Development and Validation of a Novel Waist Girth-Based Equation to Estimate Fat Mass in Young Colombian Elite Athletes (F20CA Equation): A STROSA-Based Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Setting
2.3. Legal Basis and Data Protection
2.4. Selection Criteria and Study Participants
2.5. Variables
2.6. Data Measurement
2.6.1. Dual Energy X-ray Absorptiometry
2.6.2. Anthropometry
2.7. Study Size
2.8. Statistical Methods
3. Results
3.1. Participants
3.2. External Validation of the RFMp and RFM for Colombian Children and Adolescents
3.3. New Waist Girth-Based Equation to Estimate Fat Mass in Young Athletes
3.4. Validation of the F20CA Equation
4. Discussion
4.1. Limitations and Strengths
4.2. Practical Recommendations
- Follow the International Standards for Anthropometric Assessment (ISAK protocol). The International Olympic Committee research working group on body composition, health and performance recommends the procedures established by the ISAK [64]. However, it is necessary to point out that WG measured at different sites (minimal [ISAK], midway, iliac, umbilicus) does not affect the relationships with visceral adipose tissue measured by magnetic resonance imaging and with cardiometabolic risk factors in children and adolescents, regardless of race or sex [65].
- Estimate fat mass with the F20CA as: FM (kg) = 5.46 ∗ (Sex) + 0.21 ∗ (BM/W [kg/m]) + 81.7 ∗ (W/Stature [cm/cm]) − 41.8, where sex is zero for men and one for women.
- Estimate the young athlete’s fat-free mass (kg) according to the expression: Body Mass [kg] − F20CA-estimated fat mass [kg].
- Use the estimated fat-free mass to calculate the energy (e.g., resting energy expenditure or energy expenditure during exercise) [71,72,73] and macronutrient distribution [74,75]. For the selection of any predictive equation to estimate body composition or energy expenditure, the practitioner should consider the following: (a) the assessed athletes should be similar to the ones used to develop the original equation; (b) similarities in age and sex; (c) similarity in adiposity and physical activity levels; (d) the technique or protocol used in the study; and (e) the equipment used [70].
- Calculate the skinfold-corrected muscle girths (girth − [π × skinfold/10]) to monitor changes in musculoskeletal mass [78].
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sawyer, S.M.; Azzopardi, P.S.; Wickremarathne, D.; Patton, G.C. The age of adolescence. Lancet Child Adolesc. Health 2018, 2, 223–228. [Google Scholar] [CrossRef]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1.6 million participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef]
- Steene-Johannessen, J.; Hansen, B.H.; Dalene, K.E.; Kolle, E.; Northstone, K.; Moller, N.C.; Grontved, A.; Wedderkopp, N.; Kriemler, S.; Page, A.S.; et al. Variations in accelerometry measured physical activity and sedentary time across Europe—Harmonized analyses of 47,497 children and adolescents. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 38. [Google Scholar] [CrossRef] [PubMed]
- Myer, G.D.; Lloyd, R.S.; Brent, J.L.; Faigenbaum, A.D. How Young is “Too Young” to Start Training? ACSMs Health Fit. J. 2013, 17, 14–23. [Google Scholar] [CrossRef]
- Fuhner, T.; Kliegl, R.; Arntz, F.; Kriemler, S.; Granacher, U. An Update on Secular Trends in Physical Fitness of Children and Adolescents from 1972 to 2015: A Systematic Review. Sports Med. 2021, 51, 303–320. [Google Scholar] [CrossRef]
- Logan, K.; Cuff, S.; Council on Sports Medicine and Fitness. Organized Sports for Children, Preadolescents, and Adolescents. Pediatrics 2019, 143, e20190997. [Google Scholar] [CrossRef]
- Lagestad, P.; Mehus, I. The Importance of Adolescents’ Participation in Organized Sport According to VO2peak: A Longitudinal Study. Res. Q. Exerc. Sport 2018, 89, 143–152. [Google Scholar] [CrossRef]
- Kalabiska, I.; Zsakai, A.; Malina, R.M.; Szabo, T. Bone Mineral Reference Values for Athletes 11 to 20 Years of Age. Int. J. Environ. Res. Public Health 2020, 17, 4930. [Google Scholar] [CrossRef]
- Suarez-Albor, C.L.; Galletta, M.; Gomez-Bustamante, E.M. Factors associated with eating disorders in adolescents: A systematic review. Acta Biomed. 2022, 93, e2022253. [Google Scholar] [CrossRef]
- Walter, N.; Heinen, T.; Elbe, A.-M. Factors associated with disordered eating and eating disorder symptoms in adolescent elite athletes. Sports Psychiatry 2022, 1, 47–56. [Google Scholar] [CrossRef]
- Petisco-Rodriguez, C.; Sanchez-Sanchez, L.C.; Fernandez-Garcia, R.; Sanchez-Sanchez, J.; Garcia-Montes, J.M. Disordered Eating Attitudes, Anxiety, Self-Esteem and Perfectionism in Young Athletes and Non-Athletes. Int. J. Environ. Res. Public Health 2020, 17, 6754. [Google Scholar] [CrossRef]
- Mancine, R.; Kennedy, S.; Stephan, P.; Ley, A. Disordered Eating and Eating Disorders in Adolescent Athletes. Spartan Med. Res. J. 2020, 4, 11595. [Google Scholar] [CrossRef]
- Norton, K.; Eston, R. Kinanthropometry and Exercise Physiology; Routledge: Abingdon, UK, 2018. [Google Scholar]
- Esparza-Ros, F.; Vaquero-Cristóbal, R.; Marfell-Jones, M. International Standards for Anthropometric Assessment; The International Society for the Advancement of Kinanthropometry: Murcia, Spain, 2019. [Google Scholar]
- Hsieh, S.D.; Yoshinaga, H.; Muto, T. Waist-to-height ratio, a simple and practical index for assessing central fat distribution and metabolic risk in Japanese men and women. Int. J. Obes. 2003, 27, 610–616. [Google Scholar] [CrossRef]
- Staynor, J.M.D.; Smith, M.K.; Donnelly, C.J.; Sallam, A.E.; Ackland, T.R. DXA reference values and anthropometric screening for visceral obesity in Western Australian adults. Sci. Rep. 2020, 10, 18731. [Google Scholar] [CrossRef]
- Shen, W.; Punyanitya, M.; Chen, J.; Gallagher, D.; Albu, J.; Pi-Sunyer, X.; Lewis, C.E.; Grunfeld, C.; Heshka, S.; Heymsfield, S.B. Waist circumference correlates with metabolic syndrome indicators better than percentage fat. Obesity 2006, 14, 727–736. [Google Scholar] [CrossRef]
- Sutton, L.; Wallace, J.; Goosey-Tolfrey, V.; Scott, M.; Reilly, T. Body composition of female wheelchair athletes. Int. J. Sports Med. 2009, 30, 259–265. [Google Scholar] [CrossRef]
- Swainson, M.G.; Batterham, A.M.; Tsakirides, C.; Rutherford, Z.H.; Hind, K. Prediction of whole-body fat percentage and visceral adipose tissue mass from five anthropometric variables. PLoS ONE 2017, 12, e0177175. [Google Scholar] [CrossRef]
- Da Cunha de Sa-Caputo, D.; Sonza, A.; Coelho-Oliveira, A.C.; Pessanha-Freitas, J.; Reis, A.S.; Francisca-Santos, A.; Dos Anjos, E.M.; Paineiras-Domingos, L.L.; de Rezende Bessa Guerra, T.; da Silva Franco, A.; et al. Evaluation of the Relationships between Simple Anthropometric Measures and Bioelectrical Impedance Assessment Variables with Multivariate Linear Regression Models to Estimate Body Composition and Fat Distribution in Adults: Preliminary Results. Biology 2021, 10, 1209. [Google Scholar] [CrossRef]
- Woolcott, O.O.; Bergman, R.N. Relative fat mass (RFM) as a new estimator of whole-body fat percentage horizontal line A cross-sectional study in American adult individuals. Sci. Rep. 2018, 8, 10980. [Google Scholar] [CrossRef]
- Woolcott, O.O.; Bergman, R.N. Relative Fat Mass as an estimator of whole-body fat percentage among children and adolescents: A cross-sectional study using NHANES. Sci. Rep. 2019, 9, 15279. [Google Scholar] [CrossRef] [Green Version]
- Cerqueira, M.S.; Amorim, P.R.S.; Encarnacao, I.G.A.; Rezende, L.M.T.; Almeida, P.; Silva, A.M.; Sillero-Quintana, M.; Silva, D.A.S.; Santos, F.K.; Marins, J.C.B. Equations based on anthropometric measurements for adipose tissue, body fat, or body density prediction in children and adolescents: A scoping review. Eat. Weight Disord. 2022, 1, 259. [Google Scholar] [CrossRef]
- Kammerer-López, M.; Ceballos-Feria, N.D.C.; Mayor-Rengifo, M.C.; Hoyos-García, H.H.; Gómez-Velásquez, S. Evaluation of the accuracy of different body composition prediction formulas, compared to Dual Energy X-ray Absorptiometry, in soccer players of Colombian professional teams. Nutr. Hosp. 2021, 38, 298–305. [Google Scholar] [CrossRef]
- Lopez, A.L.; Velez, J.D.; Garcia, A.M.; Arango, E.F. Concurrent validity of five prediction equations to evaluate fat percentage in a sports group expected to yield high performance from Medellin, Colombia. Biomedica 2021, 41, 131–144. [Google Scholar] [CrossRef]
- Lozada-Medina, J.L.; Padilla-Alvarado, J.R. Body composition profile of young inline speed skaters. Arch. De Med. Del Deporte 2020, 37, 398–405. [Google Scholar] [CrossRef]
- Bonilla, D.A.; Peralta, J.O.; Bonilla, J.A.; Urrutia-Mosquera, W.; Vargas-Molina, S.; Cannataro, R.; Petro, J.L. Morphology, body composition and maturity status of young Colombian athletes from the Urabá subregion: A k-Medoids and hierarchical clustering analysis. J. Hum. Sport Exerc. 2020, 15, S1367–S1386. [Google Scholar]
- Bonilla, D.A.; Peralta-Alzate, J.O.; Bonilla-Henao, J.A.; Urrutia-Mosquera, W.; Cannataro, R.; Kočí, J.; Petro, J.L. Unsupervised machine learning analysis of the anthropometric characteristics and maturity status of young Colombian athletes. J. Phys. Educ. Sport 2022, 22, 256–265. [Google Scholar] [CrossRef]
- Bonilla, D.A.; Duque-Zuluaga, L.T.; Munoz-Urrego, L.P.; Moreno, Y.; Velez-Gutierrez, J.M.; Franco-Hoyos, K.; Agudelo-Martinez, A.; Humeres, G.; Kreider, R.B.; Petro, J.L. Development and Validation of Waist Girth-Based Equations to Evaluate Body Composition in Colombian Adults: Rationale and STROBE-Nut-Based Protocol of the F20 Project. Int. J. Environ. Res. Public Health 2022, 19, 10690. [Google Scholar] [CrossRef]
- Swart, E.; Bitzer, E.M.; Gothe, H.; Harling, M.; Hoffmann, F.; Horenkamp-Sonntag, D.; Maier, B.; March, S.; Petzold, T.; Rohrig, R.; et al. A Consensus German Reporting Standard for Secondary Data Analyses, Version 2 (STROSA-STandardisierte BerichtsROutine fur SekundardatenAnalysen). Gesundheitswesen 2016, 78, e145–e160. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Amante, C.A.; Ramos-Garcia, C.O.; Alacid, F.; Quiroga-Morales, L.A.; Martinez-Rubio, A.J.; Bonilla, D.A. Development of alternatives to estimate resting metabolic rate from anthropometric variables in paralympic swimmers. J. Sports Sci. 2021, 39, 2133–2143. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, D.A.; Castrillón-Ruíz, L.; Soto-Arenas, L.F.; Márquez-Rodríguez, M.A.; Kreider, R.B.; Petro, J.L. Estimation of Stature in Adults: Development and Validation of a New Predictive Formula using the Tibiale Mediale-Sphyrion Tibiale Length. Rev. Española De Nutr. Hum. Y Dietética 2022, 26, 61–71. [Google Scholar] [CrossRef]
- World Medical, A. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. J. Postgrad. Med. 2002, 48, 206–208. [Google Scholar]
- Bonilla, D.A.; Kreider, R.B.; Petro, J.L.; Romance, R.; Garcia-Sillero, M.; Benitez-Porres, J.; Vargas-Molina, S. Creatine Enhances the Effects of Cluster-Set Resistance Training on Lower-Limb Body Composition and Strength in Resistance-Trained Men: A Pilot Study. Nutrients 2021, 13, 2303. [Google Scholar] [CrossRef]
- Vargas, S.; Romance, R.; Petro, J.L.; Bonilla, D.A.; Galancho, I.; Espinar, S.; Kreider, R.B.; Benítez-Porres, J. Efficacy of ketogenic diet on body composition during resistance training in trained men: A randomized controlled trial. J. Int. Soc. Sports Nutr. 2018, 15, 31. [Google Scholar] [CrossRef]
- Vargas-Molina, S.; Petro, J.L.; Romance, R.; Kreider, R.B.; Schoenfeld, B.J.; Bonilla, D.A.; Benitez-Porres, J. Effects of a ketogenic diet on body composition and strength in trained women. J. Int. Soc. Sports Nutr. 2020, 17, 19. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Gallagher, D.; Kotler, D.P.; Wang, Z.; Allison, D.B.; Heshka, S. Body-size dependence of resting energy expenditure can be attributed to nonenergetic homogeneity of fat-free mass. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E132–E138. [Google Scholar] [CrossRef]
- Abe, T.; Dankel, S.J.; Loenneke, J.P. Body Fat Loss Automatically Reduces Lean Mass by Changing the Fat-Free Component of Adipose Tissue. Obesty 2019, 27, 357–358. [Google Scholar] [CrossRef]
- Abe, T.; Loenneke, J.P.; Thiebaud, R.S. Fat-Free Adipose Tissue Mass: Impact on Peak Oxygen Uptake (VO2peak) in Adolescents with and without Obesity. Sports Med. 2019, 49, 9–15. [Google Scholar] [CrossRef]
- Knofczynski, G.T.; Mundfrom, D. Sample Sizes When Using Multiple Linear Regression for Prediction. Educ. Psychol. Meas. 2007, 68, 431–442. [Google Scholar] [CrossRef]
- Algina, J.; Keselman, H.J.; Penfield, R.D. An alternative to Cohen’s standardized mean difference effect size: A robust parameter and confidence interval in the two independent groups case. Psychol. Methods 2005, 10, 317–328. [Google Scholar] [CrossRef]
- Caldwell, A.R.; Cheuvront, S.N. Basic statistical considerations for physiology: The journal Temperature toolbox. Temperature 2019, 6, 181–210. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing [Computer Software]. Available online: https://www.R-project.org/ (accessed on 1 August 2022).
- Cumming, G. The new statistics: Why and how. Psychol. Sci. 2014, 25, 7–29. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, J.; Maghsoudi, Z.; Abbasi, B.; Daneshvar, P.; Hojjati, A.; Ghiasvand, R. Evaluation of Dietary Intakes, Body Composition, and Cardiometabolic Parameters in Adolescent Team Sports Elite Athletes: A Cross-sectional Study. Adv. Biomed. Res. 2017, 6, 107. [Google Scholar] [CrossRef] [PubMed]
- Leao, C.; Silva, A.F.; Badicu, G.; Clemente, F.M.; Carvutto, R.; Greco, G.; Cataldi, S.; Fischetti, F. Body Composition Interactions with Physical Fitness: A Cross-Sectional Study in Youth Soccer Players. Int. J. Environ. Res. Public Health 2022, 19, 3598. [Google Scholar] [CrossRef]
- Desbrow, B. Youth Athlete Development and Nutrition. Sports Med. 2021, 51, 3–12. [Google Scholar] [CrossRef]
- Ripka, W.L.; Orsso, C.E.; Haqq, A.M.; Prado, C.M.; Ulbricht, L.; Leite, N. Validity and accuracy of body fat prediction equations using anthropometrics measurements in adolescents. Eat. Weight Disord. 2021, 26, 879–886. [Google Scholar] [CrossRef]
- Kontele, I.; Vassilakou, T. Nutritional Risks among Adolescent Athletes with Disordered Eating. Children 2021, 8, 715. [Google Scholar] [CrossRef]
- Karava, V.; Dotis, J.; Kondou, A.; Christoforidis, A.; Liakopoulos, V.; Tsioni, K.; Kollios, K.; Papachristou, F.; Printza, N. Association between relative fat mass, uric acid, and insulin resistance in children with chronic kidney disease. Pediatr. Nephrol. 2021, 36, 425–434. [Google Scholar] [CrossRef]
- Moya, M.; Perez-Fernandez, V. Estimating trunk fat in children according to sex using basic somatic readings: An opportunity for improving evaluation among girls. BMC Pediatr. 2021, 21, 446. [Google Scholar] [CrossRef]
- Encarnacao, I.G.A.; Cerqueira, M.S.; Silva, D.A.S.; Marins, J.C.B.; Magalhaes, P.M. Prediction of body fat in adolescents: Validity of the methods relative fat mass, body adiposity index and body fat index. Eat. Weight Disord. 2022, 27, 1651–1659. [Google Scholar] [CrossRef]
- Correa, C.R.; Formolo, N.P.S.; Dezanetti, T.; Speretta, G.F.F.; Nunes, E.A. Relative fat mass is a better tool to diagnose high adiposity when compared to body mass index in young male adults: A cross-section study. Clin. Nutr. ESPEN 2021, 41, 225–233. [Google Scholar] [CrossRef]
- Gomez-Campos, R.; Urra-Albornoz, C.; Rivera-Portugal, M.; Luarte-Rocha, C.; Rubio-Gonzalez, J.; Cossio-Bolaños, M. Variables antropométricas, maduración somática y flujo espiratorio: Determinantes de la masa libre de grasa en jóvenes nadadores (Anthropometric variables, somatic maturation and expiratory flow: Determinants of fat-free mass in young swimmers). Retos 2019, 37, 406–411. [Google Scholar] [CrossRef]
- Abe, T.; Loenneke, J.P.; Fukunaga, T. Interrelationships between body mass to waist circumference ratio, body mass index, and total body muscularity in older women. J. Clin. Gerontol. Geriatr. 2014, 5, 58–60. [Google Scholar] [CrossRef]
- Ohta, M.; Midorikawa, T.; Hikihara, Y.; Sakamoto, S.; Kawakami, Y.; Fukunaga, T.; Kanehisa, H. Body mass-to-waist ratio strongly correlates with skeletal muscle volume in children. PLoS ONE 2017, 12, e0177155. [Google Scholar] [CrossRef]
- Wu, H.Y.; Xu, S.Y.; Chen, L.L.; Zhang, H.F. Waist to height ratio as a predictor of abdominal fat distribution in men. Chin. J. Physiol. 2009, 52, 441–445. [Google Scholar] [CrossRef]
- Ochoa Sangrador, C.; Ochoa-Brezmes, J. Waist-to-height ratio as a risk marker for metabolic syndrome in childhood. A meta-analysis. Pediatr. Obes. 2018, 13, 421–432. [Google Scholar] [CrossRef]
- Martin-Calvo, N.; Moreno-Galarraga, L.; Martinez-Gonzalez, M.A. Association between Body Mass Index, Waist-to-Height Ratio and Adiposity in Children: A Systematic Review and Meta-Analysis. Nutrients 2016, 8, 512. [Google Scholar] [CrossRef]
- Bajpai, A. Waist-to-Height Ratio-Time for a New Obesity Metric? Indian J. Pediatr. 2022, 89, 534–535. [Google Scholar] [CrossRef]
- Correa, M.M.; Thume, E.; De Oliveira, E.R.; Tomasi, E. Performance of the waist-to-height ratio in identifying obesity and predicting non-communicable diseases in the elderly population: A systematic literature review. Arch. Gerontol. Geriatr. 2016, 65, 174–182. [Google Scholar] [CrossRef]
- Wilson Van Voorhis, C.R.; Morgan, B.L. Understanding Power and Rules of Thumb for Determining Sample Sizes. Tutor. Quant. Methods Psychol. 2007, 3, 43–50. [Google Scholar] [CrossRef]
- Larson-Meyer, D.E.; Woolf, K.; Burke, L. Assessment of Nutrient Status in Athletes and the Need for Supplementation. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 139–158. [Google Scholar] [CrossRef]
- Harrington, D.M.; Staiano, A.E.; Broyles, S.T.; Gupta, A.K.; Katzmarzyk, P.T. Waist circumference measurement site does not affect relationships with visceral adiposity and cardiometabolic risk factors in children. Pediatr. Obes. 2013, 8, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Gavarry, O.; Lentin, G.; Pezery, P.; Delextrat, A.; Chaumet, G.; Boussuges, A.; Piscione, J. A Cross-Sectional Study Assessing the Contributions of Body Fat Mass and Fat-Free Mass to Body Mass Index Scores in Male Youth Rugby Players. Sports Med. Open 2018, 4, 17. [Google Scholar] [CrossRef]
- Petri, C.; Mascherini, G.; Bini, V.; Anania, G.; Cala, P.; Toncelli, L.; Galanti, G. Integrated total body composition versus Body Mass Index in young athletes. Minerva Pediatr. 2020, 72, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Van der Ploeg, G.E.; Gunn, S.M.; Withers, R.T.; Modra, A.C. Use of anthropometric variables to predict relative body fat determined by a four-compartment body composition model. Eur. J. Clin. Nutr. 2003, 57, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.C.; Landers, G.J.; Binnie, M.J.; Goods, P.S.R.; Fulton, S.K.; Ackland, T.R. Body composition assessment in athletes: Comparison of a novel ultrasound technique to traditional skinfold measures and criterion DXA measure. J. Sci. Med. Sport 2020, 23, 1006–1010. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, D.A.; De Leon, L.G.; Alexander-Cortez, P.; Odriozola-Martinez, A.; Herrera-Amante, C.A.; Vargas-Molina, S.; Petro, J.L. Simple anthropometry-based calculations to monitor body composition in athletes: Scoping review and reference values. Nutr. Health 2022, 28, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Heydenreich, J.; Kayser, B.; Schutz, Y.; Melzer, K. Total Energy Expenditure, Energy Intake, and Body Composition in Endurance Athletes Across the Training Season: A Systematic Review. Sports Med. Open 2017, 3, 8. [Google Scholar] [CrossRef]
- Taguchi, M.; Ishikawa-Takata, K.; Tatsuta, W.; Katsuragi, C.; Usui, C.; Sakamoto, S.; Higuchi, M. Resting energy expenditure can be assessed by fat-free mass in female athletes regardless of body size. J. Nutr. Sci. Vitam. 2011, 57, 22–29. [Google Scholar] [CrossRef]
- Luszczki, E.; Bartosiewicz, A.; Kuchciak, M.; Deren, K.; Oleksy, L.; Adamska, O.; Mazur, A. Longitudinal analysis of resting energy expenditure and body mass composition in physically active children and adolescents. BMC Pediatr. 2022, 22, 260. [Google Scholar] [CrossRef]
- Hannon, M.P.; Close, G.L.; Morton, J.P. Energy and Macronutrient Considerations for Young Athletes. Strength Cond. J. 2020, 42, 109–119. [Google Scholar] [CrossRef]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J. Int. Soc. Sports Nutr. 2022, 14, 20. [Google Scholar] [CrossRef] [Green Version]
- Heikura, I.A.; Stellingwerff, T.; Areta, J.L. Low energy availability in female athletes: From the lab to the field. Eur. J. Sport Sci. 2022, 22, 709–719. [Google Scholar] [CrossRef]
- Logue, D.; Madigan, S.M.; Delahunt, E.; Heinen, M.; Mc Donnell, S.J.; Corish, C.A. Low Energy Availability in Athletes: A Review of Prevalence, Dietary Patterns, Physiological Health, and Sports Performance. Sports Med. 2018, 48, 73–96. [Google Scholar] [CrossRef]
- Martin, A.D.; Spenst, L.F.; Drinkwater, D.T.; Clarys, J.P. Anthropometric estimation of muscle mass in men. Med. Sci. Sports Exerc. 1990, 22, 729–733. [Google Scholar] [CrossRef]
- Bonilla, D.A.; Perez-Idarraga, A.; Odriozola-Martinez, A.; Kreider, R.B. The 4R’s Framework of Nutritional Strategies for Post-Exercise Recovery: A Review with Emphasis on New Generation of Carbohydrates. Int. J. Environ. Res. Public Health 2020, 18, 103. [Google Scholar] [CrossRef]
- Bonilla, D.A.; Moreno, Y.; Petro, J.L.; Forero, D.A.; Vargas-Molina, S.; Odriozola-Martinez, A.; Orozco, C.A.; Stout, J.R.; Rawson, E.S.; Kreider, R.B. A Bioinformatics-Assisted Review on Iron Metabolism and Immune System to Identify Potential Biomarkers of Exercise Stress-Induced Immunosuppression. Biomedicines 2022, 10, 724. [Google Scholar] [CrossRef]
Variable | All (n = 114) (SD) [95% CI] | EDG (n = 83) (SD) [95% CI] | VG (n = 31) (SD) [95% CI] | ESt (MoEΔ) [95% CI] | p Value |
---|---|---|---|---|---|
Sex | |||||
Women | 58 (50.87%) | 46 (55.42%) | 10 (32.25%) | ||
Men | 56 (49.12%) | 37 (44.57%) | 21 (67.74%) | ||
Race | |||||
White-Mestizo | 110 (96.49%) | 79 (95.18%) | 31 (100.0%) | ||
Afro-descendant | 4 (3.50%) | 4 (4.81%) | 0 (0.0%) | ||
CA | |||||
Children (8 to 14) | 51 (44.73%) | 39 (46.98%) | 12 (38.70%) | ||
Adolescents (15 to 19) | 63 (55.26%) | 44 (53.01%) | 19 (61.29%) | ||
Age | 14.85 (2.38) | 14.87 (2.30) | 14.79 (2.60) | 0.10 (1.15) [−1.05, 1.26] | 0.850 |
Body mass | 55.09 (12.16) | 54.51 (12.02) | 56.63 (12.60) | 2.97 (4.49) [−1.52, 7.47] | 0.189 |
Stature | 162.38 (11.53) | 161.80 (11.42) | 163.91 (11.89) | 4.02 (4.34) [−0.31, 8.37] | 0.069 |
Waist | 69.04 (6.30) | 68.77 (6.46) | 69.74 (5.88) | 1.29 (2.57) [−1.28, 3.86] | 0.314 |
BM/W (m/m) | 79.02 (11.88) | 78.52 (11.59) | 80.37 (12.73) | 3.11 (4.81) [−1.69, 7.93] | 0.197 |
W/Stature (cm/cm) | 0.42 (0.02) | 0.42 (0.02) | 0.42 (0.02) | 0.00 (0.01) [−0.008, 0.01] | 0.666 |
FM (kg) | 12.39 (4.34) | 12.33 (4.35) | 12.54 (4.36) | 0.47 (2.06) [−1.58, 2.54] | 0.639 |
%BF (%) | 22.65 (6.40) | 22.80 (6.53) | 22.26 (6.11) | −0.55 (3.33) [−3.88, 2.78] | 0.738 |
Variable | SD | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|---|
1. Age | 14.85 | 2.38 | ||||||
2. Body mass | 55.09 | 12.16 | 0.70 * | |||||
[0.59, 0.78] | ||||||||
3. Stature | 162.38 | 11.54 | 0.61 * | 0.88 * | ||||
[0.49, 0.72] | [0.82, 0.91] | |||||||
4. Waist | 69.04 | 6.30 | 0.56 * | 0.89 * | 0.72 * | |||
[0.42, 0.67] | [0.85, 0.93] | [0.61, 0.79] | ||||||
5. BM/W | 79.02 | 11.89 | 0.72 * | 0.95 * | 0.89 * | 0.72 * | ||
[0.62, 0.80] | [0.93, 0.97] | [0.84, 0.92] | [0.62, 0.80] | |||||
6. W/Stature | 0.43 | 0.03 | 0.10 | 0.28 * | −0.11 | 0.62 * | 0.02 | |
[−0.09, 0.28] | [0.11, 0.45] | [−0.29, 0.08] | [0.49, 0.72] | [−0.16, 0.21] | ||||
7. FM_DXA | 12.39 | 4.34 | 0.41 * | 0.50 * | 0.27 * | 0.44 * | 0.50 * | 0.32 * |
[0.24, 0.55] | [0.35, 0.63] | [0.09, 0.43] | [0.28, 0.58] | [0.35, 0.63] | [0.14, 0.47] |
OLS Equation | R2 | aR2 | Cp | AIC | BIC | hsp |
---|---|---|---|---|---|---|
Ŷ = β0 + β1(Sex) + β2(BM/W) + β3(W/Stature) | 0.683 | 0.671 | 4.045 | 393.525 | 405.619 | 0.080 |
Ŷ = β0 + β1(Sex) + β2(BM) + β3(Stature) | 0.661 | 0.648 | 9.439 | 399.004 | 411.098 | 0.085 |
Ŷ = β0 + β1(Sex) + β2(BM) + β3(W/Stature) | 0.655 | 0.642 | 10.950 | 400.476 | 412.570 | 0.087 |
Ŷ = β0 + β1(Sex) + β2(Stature) + β3(W/Stature) | 0.587 | 0.572 | 27.862 | 415.385 | 427.479 | 0.104 |
Ŷ = β0 + β1(Sex) + β2(W) + β3(BM/W) | 0.585 | 0.570 | 28.304 | 415.741 | 427.835 | 0.104 |
Ŷ = β0 + β1(Sex) + β2(W) + β3(W/Stature) | 0.585 | 0.569 | 28.367 | 415.791 | 427.885 | 0.104 |
Ŷ = β0 + β1(Sex) + β2(W) + β3(Stature) | 0.584 | 0.568 | 28.671 | 416.034 | 428.129 | 0.105 |
Ŷ = β0 + β1(Sex) + β2(W) + β3(BM) | 0.582 | 0.566 | 29.078 | 416.360 | 428.454 | 0.105 |
Ŷ = β0 + β1(Age) + β2(Sex) + β3(W) | 0.574 | 0.558 | 31.182 | 418.021 | 430.115 | 0.110 |
Ŷ = β0 + β1(Sex) + β2(BM) + β3(BM/W) | 0.563 | 0.546 | 33.914 | 420.129 | 432.224 | 0.110 |
Predictor | b [95% CI] | beta [95% CI] | sr2 [95% CI] | r | R2 | aR2 | VIFs | DW |
---|---|---|---|---|---|---|---|---|
(Intercept) | −41.80 [−51.69, −31.91] * | 0.683 [0.55, 0.75] * | 0.671 | 1.877 | ||||
Sex | 5.46 [4.29, 6.63] * | 0.63 [0.49, 0.76] | 0.35 [0.20, 0.49] | 0.38 * | 1.132 | |||
BM/W | 0.21 [0.16, 0.26] * | 0.55 [0.43, 0.68] | 0.30 [0.16, 0.44] | 0.48 * | 1.026 | |||
W/Stature | 81.70 [60.91, 102.49] * | 0.52 [0.39, 0.65] | 0.25 [0.12, 0.37] | 0.35 * | 1.105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonilla, D.A.; Duque-Zuluaga, L.T.; Muñoz-Urrego, L.P.; Franco-Hoyos, K.; Agudelo-Martínez, A.; Kammerer-López, M.; Petro, J.L.; Kreider, R.B. Development and Validation of a Novel Waist Girth-Based Equation to Estimate Fat Mass in Young Colombian Elite Athletes (F20CA Equation): A STROSA-Based Study. Nutrients 2022, 14, 4059. https://doi.org/10.3390/nu14194059
Bonilla DA, Duque-Zuluaga LT, Muñoz-Urrego LP, Franco-Hoyos K, Agudelo-Martínez A, Kammerer-López M, Petro JL, Kreider RB. Development and Validation of a Novel Waist Girth-Based Equation to Estimate Fat Mass in Young Colombian Elite Athletes (F20CA Equation): A STROSA-Based Study. Nutrients. 2022; 14(19):4059. https://doi.org/10.3390/nu14194059
Chicago/Turabian StyleBonilla, Diego A., Leidy T. Duque-Zuluaga, Laura P. Muñoz-Urrego, Katherine Franco-Hoyos, Alejandra Agudelo-Martínez, Maximiliano Kammerer-López, Jorge L. Petro, and Richard B. Kreider. 2022. "Development and Validation of a Novel Waist Girth-Based Equation to Estimate Fat Mass in Young Colombian Elite Athletes (F20CA Equation): A STROSA-Based Study" Nutrients 14, no. 19: 4059. https://doi.org/10.3390/nu14194059
APA StyleBonilla, D. A., Duque-Zuluaga, L. T., Muñoz-Urrego, L. P., Franco-Hoyos, K., Agudelo-Martínez, A., Kammerer-López, M., Petro, J. L., & Kreider, R. B. (2022). Development and Validation of a Novel Waist Girth-Based Equation to Estimate Fat Mass in Young Colombian Elite Athletes (F20CA Equation): A STROSA-Based Study. Nutrients, 14(19), 4059. https://doi.org/10.3390/nu14194059