The Impact of Water and Other Fluids on Pediatric Nephrolithiasis
Abstract
:1. Introduction
2. Water and Diet
3. Prevention of Recurrence
4. Soda Intake
5. Milk, Fruit Juices, and Artificial Drinks Containing Carbohydrates
- Certain fluids such as grapefruit, apple, and orange juices reduce urine calcium oxalate saturation, with a subsequent reduction in stone formation.
- Higher fluid intake is related to an increased urine output and reduced stone formation.
6. Discussion and Conclusions
7. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thakore, P.; Liang, T.H. Urolithiasis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Cunningham, P.; Noble, H.; Al-Modhefer, A.K.; Walsh, I. Kidney stones: Pathophysiology, diagnosis and management. Br. J. Nurs. 2016, 25, 1112–1116. [Google Scholar] [CrossRef] [Green Version]
- Onal, E.G.; Tekgul, H. Assessing kidney stone composition using smartphone microscopy and deep neural networks. BJUI Compass 2022, 3, 310–315. [Google Scholar] [CrossRef]
- Hoppe, B.; Leumann, E.; Milliner, D. Urolithiasis and Nephrocalcinosis in Childhood. Compr. Pediatr. Nephrol. 2008, 499–525. [Google Scholar] [CrossRef]
- Gajengi, A.K.; Wagaskar, V.G.; Tanwar, H.V.; Mhaske, S.; Patwardhan, S.K. Metabolic Evaluation in Paediatric Urolithiasis: A 4-Year Open Prospective Study. J. Clin. Diagn. Res. 2016, 10, Pc04–Pc06. [Google Scholar] [CrossRef]
- Jackson, E.C.; Avendt-Reeber, M. Urolithiasis in Children—Treatment and Prevention. Curr. Treat. Options Pediatr. 2016, 2, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Sas, D.J.; Hulsey, T.C.; Shatat, I.F.; Orak, J.K. Increasing incidence of kidney stones in children evaluated in the emergency department. J. Pediatr. 2010, 157, 132–137. [Google Scholar] [CrossRef]
- Penido, M.G.M.G.; Tavares, M.d.S. Pediatric primary urolithiasis: Symptoms, medical management and prevention strategies. World J. Nephrol. 2015, 4, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Amancio, L.; Fedrizzi, M.; Bresolin, N.L.; Penido, M.G. Pediatric urolithiasis: Experience at a tertiary care pediatric hospital. J. Bras. Nefrol. 2016, 38, 90–98. [Google Scholar] [CrossRef]
- Samotyjek, J.; Jurkiewicz, B.; Krupa, A. Surgical treatment methods of urolithiasis in the pediatric population. Dev. Period. Med. 2018, 22, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Stapleton, F.B. Kidney Stones in Children: Prevention of Recurrent Stones. Available online: https://www.uptodate.com/contents/kidney-stones-in-children-prevention-of-recurrent-stones (accessed on 6 September 2022).
- Zhong, J.; Huang, Z.; Yang, T.; Wang, G.; Guo, H.; Li, P.; Zhang, Y.; Zhao, Y.; Liu, J. The current status of preventive measures for urinary calculi in children. Ther. Adv. Urol. 2021, 13, 17562872211039581. [Google Scholar] [CrossRef] [PubMed]
- Cheungpasitporn, W.; Rossetti, S.; Friend, K.; Erickson, S.B.; Lieske, J.C. Treatment effect, adherence, and safety of high fluid intake for the prevention of incident and recurrent kidney stones: A systematic review and meta-analysis. J. Nephrol. 2016, 29, 211–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, J.D.; Ellison, J.S.; Lendvay, T.S. Current Trends, Evaluation, and Management of Pediatric Nephrolithiasis. JAMA Pediatr. 2015, 169, 964–970. [Google Scholar] [CrossRef]
- Yılmaz, A.Ç.; Ünal, N. Do dietary factors play a role in infantile urolithiasis? Pediatr. Nephrol. 2022. [Google Scholar] [CrossRef]
- Bozkurt, H.B.; Çetin, T.; Sarıca, K. The Possible Beneficial Effect of Breastfeeding on the Clinical Course of Urolithiasis Detected during Infancy. Breastfeed. Med. 2020, 15, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Sarica, K.; Narter, F.; Sabuncu, K.; Akca, A.; Can, U.; Buz, A.; Sarica, H.N.; Eryildirim, B. Factors affecting the course of body and kidney growth in infants with urolithiasis: A critical long-term evaluation. Arch. Ital. Urol. 2016, 88, 249–254. [Google Scholar] [CrossRef] [Green Version]
- NIH. Nutrient Recommendations: Dietary Reference Intakes (DRI). Available online: https://ods.od.nih.gov/HealthInformation/nutrientrecommendations.aspx#dv (accessed on 5 September 2022).
- Sas, D.J. An update on the changing epidemiology and metabolic risk factors in pediatric kidney stone disease. Clin. J. Am. Soc. Nephrol. 2011, 6, 2062–2068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, L.A.; Stapleton, F.B. Urinary Volume in Children with Urolithiasis. J. Urol. 1989, 141, 918–920. [Google Scholar] [CrossRef]
- Penido, M.G.; Srivastava, T.; Alon, U.S. Pediatric primary urolithiasis: 12-year experience at a Midwestern Children’s Hospital. J. Urol. 2013, 189, 1493–1497. [Google Scholar] [CrossRef] [PubMed]
- Velásquez-Forero, F.; Esparza, M.; Salas, A.; Medeiros, M.; Toussaint, G.; Llach, F. Risk factors evaluation for urolithiasis among children. Bol. Méd. Hosp. Infant. México 2016, 73, 228–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovacevic, L.; Wolfe-Christensen, C.; Edwards, L.; Sadaps, M.; Lakshmanan, Y. From hypercalciuria to hypocitraturia—A shifting trend in pediatric urolithiasis? J. Urol. 2012, 188, 1623–1627. [Google Scholar] [CrossRef]
- Turudic, D.; Golubic, A.T.; Lovric, M.; Bilic, M.; Milosevic, D. Age-Specific Excretion of Calcium, Oxalate, Citrate, and Glycosaminoglycans and Their Ratios in Healthy Children and Children with Urolithiasis. Biomolecules 2021, 11, 758. [Google Scholar] [CrossRef] [PubMed]
- Turudic, D.; Batinic, D.; Golubic, A.T.; Lovric, M.; Milosevic, D. Calcium oxalate urolithiasis in children: Urinary promoters/inhibitors and role of their ratios. Eur. J. Pediatr. 2016, 175, 1959–1965. [Google Scholar] [CrossRef]
- MacDougall, L.; Taheri, S.; Crofton, P. Biochemical risk factors for stone formation in a Scottish paediatric hospital population. Ann. Clin. Biochem. 2010, 47, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Osuna-Padilla, I.A.; Leal-Escobar, G.; Garza-García, C.A.; Rodríguez-Castellanos, F.E. Dietary acid load: Mechanisms and evidence of its health repercussions. Nefrología (Engl. Ed.) 2019, 39, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Remer, T.; Dimitriou, T.; Manz, F. Dietary potential renal acid load and renal net acid excretion in healthy, free-living children and adolescents. Am. J. Clin. Nutr. 2003, 77, 1255–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKay, C.P. Renal stone disease. Pediatr. Rev. 2010, 31, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Siener, R. Nutrition and Kidney Stone Disease. Nutrients 2021, 13, 1917. [Google Scholar] [CrossRef]
- Siener, R.; Seidler, A.; Voss, S.; Hesse, A. The oxalate content of fruit and vegetable juices, nectars and drinks. J. Food Compos. Anal. 2016, 45, 108–112. [Google Scholar] [CrossRef]
- Hönow, R.; Hesse, A. Comparison of extraction methods for the determination of soluble and total oxalate in foods by HPLC-enzyme-reactor. Food Chem. 2002, 78, 511–521. [Google Scholar] [CrossRef]
- Moudi, E.; Ghaffari, R.; Moradi, A. Pediatric Nephrolithiasis: Trend, Evaluation and Management: A Systematic Review. J. Pediatr. Rev. 2016; in press. [Google Scholar] [CrossRef]
- Popkin, B.M.; D’Anci, K.E.; Rosenberg, I.H. Water, hydration, and health. Nutr. Rev. 2010, 68, 439–458. [Google Scholar] [CrossRef]
- Muckelbauer, R.; Libuda, L.; Clausen, K.; Toschke, A.M.; Reinehr, T.; Kersting, M. Promotion and provision of drinking water in schools for overweight prevention: Randomized, controlled cluster trial. Pediatrics 2009, 123, e661–e667. [Google Scholar] [CrossRef]
- Punnoose, A.R.; Golub, R.M.; Lynm, C. JAMA patient page. Kidney stones. JAMA 2012, 307, 2557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong, L.E. Challenges of linking chronic dehydration and fluid consumption to health outcomes. Nutr. Rev. 2012, 70, S121–S127. [Google Scholar] [CrossRef] [PubMed]
- Curhan, G.C.; Willett, W.C.; Speizer, F.E.; Stampfer, M.J. Beverage use and risk for kidney stones in women. Ann. Intern. Med. 1998, 128, 534–540. [Google Scholar] [CrossRef]
- Srivastava, T.; Alon, U.S. Pathophysiology of hypercalciuria in children. Pediatr. Nephrol. 2007, 22, 1659–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coen, G.; Sardella, D.; Barbera, G.; Ferrannini, M.; Comegna, C.; Ferazzoli, F.; Dinnella, A.; D’Anello, E.; Simeoni, P. Urinary Composition and Lithogenic Risk in Normal Subjects following Oligomineral versus Bicarbonate-Alkaline High Calcium Mineral Water Intake. Urol. Int. 2001, 67, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Odvina, C.V. Comparative value of orange juice versus lemonade in reducing stone-forming risk. Clin. J. Am. Soc. Nephrol. 2006, 1, 1269–1274. [Google Scholar] [CrossRef] [Green Version]
- Silverio, F.; Ricciuti, G.; D’Angelo, A.; Fraioli, A.; Simeoni, G. Stone Recurrence after Lithotripsy in Patients with Recurrent Idiopathic Calcium Urolithiasis: Efficacy of Treatment with Fiuggi Water. Eur. Urol. 2000, 37, 145–148. [Google Scholar] [CrossRef]
- Kessler, T.; Jansen, B.; Hesse, A. Effect of blackcurrant-, cranberry- and plum juice consumption on risk factors associated with kidney stone formation. Eur. J. Clin. Nutr. 2002, 56, 1020–1023. [Google Scholar] [CrossRef]
- Gamage, K.N.; Jamnadass, E.; Sulaiman, S.K.; Pietropaolo, A.; Aboumarzouk, O.; Somani, B.K. The role of fluid intake in the prevention of kidney stone disease: A systematic review over the last two decades. Turk. J. Urol. 2020, 46, S92–S103. [Google Scholar] [CrossRef] [PubMed]
- Marra, G.; Taroni, F.; Berrettini, A.; Montanari, E.; Manzoni, G.; Montini, G. Pediatric nephrolithiasis: A systematic approach from diagnosis to treatment. J. Nephrol. 2019, 32, 199–210. [Google Scholar] [CrossRef]
- Palmer, J.S.; Donaher, E.R.; O’Riordan, M.A.; Dell, K.M. Diagnosis of pediatric urolithiasis: Role of ultrasound and computerized tomography. J. Urol. 2005, 174, 1413–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meschi, T.; Nouvenne, A.; Borghi, L. Lifestyle recommendations to reduce the risk of kidney stones. Urol. Clin. N. Am. 2011, 38, 313–320. [Google Scholar] [CrossRef]
- Taylor, E.N.; Curhan, G.C. Fructose consumption and the risk of kidney stones. Kidney Int. 2008, 73, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.E.; Sur, R.L.; Haleblian, G.E.; Fitzsimons, N.J.; Borawski, K.M.; Preminger, G.M. Long-term lemonade based dietary manipulation in patients with hypocitraturic nephrolithiasis. J. Urol. 2007, 177, 1358–1362; discussion 1362; quiz 1591. [Google Scholar] [CrossRef]
- Koff, S.G.; Paquette, E.L.; Cullen, J.; Gancarczyk, K.K.; Tucciarone, P.R.; Schenkman, N.S. Comparison between lemonade and potassium citrate and impact on urine pH and 24-h urine parameters in patients with kidney stone formation. Urology 2007, 69, 1013–1016. [Google Scholar] [CrossRef] [PubMed]
- Tasian, G.E.; Copelovitch, L. Evaluation and medical management of kidney stones in children. J. Urol. 2014, 192, 1329–1336. [Google Scholar] [CrossRef]
- Curhan, G.C.; Willett, W.C.; Rimm, E.B.; Stampfer, M.J. A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones. N. Engl. J. Med. 1993, 328, 833–838. [Google Scholar] [CrossRef]
- DeFoor, W.R.; Asplin, J.R.; Kollar, L.; Jackson, E.; Jenkins, T.; Schulte, M.; Inge, T. Prospective evaluation of urinary metabolic indices in severely obese adolescents after weight loss surgery. Surg. Obes. Relat. Dis. 2016, 12, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Borghi, L.; Schianchi, T.; Meschi, T.; Guerra, A.; Allegri, F.; Maggiore, U.; Novarini, A. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N. Engl. J. Med. 2002, 346, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Large, T.; Williams, J.C.; Asplin, J.R.; Krambeck, A.E. Using Low-calorie Orange Juice as a Dietary Alternative to Alkali Therapy. J. Endourol. 2020, 34, 1082–1087. [Google Scholar] [CrossRef]
- Penniston, K.L.; Nakada, S.Y.; Holmes, R.P.; Assimos, D.G. Quantitative assessment of citric acid in lemon juice, lime juice, and commercially-available fruit juice products. J. Endourol. 2008, 22, 567–570. [Google Scholar] [CrossRef]
- Pross, N. Effects of Dehydration on Brain Functioning: A Life-Span Perspective. Ann. Nutr. Metab. 2017, 70 (Suppl. 1), 30–36. [Google Scholar] [CrossRef] [PubMed]
- Baron, S.; Courbebaisse, M.; Lepicard, E.; Friedlander, G. Assessment of hydration status in a large population. Br. J. Nutr. 2014, 113, 147–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baştuğ, F.; Ağbaş, A.; Tülpar, S.; Yıldırım, Z.N.Y.; Çiçek, N.; Günay, N.; Gemici, A.; Çelik, B.; Delebe, E.; Nalçacıoğlu, H.; et al. Comparison of infants and children with urolithiasis: A large case series. Urolithiasis 2022, 50, 411–421. [Google Scholar] [CrossRef]
Urinary Risk Factor | Recommendation |
---|---|
Urine volume (<2.0 L/24 h) | Fluid intake that achieves urine volume of 2.0 to 2.5 L/24 h Alkalizing beverages |
Hypercalciuria (>0.1 mmol/kg body weight/24 h) | Calcium intake:1000 to 1200 mg/day Protein intake: 0.8 to 1.0 g/kg normal body weight/day Sodium chloride intake: <6 g/day Increased intake of vegetables and fruit |
Hyperoxaluria (>0.5 mmol/24 h) | Low dietary oxalate intake Calcium intake: 1000 to 1200 mg/day (IH) Calcium supplementation (EH) |
Hyperuricosuria (>4 mmol/24 h) | Protein intake: 0.8 to 1.0 g/kg normal body weight/day Reduced dietary purine intake Increased intake of vegetables and fruit |
Hypocitraturia (<1.7 mmol/24 h) | Protein intake: 0.8 to 1.0 g/kg normal body weight/day Increased intake of vegetables and fruit |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciongradi, C.I.; Filip, F.; Sârbu, I.; Iliescu Halițchi, C.O.; Munteanu, V.; Candussi, I.-L. The Impact of Water and Other Fluids on Pediatric Nephrolithiasis. Nutrients 2022, 14, 4161. https://doi.org/10.3390/nu14194161
Ciongradi CI, Filip F, Sârbu I, Iliescu Halițchi CO, Munteanu V, Candussi I-L. The Impact of Water and Other Fluids on Pediatric Nephrolithiasis. Nutrients. 2022; 14(19):4161. https://doi.org/10.3390/nu14194161
Chicago/Turabian StyleCiongradi, Carmen Iulia, Florin Filip, Ioan Sârbu, Codruța Olimpiada Iliescu Halițchi, Valentin Munteanu, and Iuliana-Laura Candussi. 2022. "The Impact of Water and Other Fluids on Pediatric Nephrolithiasis" Nutrients 14, no. 19: 4161. https://doi.org/10.3390/nu14194161
APA StyleCiongradi, C. I., Filip, F., Sârbu, I., Iliescu Halițchi, C. O., Munteanu, V., & Candussi, I. -L. (2022). The Impact of Water and Other Fluids on Pediatric Nephrolithiasis. Nutrients, 14(19), 4161. https://doi.org/10.3390/nu14194161