Alterations in Intestinal Brush Border Membrane Functionality and Bacterial Populations Following Intra-Amniotic Administration (Gallus gallus) of Catechin and Its Derivatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Materials
2.3. General Procedure for the Synthesis of Catechin Pentabutanoate
2.4. General Procedure for the Synthesis of Catechin Pentaacetate
2.5. Characterization of Catechin Pentabutanoate and Catechin Pentaacetate
2.5.1. 1H NMR (500 MHz) and 13C NMR
2.5.2. Fourier Transform Infrared Spectroscopy
2.5.3. Ultraviolet–Visible Spectroscopy (UV-Vis)
2.5.4. Liquid Chromatography-Mass Spectrometry Analysis
2.5.5. Particle Size Measurement
2.6. Preparation of Catechin Solution (0.02 M)
2.7. Dispersion of Catechin Pentabutanoate and Catechin Pentaacetate in DI H2O
2.8. Intra-Amniotic Administration
2.9. Blood and Tissue Collection
2.10. Blood Hemoglobin Measurements
2.11. Isolation of Total RNA From Chicken Duodenum
2.12. Real-Time Polymerase Chain Reaction
2.13. Collection of Microbial Samples and Intestinal Contents DNA Isolation
2.14. PCR Amplification of Bacterial 16s rDNA
2.15. Glycogen Analysis
2.16. Morphometric Examination of Duodenal Tissue
2.17. Statistical Analysis
3. Results
3.1. Fourier-Transform Infrared (FTIR) Spectroscopy of Catechin Pentabutanoate
3.2. 1H NMR of Catechin Pentabutanoate
3.3. 13C NMR of Catechin Pentabutanoate
3.4. LC-MS of Catechin Pentabutanoate
3.5. Particle Sizes of Catechin Pentabutanoate
3.6. FTIR of Catechin Pentaacetate
3.7. 1H NMR of Catechin Pentaacetate
3.8. 13C NMR of Catechin Pentaacetate
3.9. Particle Sizes of Catechin Pentaacetate
3.10. Gross Physiological Parameters
3.11. Hemoglobin Concentration and Glycogen Concentrations of the Pectoral and Hepatic Tissues
3.12. Cecal Microbiota Analysis
3.13. Duodenal Gene Expression
3.13.1. Fe-Related Proteins
3.13.2. Zn-Related Proteins
3.13.3. BBM Functionality and Mucin Production Proteins
3.13.4. Pro-Inflammatory Proteins
3.14. Duodenal Morphometric Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ahmad, M.; Mudgil, P.; Gani, A.; Hamed, F.; Masoodi, F.A.; Maqsood, S. Nano-Encapsulation of Catechin in Starch Nanoparticles: Characterization, Release Behavior and Bioactivity Retention during Simulated in-Vitro Digestion. Food Chem. 2019, 270, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Grzesik, M.; Naparło, K.; Bartosz, G.; Sadowska-Bartosz, I. Antioxidant Properties of Catechins: Comparison with Other Antioxidants. Food Chem. 2018, 241, 480–492. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Kosaka, M.; Watanabe, Y.; Nakade, K.; Fukuyama, Y. Synthesis and Neuroprotective Activity of Bergenin Derivatives with Antioxidant Activity. Bioorg. Med. Chem. 2003, 11, 1781–1788. [Google Scholar] [CrossRef]
- Gopal, J.; Muthu, M.; Paul, D.; Kim, D.-H.; Chun, S. Bactericidal Activity of Green Tea Extracts: The Importance of Catechin Containing Nano Particles. Sci. Rep. 2016, 6, 19710. [Google Scholar] [CrossRef]
- Coșarcă, S.; Tanase, C.; Muntean, D.L. Therapeutic Aspects of Catechin and Its Derivatives–An Update. Acta Biol. Marisiensis 2019, 2, 21–29. [Google Scholar] [CrossRef]
- Sharma, P.; Goyal, P.K. Anti-Oxidative and Anti-Metalotoxic Properties of Green Tea Catechin: A Preliminary Study. Am. J. Ethnomed. 2015, 2, 21–38. [Google Scholar]
- Yang, C.S.; Maliakal, P.; Meng, X. Inhibition of Carcinogenesis by Tea. Annu. Rev. Pharmacol. Toxicol. 2002, 42, 25–54. [Google Scholar] [CrossRef] [PubMed]
- Jeong, W.-S.; Kong, A.-N.T. Biological Properties of Monomeric and Polymeric Catechins: Green Tea Catechins and Procyanidins. Pharm. Biol. 2004, 42, 84–93. [Google Scholar] [CrossRef]
- Mukhtar, H.; Ahmad, N. Tea Polyphenols: Prevention of Cancer and Optimizing Health. Am. J. Clin. Nutr. 2000, 71, 1698S–1702S. [Google Scholar] [CrossRef]
- Chyu, K.-Y.; Babbidge, S.M.; Zhao, X.; Dandillaya, R.; Rietveld, A.G.; Yano, J.; Dimayuga, P.; Cercek, B.; Shah, P.K. Differential Effects of Green Tea–Derived Catechin on Developing Versus Established Atherosclerosis in Apolipoprotein E–Null Mice. Circulation 2004, 109, 2448–2453. [Google Scholar] [CrossRef]
- Donà, M.; Dell’Aica, I.; Calabrese, F.; Benelli, R.; Morini, M.; Albini, A.; Garbisa, S. Neutrophil Restraint by Green Tea: Inhibition of Inflammation, Associated Angiogenesis, and Pulmonary Fibrosis. J. Immunol 2003, 170, 4335–4341. [Google Scholar] [CrossRef] [Green Version]
- Nance, C.L.; Shearer, W.T. Is Green Tea Good for HIV-1 Infection? J. Allergy Clin. Immunol. 2003, 112, 851–853. [Google Scholar] [CrossRef]
- Esposito, E.; Rotilio, D.; Dimatteo, V.; Digiulio, C.; Cacchio, M.; Algeri, S. A Review of Specific Dietary Antioxidants and the Effects on Biochemical Mechanisms Related to Neurodegenerative Processes. Neurobiol. Aging 2002, 23, 719–735. [Google Scholar] [CrossRef]
- Matsui, T. Condensed Catechins and Their Potential Health-Benefits. Eur. J. Pharmacol. 2015, 765, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Zhou, Y.; Luo, X.; Ruan, Y.; Zhou, L.; Wang, Q.; Yan, Y.J.; Liu, Q.; Chen, J. Against NF-ΚB/Thymic Stromal Lymphopoietin Signaling Pathway, Catechin Alleviates the Inflammation in Allergic Rhinitis. Int. Immunopharmacol. 2018, 61, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Addepalli, V.; Suryavanshi, S.V. Catechin Attenuates Diabetic Autonomic Neuropathy in Streptozotocin Induced Diabetic Rats. Biomed. Pharmacother. 2018, 108, 1517–1523. [Google Scholar] [CrossRef] [PubMed]
- Ganeshpurkar, A.; Saluja, A.K. Protective Effect of Catechin on Humoral and Cell Mediated Immunity in Rat Model. Int. Immunopharmacol. 2018, 54, 261–266. [Google Scholar] [CrossRef]
- Stapleton, P.D.; Shah, S.; Anderson, J.C.; Hara, Y.; Hamilton-Miller, J.M.T.; Taylor, P.W. Modulation of β-Lactam Resistance in Staphylococcus Aureus by Catechins and Gallates. Int. J. Antimicrob. Agents 2004, 23, 462–467. [Google Scholar] [CrossRef]
- Mandel, S.; Youdim, M.B.H. Catechin Polyphenols: Neurodegeneration and Neuroprotection in Neurodegenerative Diseases. Free Radic. Biol. Med. 2004, 37, 304–317. [Google Scholar] [CrossRef]
- Mandel, S.A.; Avramovich-Tirosh, Y.; Reznichenko, L.; Zheng, H.; Weinreb, O.; Amit, T.; Youdim, M.B.H. Multifunctional Activities of Green Tea Catechins in Neuroprotection. Neurosignals 2005, 14, 46–60. [Google Scholar] [CrossRef]
- Agrizzi Verediano, T.; Agarwal, N.; Gomes, M.J.C.; Duarte Martino, H.S.; Tako, E. Effects of Dietary Fiber on Intestinal Iron Absorption, and Physiological Status: A Systematic Review of in Vivo and Clinical Studies. Crit. Rev. Food Sci. Nutr. 2022, 1, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Tan, Y.; Chen, G.; Wang, G.; Sun, J.; Ou, S.; Chen, W.; Bai, W. Metabolism of Anthocyanins and Consequent Effects on the Gut Microbiota. Crit. Rev. Food Sci. Nutr. 2019, 59, 982–991. [Google Scholar] [CrossRef]
- Gibson, G.R.; Scott, K.P.; Rastall, R.A.; Tuohy, K.M.; Hotchkiss, A.; Dubert-Ferrandon, A.; Gareau, M.; Murphy, E.F.; Saulnier, D.; Loh, G.; et al. Dietary Prebiotics: Current Status and New Definition. Food Sci. Technol. Bull. Funct. Foods 2010, 7, 1–19. [Google Scholar] [CrossRef]
- van der Beek, C.M.; Canfora, E.E.; Kip, A.M.; Gorissen, S.H.M.; Olde Damink, S.W.M.; van Eijk, H.M.; Holst, J.J.; Blaak, E.E.; Dejong, C.H.C.; Lenaerts, K. The Prebiotic Inulin Improves Substrate Metabolism and Promotes Short-Chain Fatty Acid Production in Overweight to Obese Men. Metabolism 2018, 87, 25–35. [Google Scholar] [CrossRef] [PubMed]
- McLoughlin, R.F.; Berthon, B.S.; Jensen, M.E.; Baines, K.J.; Wood, L.G. Short-Chain Fatty Acids, Prebiotics, Synbiotics, and Systemic Inflammation: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2017, 106, 930–945. [Google Scholar] [CrossRef] [PubMed]
- Preidis, G.A.; Versalovic, J. Targeting the Human Microbiome With Antibiotics, Probiotics, and Prebiotics: Gastroenterology Enters the Metagenomics Era. Gastroenterology 2009, 136, 2015–2031. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Zhang, Z.; Zhao, J.; Ma, Q.; Liu, H.; Nie, C.; Ma, Z.; An, W.; Li, J. Dietary Whole Goji Berry (Lycium barbarum) Intake Improves Colonic Barrier Function by Altering Gut Microbiota Composition in Mice. Int. J. Food Sci. Technol. 2021, 56, 103–114. [Google Scholar] [CrossRef]
- Morais, C.A.; de Rosso, V.V.; Estadella, D.; Pisani, L.P. Anthocyanins as Inflammatory Modulators and the Role of the Gut Microbiota. J. Nutr. Biochem. 2016, 33, 1–7. [Google Scholar] [CrossRef]
- Hou, T.; Tako, E. The In Ovo Feeding Administration (Gallus Gallus)—An Emerging In Vivo Approach to Assess Bioactive Compounds with Potential Nutritional Benefits. Nutrients 2018, 10, 418. [Google Scholar] [CrossRef]
- Neilson, A.P.; Hopf, A.S.; Cooper, B.R.; Pereira, M.A.; Bomser, J.A.; Ferruzzi, M.G. Catechin Degradation with Concurrent Formation of Homo- and Heterocatechin Dimers during in Vitro Digestion. J. Agric. Food Chem. 2007, 55, 8941–8949. [Google Scholar] [CrossRef]
- Bridson, J.H.; Grigsby, W.J.; Main, L. Synthesis and Characterization of Flavonoid Laurate Esters by Transesterification. J. Appl. Polym. Sci. 2013, 129, 181–186. [Google Scholar] [CrossRef]
- Zarei, A.; Khazdooz, L.; Madarshahian, S.; Enayati, M.; Mosleh, I.; Lin, T.; Yan, B.; Ufheil, G.; Wooster, T.J.; Abbaspourrad, A. Synthesis, Stability, and Bioavailability of Nicotinamide Riboside Trioleate Chloride. Nutrients 2021, 14, 113. [Google Scholar] [CrossRef]
- Martino, H.S.D.; Kolba, N.; Tako, E. Yacon (Smallanthus sonchifolius) Flour Soluble Extract Improve Intestinal Bacterial Populations, Brush Border Membrane Functionality and Morphology in Vivo (Gallus gallus). Food Res. Int. 2020, 137, 109705. [Google Scholar] [CrossRef] [PubMed]
- Gomes, M.J.C.; Martino, H.S.D.; Kolba, N.; Cheng, J.; Agarwal, N.; De Moura Rocha, M.; Tako, E. Zinc Biofortified Cowpea (Vigna unguiculata L. Walp.) Soluble Extracts Modulate Assessed Cecal Bacterial Populations and Gut Morphology in Vivo (Gallus gallus). Front. Biosci. Landmark 2022, 27, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Warkentin, T.; Kolba, N.; Tako, E. Low Phytate Peas (Pisum sativum L.) Improve Iron Status, Gut Microbiome, and Brush Border Membrane Functionality In Vivo (Gallus gallus). Nutrients 2020, 12, 2563. [Google Scholar] [CrossRef]
- Carboni, J.; Reed, S.; Kolba, N.; Eshel, A.; Koren, O.; Tako, E. Alterations in the Intestinal Morphology, Gut Microbiota, and Trace Mineral Status Following Intra-Amniotic Administration (Gallus gallus) of Teff (Eragrostis Tef) Seed Extracts. Nutrients 2020, 12, 3020. [Google Scholar] [CrossRef] [PubMed]
- Dias, D.M.; Kolba, N.; Hart, J.J.; Ma, M.; Sha, S.T.; Lakshmanan, N.; Nutti, M.R.; Martino, H.S.D.; Glahn, R.P.; Tako, E. Soluble Extracts from Carioca Beans (Phaseolus Vulgaris L.) Affect the Gut Microbiota and Iron Related Brush Border Membrane Protein Expression in Vivo (Gallus gallus). Food Res. Int. 2019, 123, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q. The Effect of Intra-Amnitotic Administration of Plant Origin Prebiotics (Raffinose and Stachyose) on the Intestinal Bacterial Populations, Fe Status and Brush Border Membrane Functionality; Cornell University: Ithaca, NY, USA, 2016. [Google Scholar]
- Givisiez, P.E.N.; Moreira Filho, A.L.B.; Santos, M.R.B.; Oliveira, H.B.; Ferket, P.R.; Oliveira, C.J.B.; Malheiros, R.D. Chicken Embryo Development: Metabolic and Morphological Basis for in Ovo Feeding Technology. Poult. Sci. 2020, 99, 6774–6782. [Google Scholar] [CrossRef]
- Dolgorukova, A.M.; Titov Fisinin, V.I.; Zotov, A.A. Prenatal nutrition of poultry and its postnatal effects (review). Sel’skokhozyaistvennaya Biol. (Agric. Biol.) 2020, 55, 1061–1072. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Elnesr, S.S.; Alagawany, M.; Gado, A.; Noreldin, A.E.; Gabr, A.A. Impact of Green Tea (Camellia Sinensis) and Epigallocatechin Gallate on Poultry. World’s Poult. Sci. J. 2020, 76, 49–63. [Google Scholar] [CrossRef]
- Yuan, Z.H.; Zhang, K.Y.; Ding, X.M.; Luo, Y.H.; Bai, S.P.; Zeng, Q.F.; Wang, J.P. Effect of Tea Polyphenols on Production Performance, Egg Quality, and Hepatic Antioxidant Status of Laying Hens in Vanadium-Containing Diets. Poult. Sci. 2016, 95, 1709–1717. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, N.; Kolba, N.; Jung, Y.; Cheng, J.; Tako, E. Saffron (Crocus sativus L.) Flower Water Extract Disrupts the Cecal Microbiome, Brush Border Membrane Functionality, and Morphology In Vivo (Gallus gallus). Nutrients 2022, 141, 220. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, N.; Kolba, N.; Khen, N.; Even, C.; Turjeman, S.; Koren, O.; Tako, E. Quinoa Soluble Fiber and Quercetin Alter the Composition of the Gut Microbiome and Improve Brush Border Membrane Morphology In Vivo (Gallus gallus). Nutrients 2022, 14, 448. [Google Scholar] [CrossRef] [PubMed]
- Agrizzi Verediano, T.; Stampini Duarte Martino, H.; Kolba, N.; Fu, Y.; Cristina Dias Paes, M.; Tako, E. Black Corn (Zea mays L.) Soluble Extract Showed Anti-Inflammatory Effects and Improved the Intestinal Barrier Integrity in Vivo (Gallus gallus). Food Res. Int. 2022, 157, 111227. [Google Scholar] [CrossRef] [PubMed]
- Kolba, N.; Zarei, A.; Cheng, J.; Agarwal, N.; Dadmohammadi, Y.; Khazdooz, L.; Abbaspourrad, A.; Tako, E. Alterations in Intestinal Brush Border Membrane Functionality and Bacterial Populations Following Intra-Amniotic Administration (Gallus gallus) of Nicotinamide Riboside and Its Derivatives. Nutrients 2022, 14, 3130. [Google Scholar] [CrossRef]
- Tako, E. Dietary Plant-Origin Bio-Active Compounds, Intestinal Functionality, and Microbiome. Nutrients 2020, 12, 3223. [Google Scholar] [CrossRef]
- Kolba, N.; Guo, Z.; Olivas, F.M.; Mahler, G.J.; Tako, E. Intra-Amniotic Administration (Gallus gallus) of TiO2, SiO2, and ZnO Nanoparticles Affect Brush Border Membrane Functionality and Alters Gut Microflora Populations. Food Chem. Toxicol. 2019, 135, 110896. [Google Scholar] [CrossRef]
- Tako, E.; Glahn, R.P.; Knez, M.; Stangoulis, J.C. The Effect of Wheat Prebiotics on the Gut Bacterial Population and Iron Status of Iron Deficient Broiler Chickens. Nutr. J. 2014, 13, 58. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Zhong, T.; Pandya, Y.; Joerger, R.D. 16S RRNA-Based Analysis of Microbiota from the Cecum of Broiler Chickens. Appl. Environ. Microbiol. 2002, 68, 124–137. [Google Scholar] [CrossRef]
- Da Pereira, S.B.; Kolba, N.; Duarte Martino, H.S.; Hart, J.J.; Tako, E. Soluble Extracts from Chia Seed (Salvia Hispanica L.) Affect Brush Border Membrane Functionality, Morphology and Intestinal Bacterial Populations In Vivo (Gallus gallus). Nutrients 2019, 11, 2457. [Google Scholar] [CrossRef]
- Gomes, M.J.C.; Kolba, N.; Agarwal, N.; Kim, D.; Eshel, A.; Koren, O.; Tako, E. Modifications in the Intestinal Functionality, Morphology and Microbiome Following Intra-Amniotic Administration (Gallus gallus) of Grape (Vitis Vinifera) Stilbenes (Resveratrol and Pterostilbene). Nutrients 2021, 13, 3247. [Google Scholar] [CrossRef] [PubMed]
- Beasley, J.T.; Johnson, A.A.T.; Kolba, N.; Bonneau, J.P.; Glahn, R.P.; Ozeri, L.; Koren, O.; Tako, E. Nicotianamine-Chelated Iron Positively Affects Iron Status, Intestinal Morphology and Microbial Populations in Vivo (Gallus gallus). Sci. Rep. 2020, 10, 2297. [Google Scholar] [CrossRef] [PubMed]
- Pacifici, S.; Song, J.; Zhang, C.; Wang, Q.; Glahn, R.; Kolba, N.; Tako, E. Intra Amniotic Administration of Raffinose and Stachyose Affects the Intestinal Brush Border Functionality and Alters Gut Microflora Populations. Nutrients 2017, 9, 304. [Google Scholar] [CrossRef]
- Janiak, M.A.; Amarowicz, R.; Rostek, D. Influence of Catechin Fraction and High Molecular Fraction from Green Tea Extract on Lactobacillus, Bifidobacterium and Streptococcus Strains. Nat. Prod. Commun. 2018, 13, 1–4. [Google Scholar] [CrossRef]
- Shabbir, U.; Rubab, M.; Daliri, E.B.-M.; Chelliah, R.; Javed, A.; Oh, D.-H. Curcumin, Quercetin, Catechins and Metabolic Diseases: The Role of Gut Microbiota. Nutrients 2021, 13, 206. [Google Scholar] [CrossRef]
- Marhuenda-Muñoz, M.; Laveriano-Santos, E.P.; Tresserra-Rimbau, A.; Lamuela-Raventós, R.M.; Martínez-Huélamo, M.; Vallverdú-Queralt, A. Microbial Phenolic Metabolites: Which Molecules Actually Have an Effect on Human Health? Nutrients 2019, 11, 2725. [Google Scholar] [CrossRef]
- Luo, J.; Han, L.; Liu, L.; Gao, L.; Xue, B.; Wang, Y.; Ou, S.; Miller, M.; Peng, X. Catechin Supplemented in a FOS Diet Induces Weight Loss by Altering Cecal Microbiota and Gene Expression of Colonic Epithelial Cells. Food Funct. 2018, 9, 2962–2969. [Google Scholar] [CrossRef]
- Rodríguez, H.; de las Rivas, B.; Gómez-Cordovés, C.; Muñoz, R. Degradation of Tannic Acid by Cell-Free Extracts of Lactobacillus Plantarum. Food Chem. 2008, 107, 664–670. [Google Scholar] [CrossRef]
- Liu, Z.; Bruins, M.E.; Ni, L.; Vincken, J.-P. Green and Black Tea Phenolics: Bioavailability, Transformation by Colonic Microbiota, and Modulation of Colonic Microbiota. J. Agric. Food Chem. 2018, 66, 8469–8477. [Google Scholar] [CrossRef]
- Ma, Y.; Ding, S.; Fei, Y.; Liu, G.; Jang, H.; Fang, J. Antimicrobial Activity of Anthocyanins and Catechins against Foodborne Pathogens Escherichia coli and Salmonella. Food Control 2019, 106, 106712. [Google Scholar] [CrossRef]
- Li, Q.; Van Herreweghen, F.; Onyango, S.O.; De Mey, M.; Van de Wiele, T. In Vitro Microbial Metabolism of (+)-Catechin Reveals Fast and Slow Converters with Individual-Specific Microbial and Metabolite Markers. J. Agric. Food Chem. 2022, acs.jafc.2c00551. [Google Scholar] [CrossRef] [PubMed]
- Hodges, J.K.; Sasaki, G.Y.; Bruno, R.S. Anti-Inflammatory Activities of Green Tea Catechins along the Gut–Liver Axis in Nonalcoholic Fatty Liver Disease: Lessons Learned from Preclinical and Human Studies. J. Nutr. Biochem. 2020, 85, 108478. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Song, D.; Cheng, L.; Zhang, X. Interactions of Tea Catechins with Intestinal Microbiota and Their Implication for Human Health. Food Sci. Biotechnol. 2019, 28, 1617–1625. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Liu, R.; Xue, B.; Luo, J.; Gao, L.; Wang, Y.; Ou, S.; Li, S.; Peng, X. Impact and Consequences of Polyphenols and Fructooligosaccharide Interplay on Gut Microbiota in Rats. Food Funct. 2017, 8, 1925–1932. [Google Scholar] [CrossRef]
- Liao, X.; Shao, Y.; Sun, G.; Yang, Y.; Zhang, L.; Guo, Y.; Luo, X.; Lu, L. The Relationship among Gut Microbiota, Short-Chain Fatty Acids, and Intestinal Morphology of Growing and Healthy Broilers. Poult. Sci. 2020, 99, 5883–5895. [Google Scholar] [CrossRef]
- Rechkemmer, G.; von Engelhardt, W. Concentration- and PH-Dependence of Short-Chain Fatty Acid Absorption in the Proximal and Distal Colon of Guinea Pig (Cavia porcellus). Comp. Biochem. Physiol. Part A Physiol. 1988, 91, 659–663. [Google Scholar] [CrossRef]
- Brown, A.J.; Goldsworthy, S.M.; Barnes, A.A.; Eilert, M.M.; Tcheang, L.; Daniels, D.; Muir, A.I.; Wigglesworth, M.J.; Kinghorn, I.; Fraser, N.J.; et al. The Orphan G Protein-Coupled Receptors GPR41 and GPR43 Are Activated by Propionate and Other Short Chain Carboxylic Acids. J. Biol. Chem. 2003, 278, 11312–11319. [Google Scholar] [CrossRef]
- Miyauchi, S.; Gopal, E.; Fei, Y.-J.; Ganapathy, V. Functional Identification of SLC5A8, a Tumor Suppressor Down-Regulated in Colon Cancer, as a Na+-Coupled Transporter for Short-Chain Fatty Acids. J. Biol. Chem. 2004, 279, 13293–13296. [Google Scholar] [CrossRef]
- Ritzhaupt, A.; Wood, I.S.; Ellis, A.; Hosie, K.B.; Shirazi-Beechey, S.P. Identification and Characterization of a Monocarboxylate Transporter (MCT1) in Pig and Human Colon: Its Potential to Transport l -Lactate as Well as Butyrate. J. Physiol. 1998, 513, 719–732. [Google Scholar] [CrossRef]
- Park, J.; Kotani, T.; Konno, T.; Setiawan, J.; Kitamura, Y.; Imada, S.; Usui, Y.; Hatano, N.; Shinohara, M.; Saito, Y.; et al. Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids. PLoS ONE 2016, 11, e0156334. [Google Scholar] [CrossRef]
- Lukovac, S.; Belzer, C.; Pellis, L.; Keijser, B.J.; de Vos, W.M.; Montijn, R.C.; Roeselers, G. Differential Modulation by Akkermansia Muciniphila and Faecalibacterium Prausnitzii of Host Peripheral Lipid Metabolism and Histone Acetylation in Mouse Gut Organoids. mBio 2014, 5, e01438-14. [Google Scholar] [CrossRef] [Green Version]
- Kaiko, G.E.; Ryu, S.H.; Koues, O.I.; Collins, P.L.; Solnica-Krezel, L.; Pearce, E.J.; Pearce, E.L.; Oltz, E.M.; Stappenbeck, T.S. The Colonic Crypt Protects Stem Cells from Microbiota-Derived Metabolites. Cell 2016, 165, 1708–1720. [Google Scholar] [CrossRef]
- Zhang, J.; Yi, M.; Zha, L.; Chen, S.; Li, Z.; Li, C.; Gong, M.; Deng, H.; Chu, X.; Chen, J.; et al. Sodium Butyrate Induces Endoplasmic Reticulum Stress and Autophagy in Colorectal Cells: Implications for Apoptosis. PLoS ONE 2016, 11, e0147218. [Google Scholar] [CrossRef] [PubMed]
- Limage, R.; Tako, E.; Kolba, N.; Guo, Z.; García-Rodríguez, A.; Marques, C.N.H.; Mahler, G.J. TiO2 Nanoparticles and Commensal Bacteria Alter Mucus Layer Thickness and Composition in a Gastrointestinal Tract Model. Small 2020, 16, 2000601. [Google Scholar] [CrossRef] [PubMed]
- Hider, R.C.; Liu, Z.D.; Khodr, H.H. Metal Chelation of Polyphenols. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 2001; Volume 335, pp. 190–203. ISBN 978-0-12-182236-1. [Google Scholar]
- Scalbert, A.; Morand, C.; Manach, C.; Rémésy, C. Absorption and Metabolism of Polyphenols in the Gut and Impact on Health. Biomed. Pharmacother. 2002, 56, 276–282. [Google Scholar] [CrossRef]
- Quesada, I.M.; Bustos, M.; Blay, M.; Pujadas, G.; Ardèvol, A.; Salvadó, M.J.; Bladé, C.; Arola, L.; Fernández-Larrea, J. Dietary Catechins and Procyanidins Modulate Zinc Homeostasis in Human HepG2 Cells. J. Nutr. Biochem. 2011, 22, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Kagaya, N.; Kawase, M.; Maeda, H.; Tagawa, Y.; Nagashima, H.; Ohmori, H.; Yagi, K. Enhancing Effect of Zinc on Hepatoprotectivity of Epigallocatechin Gallate in Isolated Rat Hepatocytes. Biol. Pharm. Bull. 2002, 25, 1156–1160. [Google Scholar] [CrossRef]
- Sun, S.; He, G.; Yu, H.; Yang, J.; Borthakur, D.; Zhang, L.; Shen, S.; Das, U.N. Free Zn2+ Enhances Inhibitory Effects of EGCG on the Growth of PC-3 Cells. Mol. Nutr. Food Res. 2008, 52, 465–471. [Google Scholar] [CrossRef]
- Esparza, I.; Salinas, Í.; Santamaría, C.; García-Mina, J.M.; Fernández, J.M. Electrochemical and Theoretical Complexation Studies for Zn and Cu with Individual Polyphenols. Anal. Chim. Acta 2005, 543, 267–274. [Google Scholar] [CrossRef]
- Daniel, H.; tom Dieck, H. Nutrient-Gene Interactions: A Single Nutrient and Hundreds of Target Genes. Biol. Chem. 2004, 385, 571–583. [Google Scholar] [CrossRef]
- Dieck, H.T.; Döring, F.; Fuchs, D.; Roth, H.-P.; Daniel, H. Transcriptome and Proteome Analysis Identifies the Pathways That Increase Hepatic Lipid Accumulation in Zinc-Deficient Rats. J. Nutr. 2005, 135, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagha, A.B.; Grenier, D. Tea Polyphenols Inhibit the Activation of NF-ΚB and the Secretion of Cytokines and Matrix Metalloproteinases by Macrophages Stimulated with Fusobacterium Nucleatum. Sci. Rep. 2016, 6, 34520. [Google Scholar] [CrossRef] [PubMed]
- Elphick, D.A. Paneth Cells: Their Role in Innate Immunity and Inflammatory Disease. Gut 2005, 54, 1802–1809. [Google Scholar] [CrossRef] [PubMed]
- Gutsmann, T.; Schromm, A.; Brandenburg, K. The Physicochemistry of Endotoxins in Relation to Bioactivity. Int. J. Med. Microbiol. 2007, 297, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Ghareeb, K.; Awad, W.A.; Soodoi, C.; Sasgary, S.; Strasser, A.; Böhm, J. Effects of Feed Contaminant Deoxynivalenol on Plasma Cytokines and MRNA Expression of Immune Genes in the Intestine of Broiler Chickens. PLoS ONE 2013, 8, e71492. [Google Scholar] [CrossRef] [PubMed]
- Surh, Y.-J.; Chun, K.-S.; Cha, H.-H.; Han, S.S.; Keum, Y.-S.; Park, K.-K.; Lee, S.S. Molecular Mechanisms Underlying Chemopreventive Activities of Anti-Inflammatory Phytochemicals: Down-Regulation of COX-2 and INOS through Suppression of NF-ΚB Activation. Mutat. Res./Fundam. Mol. Mech. Mutagenesis 2001, 480–481, 243–268. [Google Scholar] [CrossRef]
- Hamer, M. The Beneficial Effects of Tea on Immune Function and Inflammation: A Review of Evidence from in Vitro, Animal, and Human Research. Nutr. Res. 2007, 27, 373–379. [Google Scholar] [CrossRef]
- Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [Google Scholar] [CrossRef] [Green Version]
Group Name | Average Body Weight (g) | Average Cecum Weight (g) | CW: BW |
---|---|---|---|
NI | 49.7 ± 1.9 ᵃ | 0.39 ± 0.06 ᵃ | 0.007 ± 0.001 ᵃ |
H2O | 48.0 ± 2.49 ᵃ | 0.43 ± 0.07 ᵃ | 0.009 ± 0.002 ᵃ |
5 % Inulin | 48.3 ± 1.12 ᵃ | 0.42 ± 0.11 ᵃ | 0.009 ± 0.002 ᵃ |
0.4% Tween 80 | 47.8 ± 1.2 ᵃ | 0.40 ± 0.04 ᵃ | 0.008 ± 0.001 ᵃ |
Catechin | 48.6 ± 1.66 ᵃ | 0.30 ± 0.03 ᵃ | 0.006 ± 0.001 ᵃ |
Catechin-P-A | 48.1 ± 2.36 ᵃ | 0.35 ± 0.06 ᵃ | 0.008 ± 0.001 ᵃ |
Catechin-P-B | 47.5 ± 1.74 ᵃ | 0.28 ± 0.05 ᵃ | 0.006 ± 0.001 ᵃ |
Group Name | Average Hemoglobin (g/dL) | Average Pectoral Glycogen (mg/mL) | Average Hepatic Glycogen (mg/mL) |
---|---|---|---|
NI | 9.2 ± 1.2 ᵃ | 0.011 ± 0.005 ᵃ | 0.3 ± 0.08 ᵃ |
H2O | 9.1 ± 1.3 ᵃ | 0.013 ± 0.007 ᵃ | 0.56 ± 0.09 ᵃ |
5 % Inulin | 9.8 ± 1.0 ᵃ | 0.008 ± 0.002 ᵃ | 0.33 ± 0.13 ᵃ |
0.4% Tween 80 | 12.0 ± 2.1 ᵃ | 0.004 ± 0.002 ᵃ | 0.35 ± 0.07 ᵃ |
Catechin | 9.1 ± 1.4 ᵃ | 0.005 ± 0.002 ᵃ | 0.38 ± 0.07 ᵃ |
Catechin-P-A | 9.2 ± 1.8 ᵃ | 0.006 ± 0.002 ᵃ | 0.29 ± 0.05 ᵃ |
Catechin-P-B | 9.3 ± 0.5 ᵃ | 0.007 ± 0.002 ᵃ | 0.41 ± 0.11 ᵃ |
Treatment | Villus Surface Area (µm2) | Crypt Depth (µm) | Paneth Cell/Crypt | Paneth Cell Diameter (µm) |
---|---|---|---|---|
NI | 35,338.95 ± 814.06 d | 22.04 ± 0.66 cd | 1.81 ± 0.07 b | 1.88 ± 0.10 a |
H₂O | 36,111.84 ± 735.90 d | 21.80 ± 0.54 d | 2.02 ± 0.08 a | 1.70 ± 0.04 b |
0.4% Tween 80 | 34,700.16 ± 1443.64 d | 21.77 ± 1.17 d | 1.61 ± 0.05 c | 1.46 ± 0.03 d |
5% Inulin | 38,457.03 ± 1257.71 cd | 21.49 ± 0.64 d | 2.29 ± 0.09 a | 1.64 ± 0.04 bc |
Catechin | 40,686.07 ± 1337.05 bc | 23.58 ± 0.54 bcd | 1.65 ± 0.05 bc | 1.52 ± 0.03 cd |
Catechin-P-A | 41,642.87 ± 1189.86 abc | 35.04 ± 0.85 a | 1.46 ± 0.04 c | 1.39 ± 0.03 d |
Catechin-P-B | 43,200.19 ± 1177.55 ab | 25.34 ± 0.98 b | 1.51 ± 0.05 c | 1.41 ± 0.03 d |
Treatment | Villi Goblet Diameter (µm) | Villi Goblet Acid/Villi (#) | Villi Goblet Neutral/Villi (#) | Villi Goblet Mixed/Villi (#) | Villi Goblet Cell (#) | Crypt Goblet Diameter (µm) | Crypt Goblet Acid/Crypt (#) | Crypt Goblet Neutral/Crypt (#) | Crypt Goblet Mixed/Crypt (#) | Crypt Goblet Cell (#) |
---|---|---|---|---|---|---|---|---|---|---|
NI | 3.45 ± 0.07 d | 31.89 ± 0.89 a | 1.85 ± 0.19 a | 5.89 ± 0.28 a | 39.63 ± 0.93 a | 3.24 ± 0.04 c | 7.74 ± 0.24 a | 1.56 ± 0.24 b | 0.86 ± 0.11 c | 10.15 ± 0.41 ab |
H₂O | 3.43 ± 0.06 d | 16.27 ± 0.67 c | 1.42 ± 0.17 b | 5.29 ± 0.72 a | 28.94 ± 0.76 b | 2.74 ± 0.04 e | 7.66 ± 0.22 a | 2.62 ± 0.21 a | 0.86 ± 0.08 c | 11.14 ± 0.35 a |
0.4% Tween 80 | 4.93 ± 0.09 a | 34.26 ± 0.95 a | 0.04 ± 0.02 c | 0.35 ± 0.08 d | 30.20 ± 1.24 b | 3.95 ± 0.09 a | 7.92 ± 0.32 a | 0.01 ± 0.01 d | 1.32 ± 0.12 b | 8.68 ± 0.38 cd |
5% Inulin | 3.20 ± 0.06 e | 23.96 ± 0.68 b | 0.08 ± 0.02 c | 1.46 ± 0.14 c | 25.50 ± 0.75 c | 2.18 ± 0.04 f | 8.45 ± 0.36 a | 0.63 ± 0.11 c | 1.70 ± 0.15 a | 10.78 ± 0.43 a |
Catechin | 4.15 ± 0.07 b | 32.14 ± 0.68 a | 0.01 ± 0.01 c | 4.29 ± 0.24 b | 29.16 ± 1.19 b | 3.72 ± 0.06 b | 7.8 ± 0.22 a | 0.24 ± 0.04 d | 0.38 ± 0.06 d | 8.41 ± 0.24 d |
Catechin-P-A | 3.50 ± 0.05 d | 32.36 ± 0.94 a | 0.05 ± 0.03 c | 3.69 ± 0.28 b | 28.89 ± 1.32 b | 3.02 ± 0.05 d | 7.94 ± 0.26 a | 0.07 ± 0.02 d | 0.96 ± 0.10 c | 8.96 ± 0.30 cd |
Catechin-P-B | 3.91 ± 0.07 c | 33.99 ± 1.02 a | 0.10 ± 0.03 c | 1.60 ± 0.37 c | 24.80 ± 1.41 c | 3.27 ± 0.06 c | 8.26 ± 0.32 a | 0.02 ± 0.01 d | 1.25 ± 0.09 b | 9.52 ± 0.35 bc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolba, N.; Zarei, A.; Cheng, J.; Agarwal, N.; Dadmohammadi, Y.; Khazdooz, L.; Abbaspourrad, A.; Tako, E. Alterations in Intestinal Brush Border Membrane Functionality and Bacterial Populations Following Intra-Amniotic Administration (Gallus gallus) of Catechin and Its Derivatives. Nutrients 2022, 14, 3924. https://doi.org/10.3390/nu14193924
Kolba N, Zarei A, Cheng J, Agarwal N, Dadmohammadi Y, Khazdooz L, Abbaspourrad A, Tako E. Alterations in Intestinal Brush Border Membrane Functionality and Bacterial Populations Following Intra-Amniotic Administration (Gallus gallus) of Catechin and Its Derivatives. Nutrients. 2022; 14(19):3924. https://doi.org/10.3390/nu14193924
Chicago/Turabian StyleKolba, Nikolai, Amin Zarei, Jacquelyn Cheng, Nikita Agarwal, Younas Dadmohammadi, Leila Khazdooz, Alireza Abbaspourrad, and Elad Tako. 2022. "Alterations in Intestinal Brush Border Membrane Functionality and Bacterial Populations Following Intra-Amniotic Administration (Gallus gallus) of Catechin and Its Derivatives" Nutrients 14, no. 19: 3924. https://doi.org/10.3390/nu14193924
APA StyleKolba, N., Zarei, A., Cheng, J., Agarwal, N., Dadmohammadi, Y., Khazdooz, L., Abbaspourrad, A., & Tako, E. (2022). Alterations in Intestinal Brush Border Membrane Functionality and Bacterial Populations Following Intra-Amniotic Administration (Gallus gallus) of Catechin and Its Derivatives. Nutrients, 14(19), 3924. https://doi.org/10.3390/nu14193924