A Comparison of the Australian Dietary Guidelines to the NOVA Classification System in Classifying Foods to Predict Energy Intakes and Body Mass Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Variables
2.3. Dietary Assessment
2.4. Implausible Energy Reporting
2.5. Quantitative Variables
2.6. Statistical Methods
3. Results
3.1. Participants
3.2. Differences in UPFs and Discretionary Foods Classifications
3.3. Energy Intakes
3.4. Body Mass Index and Intake of Discretionary Foods and UPF
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Monteiro, C.A.; Cannon, G.; Moubarac, J.-C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Rico-Campà, A.; Martínez-González, M.A.; Alvarez-Alvarez, I.; de Deus Mendonça, R.; De La Fuente-Arrillaga, C.; Gómez-Donoso, C.; Bes-Rastrollo, M. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. BMJ 2019, 365, l1949. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G.; Lawrence, M.; Costa Louzada, M.D.; Pereira Machado, P. Ultra-Processed Foods, Diet Quality, and Health Using the NOVA Classification System; FAO: Rome, Italy, 2019. [Google Scholar]
- Moubarac, J.-C.; Parra, D.C.; Cannon, G.; Monteiro, C.A. Food classification systems based on food processing: Significance and implications for policies and actions: A systematic literature review and assessment. Curr. Obes. Rep. 2014, 3, 256–272. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.C.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef] [PubMed]
- National Health and Medical Research Council. Australian Dietary Guidelines; National Health and Medical Research Council: Canberra, Australia, 2013.
- Public Health England. The Eatwell Guide; Public Health England: London, UK, 2016.
- Ministry of Health. Eating and Activity Guidelines for New Zealand Adults: Updated 2020; Ministry of Health: Wellington, New Zealand, 2020.
- Minister of Health Canada. Evidence Review for Dietary Guidance: Summary of Results and Implications for Canada’s Food Guide; Minister of Health Canada: Ottawa, ON, Canada, 2015.
- Nordic Council of Ministers. Nordic Nutrition Recommendations 2012: Integrating Nutrition and Physical Activity; Nordic Council of Ministers: Norden, Germany, 2014. [Google Scholar]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025; USDA: Washington, DC, USA, 2020.
- Blake, P.; Durão, S.; E Naude, C.; Bero, L. An analysis of methods used to synthesize evidence and grade recommendations in food-based dietary guidelines. Nutr. Rev. 2018, 76, 290–300. [Google Scholar] [CrossRef]
- Raubenheimer, D.; Simpson, S.J. Nutritional Ecology and Human Health. Annu. Rev. Nutr. 2016, 36, 603–626. [Google Scholar] [CrossRef]
- Simpson, S.J.; Raubenheimer, D. Obesity: The protein leverage hypothesis. Obes. Rev. 2005, 6, 133–142. [Google Scholar] [CrossRef]
- Saner, C.; Tassoni, D.; Harcourt, B.E.; Kao, K.; Alexander, E.J.; McCallum, Z.; Olds, T.; Rowlands, A.V.; Burgner, D.P.; Simpson, S.J.; et al. Evidence for protein leverage in children and adolescents with obesity. Obesity 2020, 28, 822–829. [Google Scholar] [CrossRef]
- Raubenheimer, D.; Simpson, S.J. Protein leverage: Theoretical foundations and ten points of clarification. Obesity 2019, 27, 1225–1238. [Google Scholar] [CrossRef]
- Gosby, A.K.; Conigrave, A.D.; Raubenheimer, D.; Simpson, S.J. Protein leverage and energy intake. Obes. Rev. 2014, 15, 183–191. [Google Scholar] [CrossRef]
- Hall, K.D. The Potential Role of Protein Leverage in the US Obesity Epidemic. Obesity 2019, 27, 1222–1224. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-processed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial of ad libitum food intake. Cell Metab. 2019, 30, 67–77.e3. [Google Scholar] [CrossRef] [PubMed]
- Steele, E.M.; Raubenheimer, D.; Simpson, S.J.; Baraldi, L.G.; A Monteiro, C. Ultra-processed foods, protein leverage and energy intake in the USA. Public Health Nutr. 2018, 21, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics. Australian Health Survey: User Guide; Australian Bureau of Statistics: Canberra, Australia, 2012.
- Machado, P.P.; Steele, E.M.; Levy, R.B.; Sui, Z.; Rangan, A.; Woods, J.; Gill, T.; Scrinis, G.; Monteiro, C.A. Ultra-processed foods and recommended intake levels of nutrients linked to non-communicable diseases in Australia: Evidence from a nationally representative cross-sectional study. BMJ Open 2019, 9, e029544. [Google Scholar] [CrossRef]
- Food Standards Australia New Zealand. AUSNUT 2011–2013 Food Recipe File; FSANZ: Canberra, Australia, 2014.
- Food Standards Australia New Zealand. AUSNUT 2011–2013 Food Nutrient Database; FSANZ: Canberra, Australia, 2014.
- Black, A.E. Critical evaluation of energy intake using the Goldberg cut-off for energy intake: Basal metabolic rate. A practical guide to its calculation, use and limitations. Int. J. Obes. 2000, 24, 1119–1130. [Google Scholar] [CrossRef]
- Hill, J.O. Understanding and addressing the epidemic of obesity: An energy balance perspective. Endocr. Rev. 2006, 27, 750–761. [Google Scholar] [CrossRef]
- Hall, K.D.; Heymsfield, S.B.; Kemnitz, J.W.; Klein, S.; Schoeller, D.A.; Speakman, J.R. Energy balance and its components: Implications for body weight regulation. Am. J. Clin. Nutr. 2012, 95, 989–994. [Google Scholar] [CrossRef]
- Hall, K.D.; Sacks, G.; Chandramohan, D.; Chow, C.C.; Wang, Y.C.; Gortmaker, S.L.; A Swinburn, B. Quantification of the effect of energy imbalance on bodyweight. Lancet 2011, 378, 826–837. [Google Scholar] [CrossRef]
- Adams, J.; Hofman, K.; Moubarac, J.-C.; Thow, A.M. Public health response to ultra-processed food and drinks. BMJ 2020, 369, m2391. [Google Scholar] [CrossRef]
- Mendonça, R.D.D.; Pimenta, A.M.; Gea, A.; de la Fuente-Arrillaga, C.; Martinez-Gonzalez, M.A.; Lopes, A.C.S.; Bes-Rastrollo, M. Ultraprocessed food consumption and risk of overweight and obesity: The University of Navarra Follow-Up (SUN) cohort study. Am. J. Clin. Nutr. 2016, 104, 1433–1440. [Google Scholar] [CrossRef] [Green Version]
- Martínez Steele, E.; Monteiro, C.A. Association between Dietary Share of Ultra-Processed Foods and Urinary Concentrations of Phytoestrogens in the US. Nutrients 2017, 9, 209. [Google Scholar] [CrossRef] [PubMed]
- Fardet, A.; Rock, E. Ultra-processed foods: A new holistic paradigm? Trends Food Sci. Technol. 2019, 93, 174–184. [Google Scholar] [CrossRef]
- Buckley, J.P.; Kim, H.; Wong, E.; Rebholz, C.M. Ultra-processed food consumption and exposure to phthalates and bisphenols in the US National Health and Nutrition Examination Survey, 2013–2014. Environ. Int. 2019, 131, 105057. [Google Scholar] [CrossRef] [PubMed]
- Wali, J.A.; Raubenheimer, D.; Senior, A.M.; Le Couteur, D.G.; Simpson, S.J. Cardio-metabolic consequences of dietary carbohydrates: Reconciling contradictions using nutritional geometry. Cardiovasc. Res. 2020, 117, 386–401. [Google Scholar] [CrossRef] [PubMed]
- Wali, J.A.; Milner, A.J.; Luk, A.W.S.; Pulpitel, T.J.; Dodgson, T.; Facey, H.J.W.; Wahl, D.; Kebede, M.A.; Senior, A.M.; Sullivan, M.A.; et al. Impact of dietary carbohydrate type and protein-carbohydrate interaction on metabolic health. Nat. Metab. 2021, 3, 810–828. [Google Scholar] [CrossRef] [PubMed]
- Fardet, A.; Lakhssassi, S.; Briffaz, A. Beyond nutrient-based food indices: A data mining approach to search for a quantitative holistic index reflecting the degree of food processing and including physicochemical properties. Food Funct. 2018, 9, 561–572. [Google Scholar] [CrossRef]
- Hill, C.M.; Laeger, T.; Dehner, M.; Albarado, D.C.; Clarke, B.; Wanders, D.; Burke, S.J.; Collier, J.J.; Qualls-Creekmore, E.; Solon-Biet, S.M.; et al. FGF21 Signals Protein Status to the Brain and Adaptively Regulates Food Choice and Metabolism. Cell Rep. 2019, 27, 2934–2947.e3. [Google Scholar] [CrossRef]
- Hill, C.M.; Qualls-Creekmore, E.; Berthoud, H.-R.; Soto, P.; Yu, S.; McDougal, D.H.; Münzberg, H.; Morrison, C.D. FGF21 and the Physiological Regulation of Macronutrient Preference. Endocrinology 2020, 161, bqaa019. [Google Scholar] [CrossRef]
- Gosby, A.K.; Conigrave, A.D.; Lau, N.; Iglesias, M.A.; Hall, R.M.; Jebb, S.A.; Brand-Miller, J.; Caterson, I.D.; Raubenheimer, D.; Simpson, S.J. Testing protein leverage in lean humans: A randomised controlled experimental study. PLoS ONE 2011, 6, e25929. [Google Scholar] [CrossRef]
- Campbell, C.P.; Raubenheimer, D.; Badaloo, A.V.; Gluckman, P.D.; Martinez, C.; Gosby, A.; Simpson, S.J.; Osmond, C.; Boyne, M.S.; Forrester, T.E. Developmental contributions to macronutrient selection: A randomized controlled trial in adult survivors of malnutrition. Evol. Med. Public Health 2016, 2016, 158–169. [Google Scholar] [CrossRef] [Green Version]
- Raubenheimer, D.; Machovsky-Capuska, G.E.; Gosby, A.K.; Simpson, S. Nutritional ecology of obesity: From humans to companion animals. Br. J. Nutr. 2015, 113, S26–S39. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Rangan, A.; Allman-Farinelli, M.; Chen, J.; Grech, A.; McDonald, S.; Wilson, A. A Rapid Review of Evidence: Discretionary Food and Drinks; The Australian Prevention Partnership Centre: Sydney, Australia, 2018. [Google Scholar]
- Freedman, L.S.; Commins, J.M.; Moler, J.E.; Arab, L.; Baer, D.J.; Kipnis, V.; Midthune, D.; Moshfegh, A.J.; Neuhouser, M.L.; Prentice, R.L.; et al. Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for energy and protein intake. Am. J. Epidemiol. 2014, 180, 172–188. [Google Scholar] [CrossRef] [PubMed]
- Te Morenga, L.; Mallard, S.; Mann, J. Dietary sugars and body weight: Systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ 2013, 345, e7492. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Hao, T.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Changes in Diet and Lifestyle and Long-Term Weight Gain in Women and Men. N. Engl. J. Med. 2011, 364, 2392–2404. [Google Scholar] [CrossRef]
- Baker, P.; Machado, P.; Santos, T.; Sievert, K.; Backholer, K.; Hadjikakou, M.; Russell, C.; Huse, O.; Bell, C.; Scrinis, G.; et al. Ultra-processed foods and the nutrition transition: Global, regional and national trends, food systems transformations and political economy drivers. Obes. Rev. 2020, 21, e13126. [Google Scholar] [CrossRef]
- Colagiuri, S.; Lee, C.M.; Colagiuri, R.; Magliano, D.; Shaw, J.E.; Zimmet, P.Z.; Caterson, I.D. The cost of overweight and obesity in Australia. Med. J. Aust. 2010, 192, 260–264. [Google Scholar] [CrossRef]
- Morland, K.B.; Evenson, K.R. Obesity prevalence and the local food environment. Health Place 2009, 15, 491–495. [Google Scholar] [CrossRef]
- O’Dowd, A. Spending on junk food advertising is nearly 30 times what government spends on promoting healthy eating. BMJ 2017, 359, j4677. [Google Scholar] [CrossRef]
- Grech, A.; Allman-Farinelli, M. A systematic literature review of nutrition interventions in vending machines that encourage consumers to make healthier choices. Obes. Rev. 2015, 16, 1030–1041. [Google Scholar] [CrossRef]
Classification System | Five Food Groups Foods | Discretionary Foods | Disaggregated Discretionary Foods |
---|---|---|---|
Minimally processed foods | Tea, coffee, home squeezed juice, water, barley, cornmeal, millet, oats, quinoa, sago, rice bran, rice, wheat germ, wheat bran, couscous, flour, semolina, tapioca, noodles, pasta, natural muesli, fish, seafood, apple, pear and all frozen, fresh, and dried fruit, nuts, eggs, beef, lamb, pork, veal, goat, chicken, turkey, milk, plain yoghurt, seeds, psyllium, potato, carrot and all fresh, frozen and dried vegetables, herbs, lentils, beans | Homemade and takeaway foods † including sweet and savoury pastry, cakes, pies, French toast, cakes, muffins, slices, puddings, tarts, spring rolls, pizzas, waffles, deep fried fish and vegetables, cream-based desserts, sauces, jams and icings, pizzas (pepperoni, ham and cheese, meat lovers), quiche | |
Culinary ingredients | Olive oil, vinegar, flaxseed oil, rice bran oil, yeast, gelatine, canola oil, soybean oil, peanut oil, sunflower oil, vegetable oil, canola oil, gelatine, baking powder | Cream, butter, lard, ghee, sour cream, sugar, honey, and salt | |
Processed foods | Homemade and artisan breads, salted nuts, nut spreads, cheese, tinned fruit, tinned meat and seafood, peanut butter, tinned vegetables, and legumes | Bacon, wine, beer, cider, chutneys, pickles, condensed milk, jam | |
Ultra- processed foods | Commercial fruit juice, beverage (milo), commercial breads, commercial English muffins, instant noodles, breakfast cereals with low/no added sugar, savoury biscuits, commercial scones, fast food pizzas (<5 g saturated fat), fast food burgers (<5 g saturated fat), frozen meals, tinned spaghetti, commercial crumpets, margarine, sausages (<5 g saturated fats), breaded chicken, flavoured yoghurts, processed cheese, flavoured milks, soymilk, oat milk, tofu, tempeh, canned and packet soups (lower sodium), baked beans, intense sweeteners, oral supplements | Fruit drinks, sweetened drinks, cordial, soft drinks, flavoured beverage bases, sweet buns, breakfast cereals, commercial sweet biscuits, commercial garlic bread, ice cream cones, wafer commercial cakes, muffins, slices, pastries, commercial savoury pastries, fast food burgers, pizzas, frozen meals including pizzas, donuts, butter blends, Copha, frozen fish, sausages, ham, salami, other processed meats, chicken nuggets, ice cream, dairy desserts, packet soups, gravies, marinades, sauces, dressings and dips, fast foods and frozen potato fries, savoury snack foods, chocolates, confectionary, muesli bars, spirits, protein powder, yeast spreads |
Demographics | % | (SE) | Mean DF %E | p-Trend | Mean UPF %E | p-Trend | ||
---|---|---|---|---|---|---|---|---|
Age | ||||||||
19–30 years | 23.1 | 0.3 | 34.0 | (0.7) | 43.9 | (0.8) | ||
31–50 years | 37.4 | 0.3 | 32.9 | (0.4) | 38.0 | (0.4) | ||
51–70 years | 28.7 | 0.2 | 31.2 | (0.4) | 34.5 | (0.5) | ||
71+ years | 10.8 | 0.1 | 31.6 | (0.7) | 0.0057 | 36.5 | (0.7 | <0.0001 |
Gender | ||||||||
Female | 49.4 | (0.1) | 30.7 | (0.4) | 37.5 | (0.4) | ||
Male | 50.6 | (0.1) | 34.3 | (0.4) | <0.0001 | 38.8 | (0.5) | 0.0473 |
SEIFA | ||||||||
Lowest (quintile 1) | 18.1 | (1.0) | 33.8 | (0.7) | 40.1 | (0.8) | ||
Middle (quintile 2–3) | 59.7 | (1.4) | 32.6 | (0.3) | 38.4 | (0.4) | ||
Highest (quintile 5) | 22.2 | (1.0) | 31.2 | (0.6) | 0.0184 | 35.9 | (0.7) | 0.0013 |
Educational Attainment | ||||||||
No tertiary education | 38.8 | (0.6) | 33.5 | (0.5) | 40.1 | (0.8) | ||
Vocational education | 35.5 | (0.7) | 34.2 | (0.4) | 38.4 | (0.4) | ||
University education | 25.7 | (0.7) | 28.6 | (0.5) | <0.0001 | 35.9 | (0.7) | 0.0013 |
Country of Birth | ||||||||
Australia | 68.8 | (0.9) | 34.6 | (0.3) | 40.3 | (0.4) | ||
Other English-speaking countries | 11.6 | (0.4) | 34.1 | (0.8) | 37.6 | (0.8) | ||
Other | 19.6 | (0.8) | 24.1 | (0.6) | <0.0001 | 31.0 | (0.7) | <0.0001 |
Geographic Area | ||||||||
Major cities | 71.5 | (0.6) | 31.3 | (0.3) | 37.3 | (0.3) | ||
Inner regional | 19.1 | (0.8) | 36.1 | (0.6) | 40.7 | (0.7) | ||
Other | 9.4 | (0.8) | 34.3 | (0.9) | <0.0001 | 39.3 | (1.1) | <0.0001 |
Energy Reporting Status | ||||||||
Low (EI:BMR ≤ 0.87) | 16.8 | (0.5) | 25.5 | (0.7) | 36.9 | (0.7) | ||
Plausible (EI:BMR > 0.87) | 69.2 | (0.7) | 34.6 | (0.3) | 38.7 | (0.4) | ||
Missing | 14.0 | (0.4) | 30.8 | (0.7) | <0.0001 | 37.1 | (0.7) | 0.0427 |
Discretionary Food (%E) | UPF (%E) | (n) | % |
---|---|---|---|
Tertile 1—lowest | Tertile 1—lowest | 1721 | 18.4 |
Tertile 1—lowest | Tertile 2—middle | 930 | 10.0 |
Tertile 1—lowest | Tertile 3—highest | 462 | 4.9 |
Tertile 2—middle | Tertile 1—lowest | 884 | 9.5 |
Tertile 2—middle | Tertile 2—middle | 1319 | 14.1 |
Tertile 2—middle | Tertile 3—highest | 911 | 9.8 |
Tertile 3—highest | Tertile 1—lowest | 508 | 5.4 |
Tertile 3—highest | Tertile 2—middle | 865 | 9.3 |
Tertile 3—highest | Tertile 3—highest | 1741 | 18.6 |
DF (%E) | UPF (%E) | DF (%E) | UPF (%E) | DF (No Alcohol) (%E) | UPF | |||
---|---|---|---|---|---|---|---|---|
Total Energy (MJ) | Total Energy (MJ) | Total Energy (MJ) | Protein (MJ) | Total Energy (MJ) | Protein (MJ) | P + C + F (MJ) | P + C + F (MJ) | |
Quintile | Mean | Mean | Adj. Mean † | Adj. Mean † | Adj. Mean † | Adj. Mean † | Adj. Mean † | Adj. Mean † |
1 | 7.4 | 8.2 | 7.5 | 1.6 | 8.5 | 1.6 | 7.4 | 7.8 |
2 | 8.3 | 8.7 | 8.4 | 1.6 | 8.9 | 1.6 | 8.0 | 8.4 |
3 | 8.7 | 8.6 | 8.8 | 1.6 | 8.8 | 1.5 | 8.4 | 8.3 |
4 | 9.1 | 8.8 | 9.1 | 1.5 | 8.8 | 1.4 | 8.5 | 8.5 |
5 | 10.0 *** | 9.1 *** | 10.0 *** | 1.4 *** | 9.1 ** | 1.3 *** | 9.0 *** | 8.7 *** |
Food Intake (Range) | Model 1: Change in BMI (SE) | p-Value | Model 2: Change in BMI (SE) | p-Value | |||
---|---|---|---|---|---|---|---|
ADG classification | |||||||
DF—tertile 1 | (0.0–≤21.8) | −0.8 | (0.2) | −1.0 | (0.2) | ||
DF—tertile 2 | (>21.8–41.6) | −0.2 | (0.2) | −0.4 | (0.2) | ||
DF—tertile 3 | (≥41.7–100) | Ref | 0.0003 | Ref | <0.0001 | ||
NOVA classification | |||||||
UPF—tertile 1 | (≥0.0–<29.4) | −0.9 | (0.2) | −1.1 | (0.2) | ||
UPF—tertile 2 | (≥29.4–<49.7) | −0.4 | (0.2) | −0.5 | (0.2) | ||
UPF—tertile 3 | (≥49.7–100.0) | Ref | 0.0003 | Ref | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grech, A.; Rangan, A.; Allman-Farinelli, M.; Simpson, S.J.; Gill, T.; Raubenheimer, D. A Comparison of the Australian Dietary Guidelines to the NOVA Classification System in Classifying Foods to Predict Energy Intakes and Body Mass Index. Nutrients 2022, 14, 3942. https://doi.org/10.3390/nu14193942
Grech A, Rangan A, Allman-Farinelli M, Simpson SJ, Gill T, Raubenheimer D. A Comparison of the Australian Dietary Guidelines to the NOVA Classification System in Classifying Foods to Predict Energy Intakes and Body Mass Index. Nutrients. 2022; 14(19):3942. https://doi.org/10.3390/nu14193942
Chicago/Turabian StyleGrech, Amanda, Anna Rangan, Margaret Allman-Farinelli, Stephen J. Simpson, Tim Gill, and David Raubenheimer. 2022. "A Comparison of the Australian Dietary Guidelines to the NOVA Classification System in Classifying Foods to Predict Energy Intakes and Body Mass Index" Nutrients 14, no. 19: 3942. https://doi.org/10.3390/nu14193942
APA StyleGrech, A., Rangan, A., Allman-Farinelli, M., Simpson, S. J., Gill, T., & Raubenheimer, D. (2022). A Comparison of the Australian Dietary Guidelines to the NOVA Classification System in Classifying Foods to Predict Energy Intakes and Body Mass Index. Nutrients, 14(19), 3942. https://doi.org/10.3390/nu14193942