Greater Adherence to Cardioprotective Diet Can Reduce Inflammatory Bowel Disease Risk: A Longitudinal Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Assessment of Outcome
2.4. Assessment of Covariates
2.5. Statistical Analyses
3. Results
3.1. Baseline Characteristics
3.2. Primary Analyses
3.3. Secondary and Sensitivity Analyses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jairath, V.; Feagan, B.G. Global burden of inflammatory bowel disease. Lancet Gastroenterol. Hepatol. 2020, 5, 2–3. [Google Scholar] [CrossRef]
- Kaplan, G.G.; Windsor, J.W. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Khalili, H.; Chan, S.S.M.; Lochhead, P.; Ananthakrishnan, A.N.; Hart, A.R.; Chan, A.T. The role of diet in the aetiopathogenesis of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Khalili, H.; Håkansson, N.; Chan, S.S.; Chen, Y.; Lochhead, P.; Ludvigsson, J.F.; Chan, A.T.; Hart, A.R.; Olén, O.; Wolk, A. Adherence to a Mediterranean diet is associated with a lower risk of later-onset Crohn’s disease: Results from two large prospective cohort studies. Gut 2020, 69, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.D.; Abreu, M.T. Diet as a Trigger or Therapy for Inflammatory Bowel Diseases. Gastroenterology 2017, 152, 398–414.e6. [Google Scholar] [CrossRef]
- Lichtenstein, A.H.; Appel, L.J.; Vadiveloo, M.; Hu, F.B.; Kris-Etherton, P.M.; Rebholz, C.M.; Sacks, F.M.; Thorndike, A.N.; Van Horn, L.; Wylie-Rosett, J. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement From the American Heart Association. Circulation 2021, 144, e472–e487. [Google Scholar] [CrossRef]
- Han, H.; Cao, Y.; Feng, C.; Zheng, Y.; Dhana, K.; Zhu, S.; Shang, C.; Yuan, C.; Zong, G. Association of a Healthy Lifestyle With All-Cause and Cause-Specific Mortality Among Individuals With Type 2 Diabetes: A Prospective Study in UK Biobank. Diabetes Care 2022, 45, 319–329. [Google Scholar] [CrossRef]
- Lourida, I.; Hannon, E.; Littlejohns, T.J.; Langa, K.M.; Hyppönen, E.; Kuzma, E.; Llewellyn, D.J. Association of Lifestyle and Genetic Risk With Incidence of Dementia. JAMA 2019, 322, 430–437. [Google Scholar] [CrossRef]
- Theiss, A.L.; Fruchtman, S.; Lund, P.K. Growth factors in inflammatory bowel disease: The actions and interactions of growth hormone and insulin-like growth factor-I. Inflamm. Bowel Dis. 2004, 10, 871–880. [Google Scholar] [CrossRef]
- Łykowska-Szuber, L.; Rychter, A.M.; Dudek, M.; Ratajczak, A.E.; Szymczak-Tomczak, A.; Zawada, A.; Eder, P.; Lesiak, M.; Dobrowolska, A.; Krela-Kaźmierczak, I. What Links an Increased Cardiovascular Risk and Inflammatory Bowel Disease? A Narrative Review. Nutrients 2021, 13, 2661. [Google Scholar] [CrossRef]
- Gilly, A.; Park, Y.C.; Png, G.; Barysenka, A.; Fischer, I.; Bjørnland, T.; Southam, L.; Suveges, D.; Neumeyer, S.; Rayner, N.W.; et al. Whole-genome sequencing analysis of the cardiometabolic proteome. Nat. Commun. 2020, 11, 6336. [Google Scholar] [CrossRef]
- Ananthakrishnan, A.N.; Khalili, H.; Konijeti, G.G.; Higuchi, L.M.; de Silva, P.; Korzenik, J.R.; Fuchs, C.S.; Willett, W.C.; Richter, J.M.; Chan, A.T. A prospective study of long-term intake of dietary fiber and risk of Crohn’s disease and ulcerative colitis. Gastroenterology 2013, 145, 970–977. [Google Scholar] [CrossRef]
- Mozaffari, H.; Daneshzad, E.; Larijani, B.; Bellissimo, N.; Azadbakht, L. Dietary intake of fish, n-3 polyunsaturated fatty acids, and risk of inflammatory bowel disease: A systematic review and meta-analysis of observational studies. Eur. J. Nutr. 2020, 59, 1–17. [Google Scholar] [CrossRef]
- Piovani, D.; Danese, S.; Peyrin-Biroulet, L.; Nikolopoulos, G.K.; Lytras, T.; Bonovas, S. Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-analyses. Gastroenterology 2019, 157, 647–659.e4. [Google Scholar] [CrossRef]
- Dong, C.; Chan, S.S.M.; Jantchou, P.; Racine, A.; Oldenburg, B.; Weiderpass, E.; Heath, A.K.; Tong, T.Y.N.; Tjønneland, A.; Kyrø, C.; et al. Meat Intake Is Associated with a Higher Risk of Ulcerative Colitis in a Large European Prospective Cohort Studyø. J. Crohn’s Colitis 2022, 16, 1187–1196. [Google Scholar] [CrossRef]
- Bradbury, K.E.; Young, H.J.; Guo, W.; Key, T.J. Dietary assessment in UK Biobank: An evaluation of the performance of the touchscreen dietary questionnaire. J. Nutr. Sci. 2018, 7, e6. [Google Scholar] [CrossRef]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Said, M.A.; Verweij, N.; van der Harst, P. Associations of Combined Genetic and Lifestyle Risks With Incident Cardiovascular Disease and Diabetes in the UK Biobank Study. JAMA Cardiol. 2018, 3, 693–702. [Google Scholar] [CrossRef]
- Xia, B.; Yang, M.; Nguyen, L.H.; He, Q.; Zhen, J.; Yu, Y.; Di, M.; Qin, X.; Lu, K.; Kuo, Z.C.; et al. Regular Use of Proton Pump Inhibitor and the Risk of Inflammatory Bowel Disease: Pooled Analysis of 3 Prospective Cohorts. Gastroenterology 2021, 161, 1842–1852.e10. [Google Scholar] [CrossRef]
- Fu, T.; Chen, H.; Chen, X.; Sun, Y.; Xie, Y.; Deng, M.; Hesketh, T.; Wang, X.; Chen, J. Sugar-sweetened beverages, artificially sweetened beverages and natural juices and risk of inflammatory bowel disease: A cohort study of 121,490 participants. Aliment Pharmacol. Ther. 2022, 56, 1018–1029. [Google Scholar] [CrossRef]
- Patterson, E. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)-Short and Long Forms. 2005. Available online: https://biobank.ndph.ox.ac.uk/showcase/ukb/docs/ipaq_analysis.pdf. (accessed on 10 July 2022).
- Quan, H.; Sundararajan, V.; Halfon, P.; Fong, A.; Burnand, B.; Luthi, J.C.; Saunders, L.D.; Beck, C.A.; Feasby, T.E.; Ghali, W.A. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med. Care 2005, 43, 1130–1139. [Google Scholar] [CrossRef]
- O’Quigley, J.; Flandre, P. Predictive capability of proportional hazards regression. Proc. Natl. Acad. Sci. USA 1994, 91, 2310–2314. [Google Scholar] [CrossRef]
- Jannasch, F.; Nickel, D.V.; Bergmann, M.M.; Schulze, M.B. A New Evidence-Based Diet Score to Capture Associations of Food Consumption and Chronic Disease Risk. Nutrients 2022, 14, 2359. [Google Scholar] [CrossRef]
- Abrahami, D.; Douros, A.; Yin, H.; Yu, O.H.Y.; Renoux, C.; Bitton, A.; Azoulay, L. Dipeptidyl peptidase-4 inhibitors and incidence of inflammatory bowel disease among patients with type 2 diabetes: Population based cohort study. BMJ 2018, 360, k872. [Google Scholar] [CrossRef]
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O., 3rd; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L.; et al. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef]
- Heeschen, C.; Dimmeler, S.; Hamm, C.W.; Fichtlscherer, S.; Boersma, E.; Simoons, M.L.; Zeiher, A.M. Serum level of the antiinflammatory cytokine interleukin-10 is an important prognostic determinant in patients with acute coronary syndromes. Circulation 2003, 107, 2109–2114. [Google Scholar] [CrossRef]
- Lo, C.H.; Lochhead, P.; Khalili, H.; Song, M.; Tabung, F.K.; Burke, K.E.; Richter, J.M.; Giovannucci, E.L.; Chan, A.T.; Ananthakrishnan, A.N. Dietary Inflammatory Potential and Risk of Crohn’s Disease and Ulcerative Colitis. Gastroenterology 2020, 159, 873–883.e1. [Google Scholar] [CrossRef]
- Peters, V.; Bolte, L.; Schuttert, E.M.; Andreu-Sánchez, S.; Dijkstra, G.; Weersma, R.K.; Campmans-Kuijpers, M.J.E. Western and Carnivorous Dietary Patterns are Associated with Greater Likelihood of IBD Development in a Large Prospective Population-based Cohort. J. Crohn’s Colitis 2022, 16, 931–939. [Google Scholar] [CrossRef]
- Vasseur, P.; Dugelay, E.; Benamouzig, R.; Savoye, G.; Lan, A.; Srour, B.; Hercberg, S.; Touvier, M.; Hugot, J.P.; Julia, C.; et al. Dietary Patterns, Ultra-processed Food, and the Risk of Inflammatory Bowel Diseases in the NutriNet-Santé Cohort. Inflamm. Bowel Dis. 2021, 27, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Vargas Robles, H.; Citalán Madrid, A.F.; García Ponce, A.; Silva Olivares, A.; Shibayama, M.; Betanzos, A.; Del Valle Mondragón, L.; Nava, P.; Schnoor, M. Experimental Colitis Is Attenuated by Cardioprotective Diet Supplementation That Reduces Oxidative Stress, Inflammation, and Mucosal Damage. Oxid. Med. Cell Longev. 2016, 2016, 8473242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moro, T.; Tinsley, G.; Pacelli, F.Q.; Marcolin, G.; Bianco, A.; Paoli, A. Twelve Months of Time-restricted Eating and Resistance Training Improves Inflammatory Markers and Cardiometabolic Risk Factors. Med. Sci. Sports Exerc. 2021, 53, 2577–2585. [Google Scholar] [CrossRef] [PubMed]
- Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018, 27, 1212–1221.e3. [Google Scholar] [CrossRef]
- Wu, T.; Wang, G.; Xiong, Z.; Xia, Y.; Song, X.; Zhang, H.; Wu, Y.; Ai, L. Probiotics Interact With Lipids Metabolism and Affect Gut Health. Front. Nutr. 2022, 9, 917043. [Google Scholar] [CrossRef]
- Singh, S.; Dulai, P.S.; Zarrinpar, A.; Ramamoorthy, S.; Sandborn, W.J. Obesity in IBD: Epidemiology, pathogenesis, disease course and treatment outcomes. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 110–121. [Google Scholar] [CrossRef]
- Deleu, S.; Machiels, K.; Raes, J.; Verbeke, K.; Vermeire, S. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMed. 2021, 66, 103293. [Google Scholar] [CrossRef]
- Masters, R.C.; Liese, A.D.; Haffner, S.M.; Wagenknecht, L.E.; Hanley, A.J. Whole and refined grain intakes are related to inflammatory protein concentrations in human plasma. J. Nutr. 2010, 140, 587–594. [Google Scholar] [CrossRef]
- Roager, H.M.; Vogt, J.K.; Kristensen, M.; Hansen, L.B.S.; Ibrügger, S.; Mærkedahl, R.B.; Bahl, M.I.; Lind, M.V.; Nielsen, R.L.; Frøkiær, H.; et al. Whole grain-rich diet reduces body weight and systemic low-grade inflammation without inducing major changes of the gut microbiome: A randomised cross-over trial. Gut 2019, 68, 83–93. [Google Scholar] [CrossRef]
- Parolini, C. Effects of Fish n-3 PUFAs on Intestinal Microbiota and Immune System. Mar. Drugs 2019, 17, 374. [Google Scholar] [CrossRef]
- Wilson, A.; Teft, W.A.; Morse, B.L.; Choi, Y.H.; Woolsey, S.; DeGorter, M.K.; Hegele, R.A.; Tirona, R.G.; Kim, R.B. Trimethylamine-N-oxide: A Novel Biomarker for the Identification of Inflammatory Bowel Disease. Dig. Dis. Sci. 2015, 60, 3620–3630. [Google Scholar] [CrossRef]
- Freeman, K.; Ryan, R.; Parsons, N.; Taylor-Phillips, S.; Willis, B.H.; Clarke, A. The incidence and prevalence of inflammatory bowel disease in UK primary care: A retrospective cohort study of the IQVIA Medical Research Database. BMC Gastroenterol. 2021, 21, 139. [Google Scholar] [CrossRef]
- Pasvol, T.J.; Horsfall, L.; Bloom, S.; Segal, A.W.; Sabin, C.; Field, N.; Rait, G. Incidence and prevalence of inflammatory bowel disease in UK primary care: A population-based cohort study. BMJ Open 2020, 10, e036584. [Google Scholar] [CrossRef]
- Jones, G.R.; Lyons, M.; Plevris, N.; Jenkinson, P.W.; Bisset, C.; Burgess, C.; Din, S.; Fulforth, J.; Henderson, P.; Ho, G.T.; et al. IBD prevalence in Lothian, Scotland, derived by capture-recapture methodology. Gut 2019, 68, 1953–1960. [Google Scholar] [CrossRef]
- Cantoro, L.; Di Sabatino, A.; Papi, C.; Margagnoni, G.; Ardizzone, S.; Giuffrida, P.; Giannarelli, D.; Massari, A.; Monterubbianesi, R.; Lenti, M.V.; et al. The Time Course of Diagnostic Delay in Inflammatory Bowel Disease Over the Last Sixty Years: An Italian Multicentre Study. J. Crohn’s Colitis 2017, 11, 975–980. [Google Scholar] [CrossRef] [Green Version]
Overall (n = 482,887) | Score of 0–1 (n = 32,526) | Score of 2 (n = 65,410) | Score of 3 (n = 110,015) | Score of 4 (n = 132,261) | Score of 5–7 (n = 142,675) | |
---|---|---|---|---|---|---|
Sex (%) | ||||||
Female | 262,889 (54.4) | 8451 (26.0) | 25,548 (39.1) | 55,754 (50.7) | 79,545 (60.1) | 93,591 (65.6) |
Male | 219,998 (45.6) | 24,075 (74.0) | 39,862 (60.9) | 54,261 (49.3) | 52,716 (39.9) | 49,084 (34.4) |
Age (mean (SD)) | 56.56 (8.09) | 54.48 (8.30) | 55.43 (8.28) | 56.05 (8.17) | 56.82 (7.99) | 57.70 (7.78) |
Ethnicity (%) | ||||||
White | 458,310 (94.9) | 31,529 (96.9) | 62,583 (95.7) | 104,657 (95.1) | 124,940 (94.5) | 134,601 (94.3) |
Others | 24,577 (5.1) | 997 (3.1) | 2827 (4.3) | 5358 (4.9) | 7321 (5.5) | 8074 (5.7) |
TDI (%) | ||||||
High deprivation | 160,948 (33.3) | 13,091 (40.2) | 23,890 (36.5) | 36,878 (33.5) | 42,128 (31.9) | 44,961 (31.5) |
Low deprivation | 160,977 (33.3) | 9173 (28.2) | 20,182 (30.9) | 36,636 (33.3) | 45,425 (34.3) | 49,561 (34.7) |
Moderate deprivation | 160,962 (33.3) | 10,262 (31.6) | 21,338 (32.6) | 36,501 (33.2) | 44,708 (33.8) | 48,153 (33.8) |
Educational level (%) | ||||||
College and above | 156,463 (32.4) | 6999 (21.5) | 16,780 (25.7) | 32,989 (30.0) | 44,403 (33.6) | 55,292 (38.8) |
High school and below | 326,424 (67.6) | 25,527 (78.5) | 48,630 (74.3) | 77,026 (70.0) | 87,858 (66.4) | 87,383 (61.2) |
Smoking (%) | ||||||
Current | 50,141 (10.4) | 6616 (20.3) | 10,311 (15.8) | 12,969 (11.8) | 11,542 (8.7) | 8703 (6.1) |
Never | 266,149 (55.1) | 15,493 (47.6) | 33,313 (50.9) | 59,294 (53.9) | 74,370 (56.2) | 83,679 (58.7) |
Previous | 166,597 (34.5) | 10,417 (32.0) | 21,786 (33.3) | 37,752 (34.3) | 46,349 (35.0) | 50,293 (35.3) |
Alcohol drinking (%) | ||||||
Current | 445,168 (92.2) | 30,237 (93.0) | 60,573 (92.6) | 101,929 (92.7) | 122,043 (92.3) | 130,386 (91.4) |
Non-current | 37,719 (7.8) | 2289 (7.0) | 4837 (7.4) | 8086 (7.3) | 10,218 (7.7) | 12,289 (8.6) |
Physical activity (%) | ||||||
High | 157,881 (32.7) | 8830 (27.1) | 17,954 (27.4) | 32,329 (29.4) | 43,165 (32.6) | 55,603 (39.0) |
Moderate | 159,661 (33.1) | 10,144 (31.2) | 20,993 (32.1) | 36,744 (33.4) | 44,593 (33.7) | 47,187 (33.1) |
Low | 73,615 (15.2) | 6884 (21.2) | 12,756 (19.5) | 19,009 (17.3) | 19,261 (14.6) | 15,705 (11.0) |
Miss | 91,730 (19.0) | 6668 (20.5) | 13,707 (21.0) | 21,933 (19.9) | 25,242 (19.1) | 24,180 (16.9) |
BMI (mean (SD)) | 27.43 (4.78) | 28.25 (4.91) | 28.03 (4.88) | 27.75 (4.82) | 27.42 (4.75) | 26.72 (4.60) |
Cardioprotective Diet Scores | Cases | Person-Years | Minimally Adjusted Model 1 | Fully Adjusted Model 2 | ||
---|---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95%CI) | p-Value | |||
Score of 0–1 | 235 | 390,687 | Ref | Ref | ||
Score of 2 | 424 | 788,123 | 0.89 (0.76, 1.04) | 0.146 | 0.93 (0.79, 1.09) | 0.356 |
Score of 3 | 632 | 1,331,613 | 0.78 (0.67, 0.91) | 0.002 | 0.85 (0.73, 0.99) | 0.041 |
Score of 4 | 730 | 1,605,282 | 0.75 (0.64, 0.87) | <0.001 | 0.84 (0.72, 0.98) | 0.027 |
Score of 5–7 | 696 | 1,738,044 | 0.65 (0.56, 0.76) | <0.001 | 0.77 (0.66, 0.89) | 0.001 |
p-trend | <0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, T.; Ye, S.; Sun, Y.; Dan, L.; Wang, X.; Chen, J. Greater Adherence to Cardioprotective Diet Can Reduce Inflammatory Bowel Disease Risk: A Longitudinal Cohort Study. Nutrients 2022, 14, 4058. https://doi.org/10.3390/nu14194058
Fu T, Ye S, Sun Y, Dan L, Wang X, Chen J. Greater Adherence to Cardioprotective Diet Can Reduce Inflammatory Bowel Disease Risk: A Longitudinal Cohort Study. Nutrients. 2022; 14(19):4058. https://doi.org/10.3390/nu14194058
Chicago/Turabian StyleFu, Tian, Shuyu Ye, Yuhao Sun, Lintao Dan, Xiaoyan Wang, and Jie Chen. 2022. "Greater Adherence to Cardioprotective Diet Can Reduce Inflammatory Bowel Disease Risk: A Longitudinal Cohort Study" Nutrients 14, no. 19: 4058. https://doi.org/10.3390/nu14194058
APA StyleFu, T., Ye, S., Sun, Y., Dan, L., Wang, X., & Chen, J. (2022). Greater Adherence to Cardioprotective Diet Can Reduce Inflammatory Bowel Disease Risk: A Longitudinal Cohort Study. Nutrients, 14(19), 4058. https://doi.org/10.3390/nu14194058