Insights into Modifiable Risk Factors of Infertility: A Mendelian Randomization Study
Abstract
:1. Introduction
2. Methods
2.1. Data Source
2.1.1. Outcome Data
2.1.2. Exposure Data
2.1.3. IV Selection
2.2. Statistical Analysis
3. Result
3.1. Obesity-Related Traits
3.2. Lifestyle and Dietary Factors
3.3. Biochemical Measures
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boivin, J.; Bunting, L.; Collins, J.A.; Nygren, K.G. international estimates of infertility prevalence and treatment-seeking: Potential need and demand for infertility medical care. Hum. Reprod. 2007, 22, 1506–1512. [Google Scholar] [CrossRef] [PubMed]
- Patra, S.; Unisa, S. Addressing reproductive health knowledge, infertility and coping strategies among rural women in India. J. Biosoc. Sci. 2021, 53, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Inhorn, M.C.; Patrizio, P. Infertility around the globe: New thinking on gender, reproductive technologies and global movements in the 21st century. Hum. Reprod. Update 2015, 21, 411–426. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Biedenharn, K.R.; Fedor, J.M.; Agarwal, A. Lifestyle factors and reproductive health: Taking control of your fertility. Reprod. Biol. Endocrinol. RBE 2013, 11, 66. [Google Scholar] [CrossRef] [PubMed]
- Broughton, D.E.; Moley, K.H. Obesity and female infertility: Potential mediators of obesity’s impact. Fertil. Steril. 2017, 107, 840–847. [Google Scholar] [CrossRef]
- Kahn, B.E.; Brannigan, R.E. Obesity and male infertility. Curr. Opin. Urol. 2017, 27, 441–445. [Google Scholar] [CrossRef]
- Talmor, A.; Dunphy, B. Female obesity and infertility. Best Pract. Res. Clin. Obstet. Gynaecol. 2015, 29, 498–506. [Google Scholar] [CrossRef]
- Practice Committee of American Society for Reproductive Medicine. Smoking and infertility. Fertil. Steril. 2008, 90 (Suppl. S5), S254–S259. [Google Scholar] [CrossRef]
- La Vignera, S.; Condorelli, R.A.; Balercia, G.; Vicari, E.; Calogero, A.E. Does alcohol have any effect on male reproductive function? A review of literature. Asian J. Androl. 2013, 15, 221–225. [Google Scholar] [CrossRef]
- Xie, F.; You, Y.; Guan, C.; Gu, Y.; Yao, F.; Xu, J. Association between physical activity and infertility: A comprehensive systematic review and meta-analysis. J. Transl. Med. 2022, 20, 237. [Google Scholar] [CrossRef]
- Chiu, Y.H.; Chavarro, J.E.; Souter, I. Diet and female fertility: Doctor, what should I eat? Fertil. Steril. 2018, 110, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Sekula, P.; Del Greco, M.F.; Pattaro, C.; Köttgen, A. Mendelian Randomization as an Approach to Assess Causality Using Observational Data. J. Am. Soc. Nephrol. JASN 2016, 27, 3253–3265. [Google Scholar] [CrossRef] [PubMed]
- The FinnGen Consortium. FinnGen Documentation of R6 Release. 2022. Available online: https://finngen.gitbook.io/documentation/ (accessed on 1 July 2022).
- Silvestris, E.; de Pergola, G.; Rosania, R.; Loverro, G. Obesity as disruptor of the female fertility. Reprod. Biol. Endocrinol. RBE 2018, 16, 22. [Google Scholar] [CrossRef] [PubMed]
- Swift, B.E.; Liu, K.E. The effect of age, ethnicity, and level of education on fertility awareness and duration of infertility. J. Obstet. Gynaecol. Can. JOGC J. D’obstetrique et Gynecol. du Can. JOGC 2014, 36, 990–996. [Google Scholar] [CrossRef]
- Finelli, R.; Mottola, F.; Agarwal, A. Impact of Alcohol Consumption on Male Fertility Potential: A Narrative Review. Int. J. Environ. Res. Public Health 2021, 19, 328. [Google Scholar] [CrossRef]
- de Angelis, C.; Nardone, A.; Garifalos, F.; Pivonello, C.; Sansone, A.; Conforti, A.; Di Dato, C.; Sirico, F.; Alviggi, C.; Isidori, A.; et al. Smoke, alcohol and drug addiction and female fertility. Reprod. Biol. Endocrinol. RBE 2020, 18, 21. [Google Scholar] [CrossRef]
- Soylu, Í.L.; Jensen, A.; Juul, K.E.; Kesmodel, U.S.; Frederiksen, K.; Kjaer, S.K.; Hargreave, M. Coffee, tea and caffeine consumption and risk of primary infertility in women: A Danish cohort study. Acta Obstet. Et Gynecol. Scand. 2018, 97, 570–576. [Google Scholar] [CrossRef]
- Ricci, E.; Viganò, P.; Cipriani, S.; Somigliana, E.; Chiaffarino, F.; Bulfoni, A.; Parazzini, F. Coffee and caffeine intake and male infertility: A systematic review. Nutr. J. 2017, 16, 37. [Google Scholar] [CrossRef]
- Durairajanayagam, D. Lifestyle causes of male infertility. Arab. J. Urol. 2018, 16, 10–20. [Google Scholar] [CrossRef]
- Eisenberg, E.; Legro, R.S.; Diamond, M.P.; Huang, H.; O’Brien, L.M.; Smith, Y.R.; Coutifaris, C.; Hansen, K.R.; Santoro, N.; Zhang, H. Sleep Habits of Women with Infertility. J. Clin. Endocrinol. Metab. 2021, 106, e4414–e4426. [Google Scholar] [CrossRef]
- Kloss, J.D.; Perlis, M.L.; Zamzow, J.A.; Culnan, E.J.; Gracia, C.R. Sleep, sleep disturbance, and fertility in women. Sleep Med. Rev. 2015, 22, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Harrison, C.L.; Brown, W.J.; Hayman, M.; Moran, L.J.; Redman, L.M. The Role of Physical Activity in Preconception, Pregnancy and Postpartum Health. Semin. Reprod. Med. 2016, 34, e28–e37. [Google Scholar] [PubMed]
- Foucaut, A.M.; Faure, C.; Julia, C.; Czernichow, S.; Levy, R.; Dupont, C.; ALIFERT Collaborative Group. Sedentary behavior, physical inactivity and body composition in relation to idiopathic infertility among men and women. PLoS ONE 2019, 14, e0210770. [Google Scholar] [CrossRef] [PubMed]
- Bosdou, J.K.; Konstantinidou, E.; Anagnostis, P.; Kolibianakis, E.M.; Goulis, D.G. Vitamin D and Obesity: Two Interacting Players in the Field of Infertility. Nutrients 2019, 11, 1455. [Google Scholar] [CrossRef]
- Osadchuk, L.V.; Danilenko, A.D.; Osadchuk, A.V. An influence of zinc on male infertility. Urologiia 2021, 5, 84–93. [Google Scholar] [CrossRef]
- Stanhiser, J.; Jukic, A.M.Z.; Steiner, A.Z. Serum omega-3 and omega-6 fatty acid concentrations and natural fertility. Hum. Reprod. 2020, 35, 950–957. [Google Scholar] [CrossRef]
- Safarinejad, M.R.; Hosseini, S.Y.; Dadkhah, F.; Asgari, M.A. Relationship of omega-3 and omega-6 fatty acids with semen characteristics, and anti-oxidant status of seminal plasma: A comparison between fertile and infertile men. Clin. Nutr. 2010, 29, 100–105. [Google Scholar] [CrossRef]
- Jahangirifar, M.; Taebi, M.; Nasr-Esfahani, M.H.; Heidari-Beni, M.; Asgari, G.H. Dietary Fatty Acid Intakes and the Outcomes of Assisted Reproductive Technique in Infertile Women. J. Reprod. Infertil. 2021, 22, 173–183. [Google Scholar] [CrossRef]
- Collodel, G.; Moretti, E.; Noto, D.; Iacoponi, F.; Signorini, C. Fatty Acid Profile and Metabolism Are Related to Human Sperm Parameters and Are Relevant in Idiopathic Infertility and Varicocele. Mediat. Inflamm. 2020, 2020, 3640450. [Google Scholar] [CrossRef]
- Davies, N.M.; Holmes, M.V.; Davey Smith, G. Reading Mendelian randomisation studies: A guide, glossary, and checklist for clinicians. BMJ 2018, 362, k601. [Google Scholar] [CrossRef] [Green Version]
- Burgess, S.; Butterworth, A.; Thompson, S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 2013, 37, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, F.P.; Davey Smith, G.; Bowden, J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. 2017, 46, 1985–1998. [Google Scholar] [CrossRef]
- Staley, J.R.; Blackshaw, J.; Kamat, M.A.; Ellis, S.; Surendran, P.; Sun, B.B.; Paul, D.S.; Freitag, D.; Burgess, S.; Danesh, J.; et al. PhenoScanner: A database of human genotype–phenotype associations. Bioinformatics 2016, 32, 3207–3209. [Google Scholar] [CrossRef]
- Kamat, M.A.; Blackshaw, J.A.; Young, R.; Surendran, P.; Burgess, S.; Danesh, J.; Butterworth, A.S.; Staley, J.R. PhenoScanner V2: An expanded tool for searching human genotype–phenotype associations. Bioinformatics 2019, 35, 4851–4853. [Google Scholar] [CrossRef]
- Sermondade, N.; Faure, C.; Fezeu, L.; Shayeb, A.G.; Bonde, J.P.; Jensen, T.K.; Van Wely, M.; Cao, J.; Martini, A.C.; Eskandar, M.; et al. BMI in relation to sperm count: An updated systematic review and collaborative meta-analysis. Hum. Reprod. Update 2013, 19, 221–231. [Google Scholar] [CrossRef]
- Glass, A.R.; Swerdloff, R.S.; Bray, G.A.; Dahms, W.T.; Atkinson, R.L. Low serum testosterone and sex-hormone-binding-globulin in massively obese men. J. Clin. Endocrinol. Metab. 1977, 45, 1211–1219. [Google Scholar] [CrossRef]
- Zumoff, B.; Strain, G.W.; Miller, L.K.; Rosner, W.; Senie, R.; Seres, D.S.; Rosenfeld, R.S. Plasma free and non-sex-hormone-binding-globulin-bound testosterone are decreased in obese men in proportion to their degree of obesity. J. Clin. Endocrinol. Metab. 1990, 71, 929–931. [Google Scholar] [CrossRef]
- Vermeulen, A.; Kaufman, J.M.; Giagulli, V.A. Influence of some biological indexes on sex hormone-binding globulin and androgen levels in aging or obese males. J. Clin. Endocrinol. Metab. 1996, 81, 1821–1826. [Google Scholar]
- Mieusset, R.; Bujan, L.; Mondinat, C.; Rosner, W.; Senie, R.; Seres, D.S.; Rosenfeld, R.S. Association of scrotal hyperthermia with impaired spermatogenesis in infertile men. Fertil. Steril. 1987, 48, 1006–1011. [Google Scholar] [CrossRef]
- Mahfouz, R.Z.; du Plessis, S.S.; Aziz, N.; Sharma, R.; Sabanegh, E.; Agarwal, A. Sperm viability, apoptosis, and intracellular reactive oxygen species levels in human spermatozoa before and after induction of oxidative stress. Fertil. Steril. 2010, 93, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Tsatsanis, C.; Dermitzaki, E.; Avgoustinaki, P.; Malliaraki, N.; Mytaras, V.; Margioris, A.N. The impact of adipose tissue-derived factors on the hypothalamic-pituitary-gonadal (HPG) axis. Hormones 2015, 14, 549–562. [Google Scholar] [CrossRef]
- Lei, A.; You, H.; Luo, B.; Ren, J. The associations between infertility-related stress, family adaptability and family cohesion in infertile couples. Sci. Rep. 2021, 11, 24220. [Google Scholar] [CrossRef]
- Gambineri, A.; Laudisio, D.; Marocco, C.; Radellini, S.; Colao, A.; Savastano, S.; Obesity Programs of Nutrition, Education, Research and Assessment (OPERA) Group. Female infertility: Which role for obesity? Int. J. Obes. Suppl. 2019, 9, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lin, H.; Li, Y.; Cao, J. Association between socio-psycho-behavioral factors and male semen quality: Systematic review and meta-analyses. Fertil. Steril. 2011, 95, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.L.; Thulstrup, A.M.; Bonde, J.P.; Olsen, J.; Håkonsen, L.B.; Ramlau-Hansen, C.H. Does last week’s alcohol intake affect semen quality or reproductive hormones? A cross-sectional study among healthy young Danish men. Reprod. Toxicol. 2012, 34, 457–462. [Google Scholar] [CrossRef]
Variable | GWAS ID | Population | Number of SNPs | No. Cases | No. Controls | Year | Consortium |
---|---|---|---|---|---|---|---|
Female infertility | finn-b-N14_FEMALEINFERT | European | 16,377,038 | 6481 | 68,969 | 2021 | FinnGen |
Male infertility | finn-b-N14_MALEINFERT | European | 16,377,329 | 680 | 72,799 | 2021 | FinnGen |
Exposure | Unit | Consortium or Study | Sex | Sample Size | Population | No. SNPs | F Value | Author and Year |
---|---|---|---|---|---|---|---|---|
Body mass index | SD (kg/m2) | Within family GWAS consortium | Males and females | 99,998 | European | 35 | 2387 | Howe LJe 2022 |
Body fat | SD (%) | UKB | Males and females | 454,850 | European | 499 | 45,330 | Ben Elsworth 2018 |
Waist-to-hip ratio | SD | GIANT | Males and females | 124,591 | European | 22 | 1256 | Shungin D 2016 |
Waist-to-hip ratio adjusted for BMI | SD | GIANT | Males and females | 210,082 | European | 36 | 2046 | Shungin D 2016 |
Education | years | SSGAC | Males and females | 766,345 | European | 298 | 15,291 | Lee-2018 |
Smoking | SD | GSCAN | Males and females | 607,291 | European | 84 | 3850 | Liu M 2019 |
Alcohol consumption | SD | GSCAN | Males and females | 335,394 | European | 50 | 6489 | Liu M 2019 |
Coffee | SD | MRC-IEU | Males and females | 64,949 | European | 3 | 127 | Ben Elsworth 2018 |
Sleep duration | SD | UKB Neale Lab | Males and females | 334,410 | European | 42 | 1649 | N |
Insomnia | SD | MRC-IEU | Males and females | 462,341 | European | 39 | 1887 | Ben Elsworth 2018 |
Physical activity | SD | MRC-IEU | Males and females | 440,266 | European | 16 | 575 | Ben Elsworth 2019 |
Sedentary behavior | SD | UKB | Males and females | 91,105 | European | 4 | 187 | Aiden Doherty 2018 |
Serum 25-Hydroxyvitamin D levels | SD (nmol/L) | UKB | Males and females | 496,946 | European | 113 | 23,192 | Joana A Revez 2020 |
Zinc | SD (µmol/L) | 1 study | Males and females | 2603 | European | 2 | 122 | Evans David M 2013 |
Omega-6 fatty acids | SD | 1 study | Males and females | 114,999 | European | 52 | 7014 | Borges CM 2020 |
Omega-3 fatty acids | SD | 1 study | Males and females | 114,999 | European | 47 | 12,039 | Borges CM 2020 |
Total fatty acids | SD | 1 study | Males and females | 13,505 | European | 12 | 627 | Kettunen 2016 |
Saturated fatty acids | SD | 1 study | Males and females | 114,999 | European | 49 | 6315 | Borges CM 2020 |
Polyunsaturated fatty acids | SD | 1 study | Males and females | 114,999 | European | 56 | 8182 | Borges CM 2020 |
Monounsaturated fatty acids | SD | 1 study | Males and females | 114,999 | European | 57 | 8102 | Borges CM 2020 |
High-density lipoprotein | SD (mg/dL) | UKB | Males and females | 403,943 | European | 310 | 47,586 | Richardson, Tom 2020 |
Low-density lipoprotein | SD (mg/dL) | UKB | Males and females | 403,944 | European | 148 | 27,197 | Richardson, Tom 2021 |
Exposure | Female Infertility | Male Infertility | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
OR | 95%CI | p | ppleiotropy | pheterogeneity | OR | 95%CI | p | ppleiotropy | pheterogeneity | |
Body mass index | 0.98 | (0.94, 1.03) | 0.420 | 0.070 | 0.834 | 1.24 | (1.09, 1.40) | 0.001 | 0.857 | 0.375 |
Body fat percentage | 1.08 | (0.93, 1.26) | 0.286 | 0.812 | 0.150 | 1.73 | (1.13, 2.64) | 0.011 | 0.502 | 0.261 |
Waist-to-hip ratio | 1.13 | (0.85, 1.50) | 0.400 | 0.965 | 0.192 | 1.31 | (0.63, 2.73) | 0.475 | 0.453 | 0.458 |
Waist-to-hip ratio adjusted for BMI | 1.19 | (0.89, 1.60) | 0.247 | 0.294 | 0.031 | 0.84 | (0.42, 1.71) | 0.639 | 0.370 | 0.601 |
Education | 0.77 | (0.64, 0.92) | 0.004 | 0.441 | 0.321 | 0.78 | (0.46, 1.34) | 0.372 | 0.667 | 0.404 |
Smoking | 1.10 | (0.90, 1.33) | 0.360 | 0.450 | 0.060 | 0.86 | (0.52, 1.45) | 0.580 | 0.164 | 0.409 |
Alcohol consumption | 0.80 | (0.44, 1.45) | 0.463 | 0.699 | 0.327 | 6.57 | (1.20, 36.14) | 0.030 | 0.834 | 0.434 |
Coffee | 0.57 | (0.15, 2.22) | 0.418 | 0.390 | 0.347 | 8.08 | (0.16, 398.68) | 0.294 | 0.605 | 0.717 |
Sleep duration | 1.00 | (0.60, 1.67) | 0.991 | 0.203 | 0.344 | 1.92 | (0.45, 8.23) | 0.377 | 0.812 | 0.649 |
Insomnia | 1.49 | (0.74, 3.01) | 0.260 | 0.466 | 0.034 | 0.37 | (0.05, 2.55) | 0.310 | 0.944 | 0.099 |
Physical activity | 1.09 | (0.74, 1.58) | 0.460 | 0.042 | 0.113 | 1.92 | (0.53, 6.93) | 0.322 | 0.136 | 0.014 |
Sedentary behavior | 0.75 | (0.37, 1.50) | 0.417 | 0.851 | 0.817 | 0.17 | (0.02, 1.87) | 0.147 | 0.384 | 0.247 |
Serum 25-Hydroxyvitamin D levels | 0.88 | (0.75, 1.03) | 0.122 | 0.439 | 0.429 | 0.69 | (0.43, 1.08) | 0.105 | 0.541 | 0.604 |
Zinc | 1.02 | (0.87, 1.20) | 0.795 | \ | 0.204 | 1.11 | (0.74, 1.68) | 0.615 | \ | 0.269 |
Omega-6 fatty acids | 1.13 | (1.00, 1.27) | 0.046 | 0.722 | 0.505 | 1.08 | (0.76, 1.52) | 0.682 | 0.432 | 0.609 |
Omega-3 fatty acids | 1.01 | (0.92, 1.10) | 0.888 | 0.244 | 0.148 | 1.20 | (0.94, 1.52) | 0.140 | 0.533 | 0.590 |
Total fatty acids | 1.16 | (1.03, 1.30) | 0.015 | 0.763 | 0.885 | 1.16 | (0.80, 1.68) | 0.443 | 0.644 | 0.298 |
Saturated fatty acids | 1.12 | (0.98, 1.28) | 0.090 | 0.562 | 0.288 | 1.12 | (0.76, 1.64) | 1.646 | 0.456 | 0.289 |
Polyunsaturated fatty acids | 1.07 | (0.97, 1.19) | 0.185 | 0.544 | 0.492 | 1.08 | (0.78, 1.48) | 0.651 | 0.130 | 0.374 |
Monounsaturated fatty acids | 1.14 | (1.03, 1.28) | 0.015 | 0.196 | 0.688 | 1.05 | (0.76, 1.44) | 0.785 | 0.669 | 0.783 |
High-density lipoprotein | 0.99 | (0.90, 1.09) | 0.831 | 0.225 | 0.344 | 1.31 | (1.00, 1.72) | 0.053 | 0.944 | 0.251 |
Low-density lipoprotein | 0.98 | (0.87, 1.10) | 0.735 | 0.279 | 0.141 | 1.06 | (0.76, 1.47) | 0.728 | 0.662 | 0.255 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; You, Y.; Yu, T.; Li, J. Insights into Modifiable Risk Factors of Infertility: A Mendelian Randomization Study. Nutrients 2022, 14, 4042. https://doi.org/10.3390/nu14194042
Xu W, You Y, Yu T, Li J. Insights into Modifiable Risk Factors of Infertility: A Mendelian Randomization Study. Nutrients. 2022; 14(19):4042. https://doi.org/10.3390/nu14194042
Chicago/Turabian StyleXu, Wentao, Yueyuan You, Tianqi Yu, and Jing Li. 2022. "Insights into Modifiable Risk Factors of Infertility: A Mendelian Randomization Study" Nutrients 14, no. 19: 4042. https://doi.org/10.3390/nu14194042
APA StyleXu, W., You, Y., Yu, T., & Li, J. (2022). Insights into Modifiable Risk Factors of Infertility: A Mendelian Randomization Study. Nutrients, 14(19), 4042. https://doi.org/10.3390/nu14194042