Randomized Trial of Early Enhanced Parenteral Nutrition and Later Neurodevelopment in Preterm Infants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Intervention
2.4. Outpatient Neurodevelopmental Follow-Up
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Embleton, N.D. Early Nutrition and Later Outcomes in Preterm Infants. Nutr. Growth 2013, 106, 26–32. [Google Scholar]
- McKenzie, B.L.; Edmonds, L.; Thomson, R.; Haszard, J.J.; Houghton, L.A. Nutrition Practices and Predictors of Postnatal Growth in Preterm Infants During Hospitalization: A Longitudinal Study. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Ehrenkranz, R.A. Early nutritional support and outcomes in ELBW infants. Early Hum. Dev. 2010, 86, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Hiltunen, H.; Löyttyniemi, E.; Isolauri, E.; Rautava, S. Early Nutrition and Growth until the Corrected Age of 2 Years in Extremely Preterm Infants. Neonatology 2018, 113, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Darrow, M.C.J.; Li, H.; Prince, A.; McClary, J.; Walsh, M.C. Improving extrauterine growth: Evaluation of an optimized, standardized neonatal parenteral nutrition protocol. J. Perinatol. 2019, 39, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Can, E.; Bülbül, A.; Uslu, S.; Cömert, S.; Bolat, F.; Nuhoğlu, A. Effects of aggressive parenteral nutrition on growth and clinical outcome in preterm infants. Pediatr. Int. 2012, 54, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, E.B.; Morley, R.; Lucas, A. Early Diet and General Cognitive Outcome at Adolescence in Children Born at or Below 30 Weeks Gestation. J. Pediatr. 2009, 155, 229–234. [Google Scholar] [CrossRef]
- Cormack, B.E.; Harding, J.E.; Miller, S.P.; Bloomfield, F.H. The Influence of Early Nutrition on Brain Growth and Neurodevelopment in Extremely Preterm Babies: A Narrative Review. Nutrients 2019, 11, 2029. [Google Scholar] [CrossRef]
- Sammallahti, S.; Pyhälä, R.; Lahti, M.; Lahti, J.; Pesonen, A.-K.; Heinonen, K.; Hovi, P.; Eriksson, J.G.; Strang-Karlsson, S.; Andersson, S.; et al. Infant Growth after Preterm Birth and Neurocognitive Abilities in Young Adulthood. J. Pediatr. 2014, 165, 1109–1115.e3. [Google Scholar] [CrossRef]
- Ramel, S.E.; Gray, H.L.; Christiansen, E.; Boys, C.; Georgieff, M.K.; Demerath, E.W. Greater Early Gains in Fat-Free Mass, but Not Fat Mass, Are Associated with Improved Neurodevelopment at 1 Year Corrected Age for Prematurity in Very Low Birth Weight Preterm Infants. J. Pediatr. 2016, 173, 108–115. [Google Scholar] [CrossRef]
- Ramel, S.E.; Haapala, J.; Super, J.; Boys, C.; Demerath, E.W. Nutrition, Illness and Body Composition in Very Low Birth Weight Preterm Infants: Implications for Nutritional Management and Neurocognitive Outcomes. Nutrients 2020, 12, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreault, S.; Bellanger, A.; Berneau, P.; de La Pintière, A.; Lallemant, C.; Beuchée, A. Impact of early protein and energy intakes on neurodevelopment at 2 years of corrected age in very low birth weight infants: A single-center observational study. Baud O, editor. PLoS ONE 2019, 14, e0218887. [Google Scholar] [CrossRef] [PubMed]
- Terrin, G.; Boscarino, G.; Gasparini, C.; Di Chiara, M.; Faccioli, F.; Onestà, E.; Parisi, P.; Spalice, A.; De Nardo, M.C.; Dito, L.; et al. Energy-enhanced parenteral nutrition and neurodevelopment of preterm newborns: A cohort study. Nutrition 2021, 89, 111219. [Google Scholar] [CrossRef]
- De Nardo, M.C.; Mario, C.D.; Laccetta, G.; Boscarino, G.; Terrin, G. Enteral and parenteral energy intake and neurodevelopment in preterm infants: A systematic review. Nutrition 2022, 97, 111572. [Google Scholar] [CrossRef] [PubMed]
- De Haan, M. (Ed.) Infant EEG and Event-Related Potentials; Psychology Press: New York, NY, USA, 2007; 334p. [Google Scholar]
- Handy, T.C. Event-Related Potentials: A Methods Handbook; MIT Press: Camridge, MA, USA, 2005. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 19 July 2022).
- Seaman, S.R.; White, I.R. Review of inverse probability weighting for dealing with missing data. Stat. Methods Med. Res. 2013, 22, 278–295. [Google Scholar] [CrossRef]
- Gonzalez Villamizar, J.D. Feasability of Increased Macronutrient Provision Utilizing an Enhanced Nutrition Protocol for VLBW Infants Born <32 Weeks Gestation During the First Week of Life; Midwest SPR: Woodlands, TX, USA, 2021. [Google Scholar]
- Stephens, B.E.; Walden, R.V.; Gargus, R.A.; Tucker, R.; McKinley, L.; Mance, M.; Nye, J.; Vohr, B.R. First-week protein and energy intakes are associated with 18-month developmental outcomes in extremely low birth weight infants. Pediatrics 2009, 123, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Cormack, B.E.; Jiang, Y.; Harding, J.E.; Crowther, C.A.; Bloomfield, F.H. Relationships between Neonatal Nutrition and Growth to 36 Weeks’ Corrected Age in ELBW Babies–Secondary Cohort Analysis from the Provide Trial. Nutrients 2020, 12, 760. [Google Scholar] [CrossRef]
- Eleni dit Trolli, S.; Kermorvant-Duchemin, E.; Huon, C.; Bremond-Gignac, D.; Lapillonne, A. Early lipid supply and neurological development at one year in very low birth weight (VLBW) preterm infants. Early Hum. Dev. 2012, 88, S25–S29. [Google Scholar] [CrossRef]
- Beauport, L.; Schneider, J.; Faouzi, M.; Hagmann, P.; Hüppi, P.S.; Tolsa, J.-F.; Truttmann, A.C.; Fumeaux, C.J.F. Impact of Early Nutritional Intake on Preterm Brain: A Magnetic Resonance Imaging Study. J. Pediatr. 2017, 181, 29–36.e1. [Google Scholar] [CrossRef]
- Shim, S.Y.; Ahn, H.M.; Cho, S.J.; Park, E.A. Early aggressive nutrition enhances language development in very low-birthweight infants. Pediatr. Int. 2014, 56, 845–850. [Google Scholar] [CrossRef]
- Coviello, C.; Keunen, K.; Kersbergen, K.J.; Groenendaal, F.; Leemans, A.; Peels, B.; Isgum, I.; Viergever, M.A.; De Vries, L.S.; Buonocore, G.; et al. Effects of early nutrition and growth on brain volumes, white matter microstructure, and neurodevelopmental outcome in preterm newborns. Pediatr. Res. 2018, 83, 102–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PIANO Study Group; Duerden, E.G.; Thompson, B.; Poppe, T.; Alsweiler, J.; Gamble, G.; Jiang, Y.; Leung, M.; Tottman, A.C.; Wouldes, T.; et al. Early protein intake predicts functional connectivity and neurocognition in preterm born children. Sci. Rep. 2021, 11, 4085. [Google Scholar] [CrossRef] [PubMed]
- Roelants, J.A.; Vlaardingerbroek, H.; van den Akker, C.H.P.; de Jonge, R.C.J.; van Goudoever, J.B.; Vermeulen, M.J. Two-Year Follow-up of a Randomized Controlled Nutrition Intervention Trial in Very Low-Birth-Weight Infants. J. Parenter. Enter. Nutr. 2016, 42, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Van den Akker, C.H.P.; te Braake, F.W.J.; Weisglas-Kuperus, N.; van Goudoever, J.B. Observational Outcome Results Following a Randomized Controlled Trial of Early Amino Acid Administration in Preterm Infants. J. Pediatr. Gastroenterol. Nutr. 2014, 59, 714–719. [Google Scholar] [CrossRef] [PubMed]
- Ottolini, K.M.; Andescavage, N.; Kapse, K.; Jacobs, M.; Murnick, J.; Veer, R.V.; Basu, S.; Said, M.; Limperopoulos, C. Early Lipid Intake Improves Cerebellar Growth in Very Low-Birth-Weight Preterm Infants. J. Parenter. Enter. Nutr. 2020, 45, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Boscarino, G.; Di Chiara, M.; Cellitti, R.; De Nardo, M.C.; Conti, M.G.; Parisi, P.; Spalice, A.; Di Mario, C.; Ronchi, B.; Russo, A.; et al. Effects of early energy intake on neonatal cerebral growth of preterm newborn: An observational study. Sci. Rep. 2021, 11, 18457. [Google Scholar] [CrossRef]
- Gonzalez Villamizar, J.D.; Haapala, J.L.; Scheurer, J.M.; Rao, R.; Ramel, S.E. Relationships between Early Nutrition, Illness, and Later Outcomes among Infants Born Preterm with Hyperglycemia. J. Pediatr. 2020, 223, 29–33.e2. [Google Scholar] [CrossRef]
- Stensvold, H.J.; Strommen, K.; Lang, A.M.; Abrahamsen, T.G.; Steen, E.K.; Pripp, A.H.; Ronnestad, A.E. Early Enhanced Parenteral Nutrition, Hyperglycemia, and Death Among Extremely Low-Birth-Weight Infants. JAMA Pediatr. 2015, 169, 1003. [Google Scholar] [CrossRef]
- De Curtis, M.; Brooke, O.G. Energy and nitrogen balances in very low birthweight infants. Arch. Dis. Child. 1987, 62, 830–832. [Google Scholar] [CrossRef]
- Dalkara, T.; Alarcon-Martinez, L. Cerebral microvascular pericytes and neurogliovascular signaling in health and disease. Brain Res. 2015, 1623, 3–17. [Google Scholar] [CrossRef]
Control (n = 45) | Intervention (n = 42) | p-Value | |
---|---|---|---|
Gestational age (weeks) | 27.4 (2.6) | 27 (2.4) | 0.447 |
Birth weight (kg) | 1 (0.3) | 0.9 (0.3) | 0.567 |
Sex (% male) | 25 (55.6%) | 19 (45.2%) | 0.455 |
Race | 0.406 * | ||
Asian | 4 (8.9%) | 3 (7.1%) | |
Black | 2 (4.4%) | 7 (16.7%) | |
White | 30 (66.7%) | 26 (61.9%) | |
More than one race | 1 (2.2%) | 1 (2.4%) | |
Other | 8 (17.8%) | 5 (11.9%) | |
Ethnicity Hispanic/Latino | 7 (15.6%) | 4 (9.5%) | 0.643 * |
Maternal age | 30.8 (5.8) | 30.6 (5.5) | 0.899 |
Antenatal corticosteroids | 38 (84.4%) | 40 (95.2%) | 0.111 * |
SGA | 2 (4.9%) | 2 (4.9%) | >0.99 * |
Twin gestation | 16 (35.6%) | 6 (14.3%) | 0.042 |
Apgar score < 5 at 5 min | 3 (6.7%) | 5 (11.9%) | 0.475 |
Antibiotic use (Days 1–7) | 2.2 (1.7) | 2.9 (1.9) | 0.475 |
SNAPPE II score | 24.3 (26.8) | 25.8 (19.6) | 0.773 |
NEC | 3 (6.8%) | 4 (9.5%) | 0.71 * |
Chronic lung disease at 36 weeks | 26 (60.5%) | 26 (68.4%) | 0.608 |
IVH (Grade 2+) | 8 (17.8%) | 6 (14.3%) | 0.88 |
ROP (Stage 2/3) | 8 (19%) | 9 (23.7%) | 0.816 |
Age at VEP (corrected age in days) | 124.6 (16.6) | 124.1 (14.4) | 0.927 |
Mean parenteral kcal intake Days 2–8 (kcals/kg/day) | 65.2 (10.5) | 81.6 (11.1) | <0.001 |
Mean parenteral protein intake Days 2–8 (g/kg/day) | 3.5 (0.5) | 3.6 (0.4) | 0.065 |
Mean day of enteral feed Initiation | 3.1 (7.2) | 1.8 (1.8) | 0.298 |
Caloric deficit over stay (120 kcal/day goal) | 201.8 (702.4) | 16.1 (628.1) | 0.197 |
Protein deficit over stay (4 g/kg/day goal) | −5 (24.8) | −7.6 (20.2) | 0.596 |
Neurodevelopmental Test | Control | Intervention | p-Value | |
---|---|---|---|---|
Average intake (total enteral + parenteral) Days 2–8 (kcal/kg/day) | VEP | 93.7 (13.7) | 104.2 (10.1) | 0.017 |
12-month Bayley | 91.3 (18.4) | 100.8 (10.7) | 0.04 | |
24-month Bayley | 92 (19.7) | 101.3 (12.4) | 0.154 | |
Average protein intake (total enteral + parenteral) Days 2–8 (g/kg/day) | VEP | 4.3 (0.3) | 4.2 (0.3) | 0.497 |
12-month Bayley | 4.1 (0.6) | 4.1 (0.2) | 0.932 | |
24-month Bayley | 4.2 (0.3) | 4.2 (0.3) | 0.551 | |
Average enteral intake, Days 2–8 (kcal/kg/day) | VEP | 31.4 (18.1) | 17.5 (14.2) | 0.019 |
12-month Bayley | 26.2 (19) | 14.7 (14.2) | 0.024 | |
24-month Bayley | 25.1 (19.1) | 16.5 (16.1) | 0.207 | |
Average enteral protein intake, Days 2–8 (g/kg/day) | VEP | 0.9 (0.7) | 0.4 (0.4) | 0.022 |
12-month Bayley | 0.8 (0.7) | 0.4 (0.5) | 0.047 | |
24-month Bayley | 0.7 (0.8) | 0.5 (0.6) | 0.323 | |
Average parenteral intake, Days 2–8 (kcal/kg/day) | VEP | 62.3 (9) | 86.7 (8.9) | <0.001 |
12-month Bayley | 65.1 (11.3) | 86.1 (8.9) | <0.001 | |
24-month Bayley | 66.9 (12.9) | 84.8 (10.2) | <0.001 | |
Average parenteral protein intake Days 2–8 (g/kg/day) | VEP | 3.4 (0.3) | 3.8 (0.2) | 0.002 |
12-month Bayley | 3.4 (0.5) | 3.8 (0.3) | 0.009 | |
24-month Bayley | 3.6 (0.4) | 3.8 (0.3) | 0.163 |
Control | Intervention | p-Value | |
---|---|---|---|
Visually Evoked Potential | n = 18 | n = 15 | |
P100 Latency | 145.3 (32.6) ms | 177.8 (34.7) ms | 0.01 |
Bayley—12-month CGA | n = 23 | n = 23 | |
Cognitive | 94.9 (18) | 98.4 (16.6) | 0.496 |
Language | 85.5 (19.6) | 87.6 (18.4) | 0.712 |
Motor | 86.5 (18.1) | 87.3 (22.1) | 0.885 |
Bayley—24-month CGA | n = 13 | n = 16 | |
Cognitive | 92.3 (22.8) | 96.3 (14.9) | 0.593 |
Language | 94.8 (22.1) | 95.5 (18.2) | 0.933 |
Motor | 89.2 (20.4) | 88.1 (19.9) | 0.884 |
Neurodevelopmental Test | Model 1 Adjusted for Sex, Gestational Age, and Age at VEP | Model 2 Adjusted for Sex, Gestational Age, kcal/kg from Enteral Feedings, and Age at VEP | ||||
---|---|---|---|---|---|---|
Effect Estimate | 95% CI | p-Value | Effect Estimate | 95% CI | p-Value | |
VEP—P100 Latency Control (n = 18) Intervention (n = 15) | ||||||
32.89 | (7.98, 57.79) | 0.012 | 22.81 | (−4.5, 50.13) | 0.098 | |
Bayley—12-month CGA Control (n = 23) Intervention (n = 23) | ||||||
Cognitive | 4.72 | (−4.33, 13.78) | 0.298 | 4.46 | (−5.54, 14.47) | 0.373 |
Language | 3.99 | (−5.74, 13.73) | 0.412 | 2.12 | (−8.58, 12.82) | 0.691 |
Motor | 2.6 | (−7.25, 12.44) | 0.597 | 1.47 | (−9.37, 12.31) | 0.785 |
Bayley—24-month CGA Control (n = 13) Intervention (n = 16) | ||||||
Cognitive | 1.16 | (−12.99, 15.3) | 0.867 | 2.73 | (−13.56, 19.02) | 0.732 |
Language | −0.19 | (−15.61, 15.24) | 0.98 | 3.4 | (−14.12, 20.92) | 0.691 |
Motor | −3.84 | (−16.77, 9.08) | 0.546 | −3.49 | (−18.4, 11.41) | 0.633 |
Neurodevelopmental Test | Model 1 Adjusted for Sex, Gestational Age, and Age at VEP | Model 2 Adjusted for Sex, Gestational Age, Kcal/kg from Enteral Feedings, and Age at VEP | ||||
---|---|---|---|---|---|---|
Effect Estimate | 95% CI | p-Value | Effect Estimate | 95% CI | p-Value | |
VEP—P100 Latency Control (n = 18) Intervention (n = 15) | ||||||
34.61 | (11.97, 57.25) | 0.004 | 22.43 | (−4.81, 49.68) | 0.103 | |
Bayley—12-month CGA Control (n = 23), intervention (n = 23) | ||||||
Cognitive | 6.5 | (−2.41, 15.42) | 0.148 | 6.44 | (−3.14, 16.03) | 0.181 |
Language | 3.14 | (−6.17, 12.44) | 0.5 | 1.52 | (−8.4, 11.44) | 0.758 |
Motor | 3.47 | (−6.36, 13.3) | 0.479 | 2.09 | (−8.39, 12.57) | 0.689 |
Bayley—24-month CGA Control (n = 13), intervention (n = 16) | ||||||
Cognitive | 0.54 | (−14.64, 15.73) | 0.942 | 2.13 | (−15.43, 19.69) | 0.804 |
Language | −1.33 | (−17.39, 14.72) | 0.865 | 1.77 | (−16.64, 20.18) | 0.844 |
Motor | −4.43 | (−17.71, 8.85) | 0.499 | −4.15 | (−19.51, 11.22) | 0.583 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morris, E.E.; Miller, N.C.; Marka, N.A.; Super, J.L.; Nagel, E.M.; Gonzalez, J.D.; Demerath, E.W.; Ramel, S.E. Randomized Trial of Early Enhanced Parenteral Nutrition and Later Neurodevelopment in Preterm Infants. Nutrients 2022, 14, 3890. https://doi.org/10.3390/nu14193890
Morris EE, Miller NC, Marka NA, Super JL, Nagel EM, Gonzalez JD, Demerath EW, Ramel SE. Randomized Trial of Early Enhanced Parenteral Nutrition and Later Neurodevelopment in Preterm Infants. Nutrients. 2022; 14(19):3890. https://doi.org/10.3390/nu14193890
Chicago/Turabian StyleMorris, Erin E., Neely C. Miller, Nicholas A. Marka, Jennifer L. Super, Emily M. Nagel, Juan David Gonzalez, Ellen W. Demerath, and Sara E. Ramel. 2022. "Randomized Trial of Early Enhanced Parenteral Nutrition and Later Neurodevelopment in Preterm Infants" Nutrients 14, no. 19: 3890. https://doi.org/10.3390/nu14193890
APA StyleMorris, E. E., Miller, N. C., Marka, N. A., Super, J. L., Nagel, E. M., Gonzalez, J. D., Demerath, E. W., & Ramel, S. E. (2022). Randomized Trial of Early Enhanced Parenteral Nutrition and Later Neurodevelopment in Preterm Infants. Nutrients, 14(19), 3890. https://doi.org/10.3390/nu14193890