Does Consumption of Ultra-Processed Foods Matter for Liver Health? Prospective Analysis among Older Adults with Metabolic Syndrome
Abstract
:1. Background
2. Methods
2.1. Study Overview and Population
2.2. Dietary Habits and Nutrient Intake Assessments
2.3. Dietary Data Processing-Based Classification and Ultra-Processed Foods
2.4. Socio-Demographic, Lifestyle, Anthropometric, and Clinical Variables Assessment
2.5. Outcome Assessment: Liver Health
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Trial Registration
Acknowledgments
Conflicts of Interest
Abbreviations
ALT | alanine aminotransferase |
AST | aspartate aminotransferase |
CVD | cardiovascular disease |
er | energy-restricted |
FA | fatty acids |
FFQ | food frequency questionnaire |
FLI | fatty liver Index |
GGT | gamma-glutamyl transferase |
HbA1c | glycated hemoglobin |
HDL-c | high-density lipoprotein cholesterol |
HSI | hepatic steatosis index |
LOCF | last observation carried forward |
MedDiet | Mediterranean diet |
MetS | metabolic syndrome |
NAFLD | non-alcoholic fatty liver disease |
PA | physical activity |
PREDIMED-Plus | PREvención con DIeta MEDiterránea Plus |
SB | sedentary behavior |
SSB | sugar-sweetened beverages |
TCLSIH | Tianjin Chronic Low-grade Systemic Inflammation and Health Cohort Study |
UPF | ultra-processed foods |
References
- Ofosu, A.; Ramai, D.; Reddy, M. Non-alcoholic fatty liver disease: Controlling an emerging epidemic, challenges, and future directions. Ann. Gastroenterol. 2018, 31, 288–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M. Non-alcoholic fatty liver disease in 2015. World J. Hepatol. 2015, 7, 1450. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Bastarrika, G. Mediterranean diet as the ideal model for preventing non-alcoholic fatty liver disease (NAFLD). Hepatobiliary Surg. Nutr. 2020, 9, 379–381. [Google Scholar] [CrossRef] [PubMed]
- Berná, G.; Romero-Gomez, M. The role of nutrition in non-alcoholic fatty liver disease: Pathophysiology and management. Liver Int. 2020, 40, 102–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.-C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, C.A.; Cannon, G.; Levy, R.; Moubarac, J.-C.; Jaime, P.; Paula Martins, A.; Canella, D.; Louzada, M.; Parra, D. NOVA. The star shines bright. [Food classification. Public health]. World Nutr. 2016, 7, 28–38. [Google Scholar]
- Morales, F.J.; Mesías, M.; Delgado-Andrade, C. Association between Heat-Induced Chemical Markers and Ultra-Processed Foods: A Case Study on Breakfast Cereals. Nutrients 2020, 12, 1418. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Moubarac, J.-C.; Cannon, G.; Ng, S.W.; Popkin, B. Ultra-processed products are becoming dominant in the global food system. Obes. Rev. 2013, 14, 21–28. [Google Scholar] [CrossRef]
- Elizabeth, L.; Machado, P.; Zinöcker, M.; Baker, P.; Lawrence, M. Ultra-Processed Foods and Health Outcomes: A Narrative Review. Nutrients 2020, 12, 1955. [Google Scholar] [CrossRef]
- Martínez-González, M.Á.; Martín-Calvo, N. Ultraprocessed Foods and Public Health: A Need for Education. Mayo Clin. Proc. 2019, 94, 2156–2157. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.-C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Konieczna, J.; Morey, M.; Abete, I.; Bes-Rastrollo, M.; Ruiz-Canela, M.; Vioque, J.; Gonzalez-Palacios, S.; Daimiel, L.; Salas-Salvadó, J.; Fiol, M.; et al. Contribution of ultra-processed foods in visceral fat deposition and other adiposity indicators: Prospective analysis nested in the PREDIMED-Plus trial. Clin. Nutr. 2021, 40, 4290–4300. [Google Scholar] [CrossRef]
- Mendonça, R.D.; Pimenta, A.M.; Gea, A.; de la Fuente-Arrillaga, C.; Martinez-Gonzalez, M.A.; Lopes, A.C.S.; Bes-Rastrollo, M. Ultraprocessed food consumption and risk of overweight and obesity: The University of Navarra Follow-Up (SUN) cohort study. Am. J. Clin. Nutr. 2016, 104, 1433–1440. [Google Scholar] [CrossRef] [Green Version]
- Canhada, S.L.; Luft, V.C.; Giatti, L.; Duncan, B.B.; Chor, D.; da Fonseca, M.d.J.M.; Matos, S.M.A.; Molina, M.D.C.B.; Barreto, S.M.; Levy, R.B.; et al. Ultra-processed foods, incident overweight and obesity, and longitudinal changes in weight and waist circumference: The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Public Health Nutr. 2020, 23, 1076–1086. [Google Scholar] [CrossRef] [Green Version]
- Beslay, M.; Srour, B.; Méjean, C.; Allès, B.; Fiolet, T.; Debras, C.; Chazelas, E.; Deschasaux, M.; Wendeu-Foyet, M.G.; Hercberg, S.; et al. Ultra-processed food intake in association with BMI change and risk of overweight and obesity: A prospective analysis of the French NutriNet-Santé cohort. PLoS Med. 2020, 17, e1003256. [Google Scholar] [CrossRef]
- Srour, B.; Fezeu, L.K.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Andrianasolo, R.M.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; et al. Ultra-processed food intake and risk of cardiovascular disease: Prospective cohort study (NutriNet-Santé). BMJ 2019, 365, l1451. [Google Scholar] [CrossRef] [Green Version]
- Srour, B.; Fezeu, L.K.; Kesse-Guyot, E.; Allès, B.; Debras, C.; Druesne-Pecollo, N.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; et al. Ultraprocessed food consumption and risk of type 2 diabetes among participants of the NutriNet-Santé prospective cohort. JAMA Intern. Med. 2020, 180, 283. [Google Scholar] [CrossRef]
- Llavero-Valero, M.; Escalada-San Martín, J.; Martínez-González, M.A.; Basterra-Gortari, F.J.; de la Fuente-Arrillaga, C.; Bes-Rastrollo, M. Ultra-processed foods and type-2 diabetes risk in the SUN project: A prospective cohort study. Clin. Nutr. 2021, 40, 2817–2824. [Google Scholar] [CrossRef]
- Rey-García, J.; Donat-Vargas, C.; Sandoval-Insausti, H.; Bayan-Bravo, A.; Moreno-Franco, B.; Banegas, J.R.; Rodríguez-Artalejo, F.; Guallar-Castillón, P. Ultra-Processed food consumption is associated with renal function decline in older adults: A prospective cohort study. Nutrients 2021, 13, 428. [Google Scholar] [CrossRef]
- Fiolet, T.; Srour, B.; Sellem, L.; Kesse-Guyot, E.; Allès, B.; Méjean, C.; Deschasaux, M.; Fassier, P.; Latino-Martel, P.; Beslay, M.; et al. Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Santé prospective cohort. BMJ 2018, 360, k322. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Pedrero, L.; Ojeda-Rodríguez, A.; Martínez-González, M.A.; Zalba, G.; Bes-Rastrollo, M.; Marti, A. Ultra-processed food consumption and the risk of short telomeres in an elderly population of the Seguimiento Universidad de Navarra (SUN) Project. Am. J. Clin. Nutr. 2020, 111, 1259–1266. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Hu, E.A.; Rebholz, C.M. Ultra-processed food intake and mortality in the USA: Results from the Third National Health and Nutrition Examination Survey (NHANES III, 1988–1994). Public Health Nutr. 2019, 22, 1777–1785. [Google Scholar] [CrossRef] [PubMed]
- Ivancovsky-Wajcman, D.; Fliss-Isakov, N.; Webb, M.; Bentov, I.I.; Shibolet, O.; Kariv, R.; Zelber-Sagi, S. Ultra-processed food is associated with features of metabolic syndrome and non-alcoholic fatty liver disease. Liver Int. 2021, 41, 2635–2645. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Gan, S.; Zhang, Q.; Liu, L.; Meng, G.; Yao, Z.; Wu, H.; Gu, Y.; Wang, Y.; Zhang, T.; et al. Ultra-processed food consumption and the risk of non-alcoholic fatty liver disease in the Tianjin Chronic Low-grade Systemic Inflammation and Health Cohort Study. Int. J. Epidemiol. 2021, 51, 237–249. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Buil-Cosiales, P.; Corella, D.; Bulló, M.; Fitó, M.; Vioque, J.; Romaguera, D.; Martínez, J.A.; Wärnberg, J.; López-Miranda, J.; et al. Cohort Profile: Design and methods of the PREDIMED-Plus randomized trial. Int. J. Epidemiol. 2019, 48, 387–388. [Google Scholar] [CrossRef] [Green Version]
- Sayón-Orea, C.; Razquin, C.; Bulló, M.; Corella, D.; Fitó, M.; Romaguera, D.; Vioque, J.; Alonso-Gómez, Á.M.; Wärnberg, J.; Martínez, J.A.; et al. Effect of a Nutritional and Behavioral Intervention on Energy-Reduced Mediterranean Diet Adherence among Patients with Metabolic Syndrome. JAMA 2019, 322, 1486. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; James, W.P.; Loria, C.M.; Smith, S.C., Jr.; International Diabetes Federation Task Force on Epidemiology and Prevention; et al. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Willett, W. Nutritional Epidemiology, 3rd ed.; Oxford University Press: Oxford, UK, 2013; 529p. [Google Scholar]
- Fernández-Ballart, J.D.; Piñol, J.L.; Zazpe, I.; Corella, D.; Carrasco, P.; Toledo, E.; Perez-Bauer, M.; Martínez-González, M.Á.; Salas-Salvadó, J.; Martín-Moreno, J.M. Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. Br. J. Nutr. 2010, 103, 1808–1816. [Google Scholar] [CrossRef] [Green Version]
- de la Fuente-Arrillaga, C.; Vázquez Ruiz, Z.; Bes-Rastrollo, M.; Sampson, L.; Martinez-González, M.A. Reproducibility of an FFQ validated in Spain. Public Health Nutr. 2010, 13, 1364–1372. [Google Scholar] [CrossRef] [Green Version]
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Tablas de Composición de Alimentos “Food Composition Table”, 16th ed.; Pirámide: Madrid, Spain, 2013. [Google Scholar]
- Salmerón, J. Dietary Fiber, Glycemic Load, and Risk of Non—Insulin-dependent Diabetes Mellitus in Women. JAMA J. Am. Med. Assoc. 1997, 277, 472. [Google Scholar] [CrossRef]
- Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International Tables of Glycemic Index and Glycemic Load Values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef] [Green Version]
- Molina, L.; Sarmiento, M.; Peñafiel, J.; Donaire, D.; Garcia-Aymerich, J.; Gomez, M.; Ble, M.; Ruiz, S.; Frances, A.; Schroder, H.; et al. Validation of the Regicor Short Physical Activity Questionnaire for the Adult Population. PLoS ONE 2017, 12, e0168148. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; López-Fontana, C.; Varo, J.J.; Sánchez-Villegas, A.; Martinez, J.A. Validation of the Spanish version of the physical activity questionnaire used in the Nurses’ Health Study and the Health Professionals’ Follow-up Study. Public Health Nutr. 2005, 8, 920–927. [Google Scholar] [CrossRef]
- Schröder, H.; Fitó, M.; Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Lamuela-Raventós, R.; Ros, E.; Salaverría, I.; Fiol, M.; et al. A Short Screener Is Valid for Assessing Mediterranean Diet Adherence among Older Spanish Men and Women. J. Nutr. 2011, 141, 1140–1145. [Google Scholar] [CrossRef] [Green Version]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BMC Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-H.; Kim, D.; Kim, H.J.; Lee, C.-H.; Yang, J.I.; Kim, W.; Kim, Y.; Yoon, J.; Cho, S.; Sung, M.; et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef]
- Textor, J.; van der Zander, B.; Gilthorpe, M.S.; Liśkiewicz, M.; Ellison, G.T. Robust causal inference using directed acyclic graphs: The R package “dagitty”. Int. J. Epidemiol. 2016, 45, 1887–1894. [Google Scholar] [CrossRef] [Green Version]
- Iacobucci, D.; Saldanha, N.; Deng, X. A Meditation on Mediation: Evidence That Structural Equations Models Perform Better Than Regressions. J. Consum. Psychol. 2007, 17, 139–153. [Google Scholar] [CrossRef]
- Petroni, M.L.; Brodosi, L.; Marchignoli, F.; Musio, A.; Marchesini, G. Moderate Alcohol Intake in Non-Alcoholic Fatty Liver Disease: To Drink or Not to Drink? Nutrients 2019, 11, 3048. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, R.d.D.; Lopes, A.C.S.; Pimenta, A.M.; Gea, A.; Martinez-Gonzalez, M.A.; Bes-Rastrollo, M. Ultra-Processed Food Consumption and the Incidence of Hypertension in a Mediterranean Cohort: The Seguimiento Universidad de Navarra Project. Am. J. Hypertens. 2016, 30, hpw137. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira da Silva Scaranni, P.; De Oliveira Cardoso, L.; Chor, D.; Prates Melo, E.C.; Alvim Matos, S.M.; Giatti, L.; Barreto, S.M.; da Fonseca, M.J.M. Ultra-processed foods, changes in blood pressure and incidence of hypertension: The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Public Health Nutr. 2021, 24, 3352–3360. [Google Scholar] [CrossRef] [PubMed]
- Zelber-Sagi, S.; Ivancovsky-Wajcman, D.; Fliss Isakov, N.; Webb, M.; Orenstein, D.; Shibolet, O.; Kariv, R. High red and processed meat consumption is associated with non-alcoholic fatty liver disease and insulin resistance. J. Hepatol. 2018, 68, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Fox, C.S.; Jacques, P.F.; Speliotes, E.K.; Hoffmann, U.; Smith, C.E.; Saltzman, E.; McKeown, N.M. Sugar-sweetened beverage, diet soda, and fatty liver disease in the Framingham Heart Study cohorts. J. Hepatol. 2015, 63, 462–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, D.S. Technology, Diet, and the Burden of Chronic Disease. JAMA 2011, 305, 1352. [Google Scholar] [CrossRef]
- Mazidi, M.; Katsiki, N.; Mikhailidis, D.P.; Banach, M. Link between plasma trans-fatty acid and fatty liver is moderated by adiposity. Int. J. Cardiol. 2018, 272, 316–322. [Google Scholar] [CrossRef]
- World Health Organization. Countdown to 2023: WHO Report on Global Trans-Fat Elimination 2021; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Pipoyan, D.; Stepanyan, S.; Stepanyan, S.; Beglaryan, M.; Costantini, L.; Molinari, R.; Merendino, N. The Effect of Trans Fatty Acids on Human Health: Regulation and Consumption Patterns. Foods 2021, 10, 2452. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, S.; Zhang, Q.; Liu, L.; Meng, G.; Wu, H.; Bao, X.; Gu, Y.; Sun, S.; Wang, X.; et al. Insoluble dietary fibre intake is associated with lower prevalence of newly-diagnosed non-alcoholic fatty liver disease in Chinese men: A large population-based cross-sectional study. Nutr. Metab. 2020, 17, 4. [Google Scholar] [CrossRef] [Green Version]
- Schulte, E.M.; Avena, N.M.; Gearhardt, A.N. Which Foods May Be Addictive? The Roles of Processing, Fat Content, and Glycemic Load. Weir TL, editor. PLoS ONE 2015, 10, e0117959. [Google Scholar] [CrossRef]
- Parker, A.; Kim, Y. The Effect of Low Glycemic Index and Glycemic Load Diets on Hepatic Fat Mass, Insulin Resistance, and Blood Lipid Panels in Individuals with Nonalcoholic Fatty Liver Disease. Metab. Syndr. Relat. Disord. 2019, 17, 389–396. [Google Scholar] [CrossRef]
- Valtueña, S.; Pellegrini, N.; Ardigò, D.; Del Rio, D.; Numeroso, F.; Scazzina, F.; Monti, L.; Zavaroni, I.; Brighenti, F. Dietary glycemic index and liver steatosis. Am. J. Clin. Nutr. 2006, 84, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Golonka, R.M.; Yeoh, B.S.; Vijay-Kumar, M. Dietary Additives and Supplements Revisited: The Fewer, the Safer for Gut and Liver Health. Curr. Pharmacol. Rep. 2019, 5, 303–316. [Google Scholar] [CrossRef]
- Hassan, M.M.; Elrrigieg, M.A.A.; Sabahelkhier, M.; Idris, O. Impacts of the food additive benzoic acid on liver function of Wistar rats. Int. J. Adv. Res. 2016, 4, 568–575. [Google Scholar] [CrossRef]
- Elbassuoni, E.A.; Ragy, M.M.; Ahmed, S.M. Evidence of the protective effect of l-arginine and vitamin D against monosodium glutamate-induced liver and kidney dysfunction in rats. Biomed. Pharmacother. 2018, 108, 799–808. [Google Scholar] [CrossRef]
- Singh, R.K. Food additive P-80 impacts mouse gut microbiota promoting intestinal inflammation, obesity and liver dysfunction. SOJ Microbiol. Infect. Dis. 2016, 4, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Xia, M.-F.; Bian, H.; Gao, X. NAFLD and Diabetes: Two Sides of the Same Coin? Rationale for Gene-Based Personalized NAFLD Treatment. Front. Pharmacol. 2019, 10, 877. [Google Scholar] [CrossRef] [Green Version]
- Lonardo, A.; Leoni, S.; Alswat, K.A.; Fouad, Y. History of Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2020, 21, 5888. [Google Scholar] [CrossRef]
- Martínez Steele, E.; Juul, F.; Neri, D.; Rauber, F.; Monteiro, C.A. Dietary share of ultra-processed foods and metabolic syndrome in the US adult population. Prev. Med. 2019, 125, 40–48. [Google Scholar] [CrossRef]
- Long, M.T.; Pedley, A.; Colantonio, L.D.; Massaro, J.M.; Hoffmann, U.; Muntner, P.; Fox, C.S. Development and Validation of the Framingham Steatosis Index to Identify Persons With Hepatic Steatosis. Clin. Gastroenterol. Hepatol. 2016, 14, 1172–1180.e2. [Google Scholar] [CrossRef] [Green Version]
- Shimony, M.K.; Schliep, K.C.; Schisterman, E.F.; Ahrens, K.A.; Sjaarda, L.A.; Rotman, Y.; Perkins, N.J.; Pollack, A.Z.; Wactawski-Wende, J.; Mumford, S.L.; et al. The relationship between sugar-sweetened beverages and liver enzymes among healthy premenopausal women: A prospective cohort study. Eur. J. Nutr. 2016, 55, 569–576. [Google Scholar] [CrossRef]
- Mirmiran, P.; Gaeini, Z.; Bahadoran, Z.; Azizi, F. Elevated serum levels of aminotransferases in relation to unhealthy foods intake: Tehran lipid and glucose study. BMC Endocr. Disord. 2019, 19, 100. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.D.; Hou, T.; Hu, F.B.; Rimm, E.B.; Spiegelman, D.; Willett, W.C.; Mozaffarian, D. A Comparison of different methods for evaluating diet, physical activity, and long-term weight gain in 3 prospective cohort studies. J. Nutr. 2015, 145, 2527–2534. [Google Scholar] [CrossRef] [PubMed]
Subgroup | Contribution (%) | Item |
---|---|---|
Sweets | 28 | chocolate cookies, breakfast cereals, muffins, donuts, croissants, pastries, and confectionery |
Non-alcoholic beverages | 26 | soft drinks (sugar- and artificially-sweetened) and commercial fruit juices |
Processed meats | 22 | ham, chorizo, mortadella, sausages, hamburgers and meat balls, and pate and foie-gras |
Pre-prepared dishes, snacks and fast-foods | 11 | potato chips, croquettes, pizza, instant soups, margarine, mayonnaise, mustard, ketchup, packed fried tomato sauce, and savory packed snacks |
Dairy products | 11 | milkshakes, ice cream, Petit suisse, custard, flan, pudding, and creamy cheese spreads |
Alcoholic beverages | 2 | distillated liquors |
Quintiles of UPF Consumption | |||||||
---|---|---|---|---|---|---|---|
Total | Q1 | Q2 | Q3 | Q4 | Q5 | ||
Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | Mean (SD) | p-Value | |
n | 5867 | 1174 | 1173 | 1173 | 1173 | 1173 | |
Sociodemographic factors | |||||||
Women, n (%) | 2807 (47.8) | 562 (47.9) | 561 (47.8) | 562 (47.9) | 561 (47.8) | 561 (47.8) | |
Age (years) | 65.0 (4.9) | 66.1 (4.7) | 65.4 (4.8) | 64.8 (4.8) | 64.6 (4.9) | 64.3 (5.0) | <0.001 |
Higher education, n (%) | 1233 (21.0) | 234 (19.9) | 232 (19.8) | 255 (21.7) | 254 (21.7) | 258 (22.0) | 0.087 |
Current smokers, n (%) | 732 (12.5) | 128 (10.9) | 128 (10.9) | 146 (12.4) | 159 (13.6) | 171 (14.6) | 0.167 |
Lifestyle factors | |||||||
Physical activity (METs min/week) | 2477 (2297) | 2743 (2481) | 2646 (2449) | 2439 (2245) | 2383 (2160) | 2174 (2081) | <0.001 |
Sedentary behavior (h/day) | 6.00 (1.96) | 5.68 (1.98) | 5.89 (1.91) | 6.04 (1.94) | 6.18 (1.92) | 6.23 (1.97) | <0.001 |
FFQ: | |||||||
Total energy intake (kcal/day) | 2360 (550) | 2203 (521) | 2318 (511) | 2371 (536) | 2434 (545) | 2473 (592) | <0.001 |
Saturated FA (% of energy intake) | 9.95 (1.99) | 8.95 (1.80) | 9.63 (1.72) | 10.1 (1.9) | 10.4 (2.0) | 10.7 (2.1) | <0.001 |
Trans FA (% of energy intake) | 0.22 (0.13) | 0.16 (0.10) | 0.20 (0.11) | 0.23 (0.12) | 0.24 (0.13) | 0.27 (0.14) | <0.001 |
Cholesterol (mg/day) | 380 (115) | 343 (105) | 367 (107) | 389 (115) | 397 (115) | 406 (123) | <0.001 |
Sodium (mg/day) | 3281 (1016) | 3021 (983) | 3239 (972) | 3298 (1010) | 3397 (971) | 3452 (1088) | <0.001 |
Glycemic load | 131 (46) | 123 (45) | 128 (42) | 131 (45) | 133 (47) | 138 (49) | <0.001 |
Fiber intake (g/day) | 25.9 (8.7) | 27.8 (9.5) | 27.0 (8.7) | 26.0 (8.3) | 25.2 (8.4) | 23.6 (7.9) | <0.001 |
Alcohol intake (g/day) | 11.1 (15.1) | 12.5 (17.3) | 11.6 (15.6) | 11.0 (14.3) | 10.6 (14.1) | 9.70 (14.0) | 0.0001 |
Adherence to erMedDiet (17p score) | 8.45 (2.67) | 9.61 (2.55) | 8.90 (2.67) | 8.37 (2.48) | 7.98 (2.53) | 7.38 (2.55) | <0.001 |
NOVA food groups: | |||||||
Unprocessed or minimally processed foods (% of g/day) | 68.1 (12.5) | 73.3 (13.4) | 71.6 (11.6) | 69.7 (10.5) | 66.7 (10.3) | 59.1 (11.2) | <0.001 |
Processed culinary ingredients (% of g/day) | 2.79 (1.28) | 2.69 (1.23) | 2.80 (1.28) | 2.82 (1.24) | 2.88 (1.37) | 2.78 (1.26) | 0.006 |
Processed foods (% of g/day) | 20.9 (10.8) | 21.9 (13.2) | 21.4 (11.4) | 21.2 (10.1) | 21.0 (9.8) | 19.0 (8.9) | <0.001 |
UPF (% of g/day) | 8.19 (6.95) | 2.12 (0.81) | 4.17 (0.63) | 6.23 (0.86) | 9.44 (1.44) | 19.0 (7.9) | <0.001 |
Liver health risk factors | |||||||
BMI (kg/m2) | 32.5 (3.4) | 32.0 (3.3) | 32.5 (3.4) | 32.6 (3.4) | 32.7 (3.5) | 32.8 (3.6) | <0.001 |
Overall obesity prevalence, n (%) | 4289 (73.1) | 819 (69.8) | 848 (72.3) | 870 (74.1) | 864 (73.7) | 888 (75.7) | 0.018 |
History of overweight from childhood, n (%) | 334 (5.69) | 53 (4.51) | 64 (5.46) | 78 (6.64) | 60 (5.12) | 79 (6.73) | 0.595 |
Waist circumference (cm) | 107.5 (9.6) | 106.3 (9.1) | 107.1 (9.3) | 107.7 (9.7) | 108.2 (9.7) | 108.4 (9.9) | <0.001 |
Abdominal obesity prevalence, n (%) | 5454 (93.0) | 1075 (91.6) | 1093 (93.2) | 1103 (94.0) | 1095 (93.4) | 1088 (92.8) | 0.224 |
HbA1c (%) | 6.12 (0.87) | 6.12 (0.82) | 6.14 (0.86) | 6.08 (0.82) | 6.14 (0.93) | 6.11 (0.90) | 0.570 |
Type 2 diabetes prevalence at baseline, n (%) | 1828 (31.2) | 385 (32.8) | 363 (31.0) | 356 (30.3) | 384 (32.7) | 340 (29.0) | 0.213 |
Number of MetS factors at baseline | 3.38 (0.98) | 3.31 (0.99) | 3.37 (0.99) | 3.40 (0.96) | 3.38 (0.98) | 3.42 (0.97) | 0.069 |
Liver health biomarkers | |||||||
FLI (arbitrary units) | 77.9 (17.1) | 75.8 (17.3) | 77.5 (17.4) | 78.4 (17.1) | 78.7 (16.7) | 79.4 (16.8) | <0.001 |
NAFLD prevalence (FLI ≥ 60), n (%) | 4934 (84.1) | 962 (81.9) | 970 (82.7) | 990 (84.3) | 1000 (85.3) | 1012 (86.3) | 0.132 |
HSI (arbitrary units) | 43.4 (5.9) | 42.7 (4.6) | 43.5 (6.5) | 43.3 (5.5) | 43.4 (4.8) | 44.0 (7.4) | <0.001 |
NAFLD prevalence (HSI ≥ 36), n (%) | 5585 (95.2) | 1117 (95.1) | 1124 (95.8) | 1119 (95.3) | 1115 (95.1) | 1110 (94.6) | 0.750 |
ALT (U/L) | 27.0 (15.4) | 26.4 (15.3) | 27.7 (16.2) | 26.7 (15.0) | 26.5 (14.3) | 27.8 (16.0) | 0.065 |
AST (U/L) | 23.3 (9.9) | 23.1 (9.7) | 23.6 (10.4) | 23.3 (10.1) | 23.2 (9.6) | 23.4 (9.8) | 0.771 |
ALT/AST ratio | 1.16 (0.53) | 1.13 (0.34) | 1.18 (0.64) | 1.15 (0.46) | 1.14 (0.34) | 1.21 (0.76) | 0.001 |
AST/ALT ratio | 0.95 (0.30) | 0.96 (0.28) | 0.94 (0.29) | 0.96 (0.30) | 0.96 (0.30) | 0.94 (0.33) | 0.204 |
GGT (U/L) | 37.6 (37.2) | 37.3 (34.7) | 38.5 (40.8) | 37.9 (39.7) | 37.1 (35.8) | 37.1 (34.7) | 0.889 |
Triglycerides (mg/dL) | 151 (77) | 145 (73) | 149 (79) | 151 (70) | 151 (73) | 158 (88) | 0.001 |
(A) FLI Score | |
---|---|
Mediator | % Mediated |
Nutritional factors | |
+changes in total energy intake (kcal/day) | 0% |
+changes in saturated FA intake (g/day) | 19% |
+changes in trans FA intake (g/day) | 18% |
+changes in cholesterol intake (mg/day) | 0% |
+changes in fiber intake (g/day) | 15% |
+changes in glycemic load | 11% |
+changes in sodium intake (mg/day) | 0% |
+changes in adherence to erMedDiet (17p score) | 58% |
NAFLD-related biomarkers | |
+changes in BMI (kg/m2) | 69% |
+changes in waist circumference (cm) | 56% |
+changes in HbA1c (%) | 14% |
+changes in number of MetS factors | 26% |
+changes in GGT (U/L) | 0% |
+changes in triglycerides (mg/dL) | 26% |
(B) HSI Score | |
Mediator | % Mediated |
Nutritional factors | |
+changes in total energy intake (kcal/day) | 0% |
+changes in saturated FA intake (g/day) | 21% |
+changes in trans FA intake (g/day) | 17% |
+changes in cholesterol intake (mg/day) | 0% |
+changes in fiber intake (g/day) | 0% |
+changes in glycemic load | 0% |
+changes in sodium intake (mg/day) | 0% |
+changes in adherence to erMedDiet (17p score) | 43% |
NAFLD-related biomarkers | |
+changes in BMI (kg/m2) | 69% |
+changes in waist circumference (cm) | 82% |
+changes in HbA1c (%) | 15% |
+changes in number of MetS factors | 16% |
+changes in ALT (U/L) | 16% |
+changes in AST (U/L) | 0% |
+changes in ALT/AST | 39% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konieczna, J.; Fiol, M.; Colom, A.; Martínez-González, M.Á.; Salas-Salvadó, J.; Corella, D.; Soria-Florido, M.T.; Martínez, J.A.; Alonso-Gómez, Á.M.; Wärnberg, J.; et al. Does Consumption of Ultra-Processed Foods Matter for Liver Health? Prospective Analysis among Older Adults with Metabolic Syndrome. Nutrients 2022, 14, 4142. https://doi.org/10.3390/nu14194142
Konieczna J, Fiol M, Colom A, Martínez-González MÁ, Salas-Salvadó J, Corella D, Soria-Florido MT, Martínez JA, Alonso-Gómez ÁM, Wärnberg J, et al. Does Consumption of Ultra-Processed Foods Matter for Liver Health? Prospective Analysis among Older Adults with Metabolic Syndrome. Nutrients. 2022; 14(19):4142. https://doi.org/10.3390/nu14194142
Chicago/Turabian StyleKonieczna, Jadwiga, Miguel Fiol, Antoni Colom, Miguel Ángel Martínez-González, Jordi Salas-Salvadó, Dolores Corella, María Trinidad Soria-Florido, J. Alfredo Martínez, Ángel M. Alonso-Gómez, Julia Wärnberg, and et al. 2022. "Does Consumption of Ultra-Processed Foods Matter for Liver Health? Prospective Analysis among Older Adults with Metabolic Syndrome" Nutrients 14, no. 19: 4142. https://doi.org/10.3390/nu14194142
APA StyleKonieczna, J., Fiol, M., Colom, A., Martínez-González, M. Á., Salas-Salvadó, J., Corella, D., Soria-Florido, M. T., Martínez, J. A., Alonso-Gómez, Á. M., Wärnberg, J., Vioque, J., López-Miranda, J., Estruch, R., Bernal-López, M. R., Lapetra, J., Serra-Majem, L., Bueno-Cavanillas, A., Tur, J. A., Martín Sánchez, V., ... Romaguera, D. (2022). Does Consumption of Ultra-Processed Foods Matter for Liver Health? Prospective Analysis among Older Adults with Metabolic Syndrome. Nutrients, 14(19), 4142. https://doi.org/10.3390/nu14194142