, I.; Frederiksen, K.S.; Augustin, R.; Hecksher-Sørensen, J.; Ingvorsen, C.; Polex-Wolf, J.; Knudsen, L.B. The GLP-1 Analogs Liraglutide and Semaglutide Reduce Atherosclerosis in ApoE −/− and LDLr −/− Mice by a Mechanism That Includes Inflammatory Pathways. JACC Basic Transl. Sci. 2018, 3, 844–857. [Google Scholar] [CrossRef]
- Mori, Y.; Matsui, T.; Hirano, T.; Yamagishi, S.I. Gip as a Potential Therapeutic Target for Atherosclerotic Cardiovascular Disease—A Systematic Review. Int. J. Mol. Sci. 2020, 21, 1509. [Google Scholar] [CrossRef]
- Boer, G.A.; Keenan, S.N.; Miotto, P.M.; Holst, J.J.; Watt, M.J. GIP Receptor Deletion in Mice Confers Resistance to High-Fat Diet-Induced Obesity via Alterations in Energy Expenditure and Adipose Tissue Lipid Metabolism. Am. J. Physiol. Metab. 2021, 320, E835–E845. [Google Scholar] [CrossRef]
- Mroz, P.A.; Finan, B.; Gelfanov, V.; Yang, B.; Tschöp, M.H.; DiMarchi, R.D.; Perez-Tilve, D. Optimized GIP Analogs Promote Body Weight Lowering in Mice through GIPR Agonism Not Antagonism. Mol. Metab. 2019, 20, 51–62. [Google Scholar] [CrossRef]
- Zhang, Q.; Delessa, C.T.; Augustin, R.; Bakhti, M.; Colldén, G.; Drucker, D.J.; Feuchtinger, A.; Caceres, C.G.; Grandl, G.; Harger, A.; et al. The Glucose-Dependent Insulinotropic Polypeptide (GIP) Regulates Body Weight and Food Intake via CNS-GIPR Signaling. Cell Metab. 2021, 33, 833–844.e5. [Google Scholar] [CrossRef]
- Kim, S.J.; Nian, C.; Karunakaran, S.; Clee, S.M.; Isales, C.M.; McIntosh, C.H.S. GIP-Overexpressing Mice Demonstrate Reduced Diet-Induced Obesity and Steatosis, and Improved Glucose Homeostasis. PLoS ONE 2012, 7, e40156. [Google Scholar] [CrossRef] [PubMed]
- Nogi, Y.; Nagashima, M.; Terasaki, M.; Nohtomi, K.; Watanabe, T.; Hirano, T. Glucose-Dependent Insulinotropic Polypeptide Prevents the Progression of Macrophage-Driven Atherosclerosis in Diabetic Apolipoprotein E-Null Mice. PLoS ONE 2012, 7, e35683. [Google Scholar] [CrossRef]
- Nagashima, M.; Watanabe, T.; Terasaki, M.; Tomoyasu, M.; Nohtomi, K.; Kim-Kaneyama, J.; Miyazaki, A.; Hirano, T. Native Incretins Prevent the Development of Atherosclerotic Lesions in Apolipoprotein e Knockout Mice. Diabetologia 2011, 54, 2649–2659. [Google Scholar] [CrossRef] [PubMed]
- Kahles, F.; Liberman, A.; Halim, C.; Rau, M.; Möllmann, J.; Mertens, R.W.; Rückbeil, M.; Diepolder, I.; Walla, B.; Diebold, S.; et al. The Incretin Hormone GIP Is Upregulated in Patients with Atherosclerosis and Stabilizes Plaques in ApoE−/− Mice by Blocking Monocyte/Macrophage Activation. Mol. Metab. 2018, 14, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Terasaki, M.; Yashima, H.; Mori, Y.; Saito, T.; Shiraga, Y.; Kawakami, R.; Ohara, M.; Fukui, T.; Hirano, T.; Yamada, Y.; et al. Glucose-Dependent Insulinotropic Polypeptide Suppresses Foam Cell Formation of Macrophages through Inhibition of the Cyclin-Dependent Kinase 5-Cd36 Pathway. Biomedicines 2021, 9, 832. [Google Scholar] [CrossRef] [PubMed]
- Elvert, R.; Herling, A.W.; Bossart, M.; Weiss, T.; Zhang, B.; Wenski, P.; Wandschneider, J.; Kleutsch, S.; Butty, U.; Kannt, A.; et al. Running on Mixed Fuel-Dual Agonistic Approach of GLP-1 and GCG Receptors Leads to Beneficial Impact on Body Weight and Blood Glucose Control: A Comparative Study between Mice and Non-Human Primates. Diabetes. Obes. Metab. 2018, 20, 1836–1851. [Google Scholar] [CrossRef]
- Chen, Y.; Mezo, A.; Coskun, T.; Song, M.; Roell, W.C.; Bokvist, K.B.; Moyers, J.S.; Thomas, M.K.; Valenzuela, F.; Qu, H. 682-P: Novel Dual Glucagon and Glucagon-Like Peptide-1 Receptor Agonist LY3305677 Improves Glucose Control, Reduces Body Weight, and Increases Energy Expenditure in Mice. Diabetes 2021, 70, 682. [Google Scholar] [CrossRef]
- Boland, M.L.; Laker, R.C.; Mather, K.; Nawrocki, A.; Oldham, S.; Boland, B.B.; Lewis, H.; Conway, J.; Naylor, J.; Guionaud, S.; et al. Resolution of NASH and Hepatic Fibrosis by the GLP-1R and GCGR Dual-Agonist Cotadutide via Modulating Mitochondrial Function and Lipogenesis. Nat. Metab. 2020, 2, 413–431. [Google Scholar] [CrossRef]
- Sachs, S.; Niu, L.; Geyer, P.; Jall, S.; Kleinert, M.; Feuchtinger, A.; Stemmer, K.; Brielmeier, M.; Finan, B.; DiMarchi, R.D.; et al. Plasma Proteome Profiles Treatment Efficacy of Incretin Dual Agonism in Diet-induced Obese Female and Male Mice. Diabetes Obes. Metab. 2020, 23, 195–207. [Google Scholar] [CrossRef]
- Samms, R.J.; Christe, M.E.; Collins, K.A.L.; Pirro, V.; Droz, B.A.; Holland, A.K.; Friedrich, J.L.; Wojnicki, S.; Konkol, D.L.; Cosgrove, R.; et al. GIPR Agonism Mediates Weight-Independent Insulin Sensitization by Tirzepatide in Obese Mice. J. Clin. Investig. 2021, 131, e146353. [Google Scholar] [CrossRef]
- Jall, S.; Sachs, S.; Clemmensen, C.; Finan, B.; Neff, F.; DiMarchi, R.D.; Tschöp, M.H.; Müller, T.D.; Hofmann, S.M. Monomeric GLP-1/GIP/Glucagon Triagonism Corrects Obesity, Hepatosteatosis, and Dyslipidemia in Female Mice. Mol. Metab. 2017, 6, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.Y.; Kim, J.K.; Lee, J.S.; Park, E.; Kim, Y.H.; Jung, S.Y.; Kim, S.J. Effect of a Novel Long-Acting GLP-1/GIP/Glucagon Triple Agonist (HM15211) in a NASH and Fibrosis Animal Model. Diabetes 2018, 67, 1106. [Google Scholar] [CrossRef]
- Cui, J.; Shang, A.; Wang, W.; Chen, W. Rational Design of a GLP-1/GIP/Gcg Receptor Triagonist to Correct Hyperglycemia, Obesity and Diabetic Nephropathy in Rodent Animals. Life Sci. 2020, 260, 118339. [Google Scholar] [CrossRef] [PubMed]
- Helmstädter, J.; Frenis, K.; Filippou, K.; Grill, A.; Dib, M.; Kalinovic, S.; Pawelke, F.; Kus, K.; Kröller-Schön, S.; Oelze, M.; et al. Endothelial GLP-1 (Glucagon-Like Peptide-1) Receptor Mediates Cardiovascular Protection by Liraglutide In Mice With Experimental Arterial Hypertension. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 145–158. [Google Scholar] [CrossRef]
- Sarnobat, D.; Moffett, R.C.; Gault, V.A.; Tanday, N.; Reimann, F.; Gribble, F.M.; Flatt, P.R.; Irwin, N. Effects of Long-Acting GIP, Xenin and Oxyntomodulin Peptide Analogues on Alpha-Cell Transdifferentiation in Insulin-Deficient Diabetic GluCreERT2;ROSA26-EYFP Mice. Peptides 2020, 125, 170205. [Google Scholar] [CrossRef]
- Trujillo, J.M.; Nuffer, W.; Smith, B.A. GLP-1 Receptor Agonists: An Updated Review of Head-to-Head Clinical Studies. Ther. Adv. Endocrinol. Metab. 2021, 12, 2042018821997320. [Google Scholar] [CrossRef]
- Sattar, N.; Lee, M.M.Y.; Kristensen, S.L.; Branch, K.R.H.; Del Prato, S.; Khurmi, N.S.; Lam, C.S.P.; Lopes, R.D.; McMurray, J.J.V.; Pratley, R.E.; et al. Cardiovascular, Mortality, and Kidney Outcomes with GLP-1 Receptor Agonists in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Trials. Lancet Diabetes Endocrinol. 2021, 9, 653–662. [Google Scholar] [CrossRef]
- Naik, V.; Leaf, E.M.; Hu, J.H.; Yang, H.-Y.; Nguyen, N.B.; Giachelli, C.M.; Speer, M.Y. Sources of Cells That Contribute to Atherosclerotic Intimal Calcification: An in Vivo Genetic Fate Mapping Study. Cardiovasc. Res. 2012, 94, 545–554. [Google Scholar] [CrossRef]
- Saxena, A.R.; Gorman, D.N.; Esquejo, R.M.; Bergman, A.; Chidsey, K.; Buckeridge, C.; Griffith, D.A.; Kim, A.M. Danuglipron (PF-06882961) in Type 2 Diabetes: A Randomized, Placebo-Controlled, Multiple Ascending-Dose Phase 1 Trial. Nat. Med. 2021, 27, 1079–1087. [Google Scholar] [CrossRef]
- Min, T.; Bain, S.C. The Role of Tirzepatide, Dual GIP and GLP-1 Receptor Agonist, in the Management of Type 2 Diabetes: The SURPASS Clinical Trials. Diabetes Ther. 2021, 12, 143–157. [Google Scholar] [CrossRef]
- Sattar, N.; McGuire, D.K.; Pavo, I.; Weerakkody, G.J.; Nishiyama, H.; Wiese, R.J.; Zoungas, S. Tirzepatide Cardiovascular Event Risk Assessment: A Pre-Specified Meta-Analysis. Nat. Med. 2022, 28, 591. [Google Scholar] [CrossRef] [PubMed]
- Del Prato, S.; Kahn, S.E.; Pavo, I.; Weerakkody, G.J.; Yang, Z.; Doupis, J.; Aizenberg, D.; Wynne, A.G.; Riesmeyer, J.S.; Heine, R.J.; et al. Tirzepatide versus Insulin Glargine in Type 2 Diabetes and Increased Cardiovascular Risk (SURPASS-4): A Randomised, Open-Label, Parallel-Group, Multicentre, Phase 3 Trial. Lancet 2021, 398, 1811–1824. [Google Scholar] [CrossRef]
- Fralick, M.; Schneeweiss, S.; Patorno, E. Risk of Diabetic Ketoacidosis after Initiation of an SGLT2 Inhibitor. N. Engl. J. Med. 2017, 376, 2300–2302. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide Once Weekly for the Treatment of Obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef]
- Jepsen, M.M.; Christensen, M.B. Emerging Glucagon-like Peptide 1 Receptor Agonists for the Treatment of Obesity. Expert Opin. Emerg. Drugs 2021, 26, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Schiavon, M.; Visentin, R.; Göbel, B.; Riz, M.; Cobelli, C.; Klabunde, T.; Dalla Man, C. Improved Postprandial Glucose Metabolism in Type 2 Diabetes by the Dual Glucagon-like Peptide-1/Glucagon Receptor Agonist SAR425899 in Comparison with Liraglutide. Diabetes, Obes. Metab. 2021, 23, 1795–1805. [Google Scholar] [CrossRef]
- Ali, M.M.; Hafez, A.; Abdelgalil, M.S.; Hasan, M.T.; El-Ghannam, M.M.; Ghogar, O.M.; Elrashedy, A.A.; Abd-ElGawad, M. Impact of Cotadutide Drug on Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. BMC Endocr. Disord. 2022, 22, 113. [Google Scholar] [CrossRef]
- Brandt, S.J.; Götz, A.; Tschöp, M.H.; Müller, T.D. Gut Hormone Polyagonists for the Treatment of Type 2 Diabetes. Peptides 2018, 100, 190–201. [Google Scholar] [CrossRef]
- Friedrichsen, M.; Endahl, L.; Kreiner, F.F.; Goldwater, R.; Kankam, M.; Toubro, S.; Nygård, S.B. Glucagon/GLP-1 Receptor Co-Agonist NNC9204-1177 Reduced Body Weight in Adults with Overweight or Obesity but Was Associated with Safety Issues. medRxiv 2022. [Google Scholar] [CrossRef]
- Alba, M.; Yee, J.; Frustaci, M.E.; Samtani, M.N.; Fleck, P. Efficacy and Safety of Glucagon-like Peptide-1/Glucagon Receptor Co-Agonist JNJ-64565111 in Individuals with Obesity without Type 2 Diabetes Mellitus: A Randomized Dose-Ranging Study. Clin. Obes. 2021, 11, e12432. [Google Scholar] [CrossRef]
- Rosenstock, J.; Marx, N.; Neubacher, D.; Seck, T.; Patel, S.; Woerle, H.J.; Johansen, O.E. Cardiovascular Safety of Linagliptin in Type 2 Diabetes: A Comprehensive Patient-Level Pooled Analysis of Prospectively Adjudicated Cardiovascular Events. Cardiovasc. Diabetol. 2015, 14, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludvik, B.; Giorgino, F.; Jodar, E.; Frias, J.P.; Lando, L.F.; Brown, K.; Bray, R.; Rodríguez, Á. 78-LB: Efficacy and Safety of Tirzepatide, a Dual GIP/GLP-1 Receptor Agonist, Compared with Insulin Degludec in Patients with Type 2 Diabetes (SURPASS-3). Diabetes 2021, 70, 78. [Google Scholar] [CrossRef]
- Dahl, D.; Onishi, Y.; Norwood, P.; Huh, R.; Bray, R.; Patel, H.; Rodríguez, Á. Effect of Subcutaneous Tirzepatide vs Placebo Added to Titrated Insulin Glargine on Glycemic Control in Patients with Type 2 Diabetes: The SURPASS-5 Randomized Clinical Trial. JAMA 2022, 327, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Schnell, O.; Battelino, T.; Bergenstal, R.; Blüher, M.; Böhm, M.; Brosius, F.; Carr, R.D.; Ceriello, A.; Forst, T.; Giorgino, F.; et al. Report from the CVOT Summit 2021: New Cardiovascular, Renal, and Glycemic Outcomes. Cardiovasc. Diabetol. 2022, 21, 50. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Martí, E.; Hurtado-Genovés, G.; Aguilar-Ballester, M.; Martínez-Hervás, S.; González-Navarro, H. Novel Therapies for Cardiometabolic Disease: Recent Findings in Studies with Hormone Peptide-Derived G Protein Coupled Receptor Agonists. Nutrients 2022, 14, 3775. https://doi.org/10.3390/nu14183775
Jiménez-Martí E, Hurtado-Genovés G, Aguilar-Ballester M, Martínez-Hervás S, González-Navarro H. Novel Therapies for Cardiometabolic Disease: Recent Findings in Studies with Hormone Peptide-Derived G Protein Coupled Receptor Agonists. Nutrients. 2022; 14(18):3775. https://doi.org/10.3390/nu14183775
Chicago/Turabian StyleJiménez-Martí, Elena, Gema Hurtado-Genovés, María Aguilar-Ballester, Sergio Martínez-Hervás, and Herminia González-Navarro. 2022. "Novel Therapies for Cardiometabolic Disease: Recent Findings in Studies with Hormone Peptide-Derived G Protein Coupled Receptor Agonists" Nutrients 14, no. 18: 3775. https://doi.org/10.3390/nu14183775
APA StyleJiménez-Martí, E., Hurtado-Genovés, G., Aguilar-Ballester, M., Martínez-Hervás, S., & González-Navarro, H. (2022). Novel Therapies for Cardiometabolic Disease: Recent Findings in Studies with Hormone Peptide-Derived G Protein Coupled Receptor Agonists. Nutrients, 14(18), 3775. https://doi.org/10.3390/nu14183775