Hydration and Nephrolithiasis in Pediatric Populations: Specificities and Current Recommendations
Abstract
:1. Background
2. Specificities of Urolithiasis in Pediatrics
2.1. Stone Compositions
2.2. From the Diagnostic Approach to Genetics
2.3. Other Factors
3. Overall Benefits of Hydration
3.1. Physiologically in Pediatrics
3.2. Drinking Habits
3.3. Overweight and Bad Eating Habits
3.4. Hydration and Cognition
3.5. Water: Usual and Therapeutic Recommendations
4. Place of Hydration in Nephrolithiasis Treatment
4.1. Focus on Medical Treatment and Genetic Diseases
4.2. Which Water?
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kirejczyk, J.K.; Porowski, T.; Filonowicz, R.; Kazberuk, A.; Stefanowicz, M.; Wasilewska, A.; Debek, W. An association between kidney stone composition and urinary metabolic disturbances in children. J. Pediatr. Urol. 2014, 10, 130–135. [Google Scholar] [CrossRef]
- Novak, T.E.; Lakshmanan, Y.; Trock, B.J.; Gearhart, J.P.; Matlaga, B.R. Sex Prevalence of Pediatric Kidney Stone Disease in the United States: An Epidemiologic Investigation. Urology 2009, 74, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Rauturier, C.; Machon, C.; Demède, D.; Dubourg, L.; Bacchetta, J.; Bertholet-Thomas, A. Composition of urinary stones in children: Clinical and metabolic determinants in a French tertiary care center. Eur. J. Pediatr. 2021, 180, 3555–3563. [Google Scholar] [CrossRef] [PubMed]
- Bertholet-Thomas, A.; Bacchetta, J.; Dubourg, L.; Machon, C.; Roger, C.; Demère, D.; Cochat, P.; Lemoine, S. Lithiase urinaire de l’enfant. EMC Pédiatrie 2020, 40, 1–23. [Google Scholar]
- Ziemba, J.B.; Matlaga, B.R. Epidemiology and economics of nephrolithiasis. Investig. Clin. Urol. 2017, 58, 299. [Google Scholar] [CrossRef]
- Robinson, C.; Shenoy, M.; Hennayake, S. No stone unturned: The epidemiology and outcomes of paediatric urolithiasis in Manchester, United Kingdom. J. Pediatr. Urol. 2020, 16, e1–e372. [Google Scholar] [CrossRef]
- Alpay, H.; Ozen, A.; Gokçe, I.; Biyikli, N. Clinical and metabolic features of urolithiasis and microlithiasis in children. Pediatr. Nephrol. 2009, 24, 2203–2209. [Google Scholar] [CrossRef] [PubMed]
- Vandervoort, K.; Wiesen, J.; Frank, R.; Vento, S.; Crosby, V.; Chandra, M.; Trachtman, H. Urolithiasis in Pediatric Patients: A Single Center Study of Incidence, Clinical Presentation and Outcome. J. Urol. 2007, 177, 2300–2305. [Google Scholar] [CrossRef]
- Shoag, J.; Tasian, G.E.; Goldfarb, D.; Eisner, B.H. The New Epidemiology of Nephrolithiasis. Adv. Chronic Kidney Dis. 2015, 22, 273–278. [Google Scholar] [CrossRef]
- Mayans, L. Nephrolithiasis. Prim. Care Clin. Office Pract. 2019, 46, 203–212. [Google Scholar] [CrossRef]
- Valentini, R.P.; Lakshmanan, Y. Nephrolithiasis in Children. Adv. Chronic Kidney Dis. 2011, 18, 370–375. [Google Scholar] [CrossRef]
- Stahl-Pehe, A.; Kroke, A.; Bolzenius, K.; Manz, F. Relation between hydration status in children and their dietary profile—Results from the DONALD study. Eur. J. Clin. Nutr. 2007, 61, 1386–1392. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, T.M.; Yang, S.-J.; Nicklas, T.A. Beverage Intake Among Preschool Children and Its Effect on Weight Status. Pediatrics 2006, 118, e1010–e1018. [Google Scholar] [CrossRef] [PubMed]
- Abate, N.; Chandalia, M.; Cabo-Chan, A.; Moe, O.; Sakjaee, K. The metabolic syndrome and uric acid nephrolithias. Kidney Int. 2004, 65, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Consommation d’eau et Physiologie de l’Hydratation chez les Enfants. Available online: https://www.hydrationforhealth.com/fr/sciences-de-lhydratation/laboratoire-dhydratation/consommation-deau-et-physiologie-de-lhydratation-chez-les-enfants/ (accessed on 28 April 2017).
- Agostoni, C.; Bresson, J.L.; Fairweather-Tait, S. EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for water. EFSA J. 2010, 8, 1459. Available online: https://data.europa.eu/doi/10.2903/j.efsa.2010.1459 (accessed on 11 December 2022).
- Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate; National Academies Press: Washington, DC, USA, 2005; Available online: http://www.nap.edu/catalog/10925 (accessed on 11 December 2022).
- World Health Organization. Nutrients in Drinking Water; Water, Sanitation, and Health Protection and the Human Environment, World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Kavouras, S.; Bougatsas, D.; Johnson, E.C.; Arnaoutis, G.; Tsipouridi, S.; Panagiotakos, D.B. Water intake and urinary hydration biomarkers in children. Eur. J. Clin. Nutr. 2017, 71, 530–535. [Google Scholar] [CrossRef]
- Suh, H.; Kavouras, S.A. Water intake and hydration state in children. Eur. J. Nutr. 2019, 58, 475–496. [Google Scholar] [CrossRef] [PubMed]
- Daudon, M.; Traxer, O.; Lechevallier, E.; Saussine, C. Épidémiologie des lithiases urinaires. Progrès Urol. 2008, 18, 802–814. [Google Scholar] [CrossRef]
- Sorokin, I.; Mamoulakis, C.; Miyazawa, K.; Rodgers, A.; Talati, J.; Lotan, Y. Epidemiology of stone disease across the world. World J. Urol. 2017, 35, 1301–1320. [Google Scholar] [CrossRef] [PubMed]
- Bergsland, K.J.; Kinder, J.M.; Asplin, J.R.; Coe, B.J.; Coe, F.L. Influence of gender and age on calcium oxalate crystal growth inhibition by urine from relatives of stone forming patients. J. Urol. 2002, 167, 2372–2376. [Google Scholar] [CrossRef]
- Halbritter, J.; Baum, M.; Hynes, A.M.; Rice, S.J.; Thwaites, D.T.; Gucev, Z.S.; Fisher, B.; Spaneas, L.; Porath, J.D.; Braun, D.A.; et al. Fourteen Monogenic Genes Account for 15% of Nephrolithiasis/Nephrocalcinosis. JASN 2015, 26, 543–551. [Google Scholar] [CrossRef]
- Uribarri, J. Chronic kidney disease and kidney stones. Curr. Opin. Nephrol. Hypertens. 2020, 29, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Forbes, T.A.; Brown, B.D.; Lai, C.; Lai, C. Therapeutic RNA interference: A novel approach to the treatment of primary hyperoxaluria. Brit. J. Clin. Pharma 2022, 88, 2525–2538. [Google Scholar] [CrossRef]
- Bacchetta, J.; Wood, K.D. Primary hyperoxaluria type 1: Time for prime time? Clin. Kidney J. 2022, 15 (Suppl. S1), i1–i3. [Google Scholar] [CrossRef] [PubMed]
- Mosca, M.; Bertholet-Thomas, A.; Lemoine, S.; Garnier, C.; Machon, C.; Molin, A.; Dubourg, L.; Bacchetta, J. The interest of oral calcium loads test in the diagnosis and management of pediatric nephrolithiasis with hypercalciuria: Experience from a tertiary pediatric centre. J. Pediatr. Urol. 2020, 16, 489.e1–489.e9. [Google Scholar] [CrossRef] [PubMed]
- PNDS Lithiase Urinaire de l’enfant, Centre de Référence des Maladies Rénales Rares, November 2021. Disponible sur Microsoft Word—PNDS LITHIASE_Texte_30092021.doc. Available online: Has-sante.fr (accessed on 30 September 2021).
- Sas, D.J. An Update on the Changing Epidemiology and Metabolic Risk Factors in Pediatric Kidney Stone Disease. CJASN 2011, 6, 2062–2068. [Google Scholar] [CrossRef] [PubMed]
- Daudon, M.; Bader, C.A.; Jungers, P. Urinary calculi: Review of classification methods and correlations with etiology. Scanning Microsc. 1993, 7, 1081–1104. [Google Scholar]
- Denburg, M.R.; Koepsell, K.; Lee, J.-J.; Gerber, J.; Bittinger, K.; Tasian, G.E. Perturbations of the Gut Microbiome and Metabolome in Children with Calcium Oxalate Kidney Stone Disease. JASN 2020, 31, 1358–1369. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Jiang, Y.; Tan, A.; Ye, J.; Xian, X.; Xie, Y.; Wang, Q.; Yao, Z.; Mo, Z. 16S rRNA gene sequencing reveals altered composition of gut microbiota in individuals with kidney stones. Urolithiasis 2018, 46, 503–514. [Google Scholar] [CrossRef]
- Ticinesi, A.; Nouvenne, A.; Chiussi, G.; Castaldo, G.; Guerra, A.; Meschi, T. Calcium Oxalate Nephrolithiasis and Gut Microbiota: Not just a Gut-Kidney Axis. A Nutritional Perspective. Nutrients 2020, 12, 548. [Google Scholar] [CrossRef]
- Mehta, M.; Goldfarb, D.S.; Nazzal, L. The role of the microbiome in kidney stone formation. Int. J. Surg. 2016, 36, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, B.; Hesse, A.; Brömme, S.; Rietschel, E.; Michalk, D. Urinary excretion substances in patients with cystic fibrosis: Risk of urolithiasis? Pediatr. Nephrol. 1998, 12, 275–279. [Google Scholar] [CrossRef]
- Cochat, P.; Pichault, V.; Bacchetta, J.; Dubourg, L.; Sabot, J.-F.; Saban, C.; Daudon, M.; Liutkus, A. Nephrolithiasis related to inborn metabolic diseases. Pediatr Nephrol. 2010, 25, 415–424. [Google Scholar] [CrossRef] [Green Version]
- Watson, L.P.E.; Carr, K.S.; Orford, E.R.; Venables, M.C. The Importance of Hydration in Body Composition Assessment in Children Aged 6–16 Years. J. Clin. Densitom. 2021, 24, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Van Eyck, A.; Eerens, S.; Trouet, D.; Vad Der Lee, J.H.; Van Hoeck, K.; Ledeganck, J. Body composition monitoring in children and adolescent: Reproducibility and reference values. Eur. J. Pediatr. 2021, 180, 1721–1732. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, L.; O’Grady, S.P.; Ehleringer, J.R. Variations in human body water isotope composition across the United States. Forensic Sci. Int. 2021, 327, 110990. [Google Scholar] [CrossRef] [PubMed]
- Chula de Castro, J.A.; De Lima, T.E.; Santos Silva, D.A. Body composition estimation in children and adolescents by bioelectrical impedance analysis. A systematic review. J. Bodyw. Mov. Ther. 2017, 22, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Zhang, X.; Henderson, M.E.T.; Sagayama, H.; Pontzer, H.; Watanabe, D.; Yoshida, T.; Kimura, M.; Ainslie, P.N.; Andersen, L.F.; et al. Variation in human water turnover associated with environmental and lifestyle factors. Science 2022, 378, 909–915. [Google Scholar] [CrossRef]
- Bottin, J.H.; Morin, C.; Guelinckx, I.; Perrier, E.T. Hydration in Children: What Do We Know and Why Does it Matter? Ann. Nutr. Metab. 2019, 74 (Suppl. S3), 11–18. [Google Scholar] [CrossRef]
- Guelinckx, I.; Frémont-Marquis, A.; Eon, E.; Kavouras, S.; Armstrong, L. Assessing Hydration in Children: From Science to Practice. Ann. Nutr. Metab. 2015, 66 (Suppl. S3), 5–9. [Google Scholar] [CrossRef]
- Iglesia, I.; Guelinckx, I.; De Miguel-Etayo, P.M.; Gil, E.M.G.; Salas-Salvadó, J.; Kavouras, S.; Gandy, J.; Martinez, H.; Bardosono, S.; Abdollahi, M.; et al. Total fluid intake of children and adolescents: Cross-sectional surveys in 13 countries worldwide. Eur. J. Nutr. 2015, 54, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Sui, Z.; Zheng, M.; Zhang, M.; Rangan, A. Water and Beverage Consumption: Analysis of the Australian 2011–2012 National Nutrition and Physical Activity Survey. Nutrients 2016, 8, 678. [Google Scholar] [CrossRef] [PubMed]
- Sontrop, J.M.; Dixon, S.N.; Garg, A.X.; Buendia-Jimenez, I.; Dohein, O.; Huang, S.-H.S.; Clark, W.F. Association between Water Intake, Chronic Kidney Disease, and Cardiovascular Disease: A Cross-Sectional Analysis of NHANES Data. Am. J. Nephrol. 2013, 37, 434–442. [Google Scholar] [CrossRef]
- Roussel, R.; Fezeu, L.; Bouby, N.; Balkau, B.; Lantieri, O.; Alhenc-Gelas, F.; Marre, M.; Bankir, L. Low Water Intake and Risk for New-Onset Hyperglycemia. Diabetes Care 2011, 34, 2551–2554. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, K.A.; Baker, L.B.; Chow, M.; Kenney, W.L. Two Percent Dehydration Impairs and Six Percent Carbohydrate Drink Improves Boys Basketball Skills. Med. Sci. Sport. Exerc. 2006, 38, 1650–1658. [Google Scholar] [CrossRef]
- Kavouras, S.A.; Arnaoutis, G.; Makrillos, M.; Garagouni, C.; Nikolaou, E.; Chira, O.; Ellinikaki, E.; Sidossis, L.S. Educational intervention on water intake improves hydration status and enhances exercise performance in athletic youth: Water intake and endurance performance. Scand. J. Med. Sci. Sport. 2012, 22, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Kempton, M.J.; Ettinger, U.; Foster, R.; Williams, S.; Calvert, G.A.; Hampshire, A.; Zelaya, F.; O’Gorman, R.; McMorris, T.; Owen, A.M.; et al. Dehydration affects brain structure and function in healthy adolescents. Hum. Brain Mapp. 2011, 32, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Westfall, D.R.; Logan, N.E.; Khan, N.A.; Hillman, C.H. Cognitive Assessments in Hydration Research Involving Children: Methods and Considerations. Ann. Nutr. Metab. 2019, 74 (Suppl. S3), 19–24. [Google Scholar] [CrossRef] [PubMed]
- Bacchetta, J.; Lieske, J.C. Primary hyperoxaluria type 1: Novel therapies at a glance. Clin. Kidney J. 2022, 15 (Suppl. S1), i17–i22. [Google Scholar] [CrossRef]
- Joly, M.; Rieu, P.; Mejean, A.; Gagnadoux, M.-F.; Daudon, M.; Jungers, P. Treatment of cystinuria. Pediatr. Nephrol. 1999, 13, 945–950. [Google Scholar] [CrossRef]
- Servais, A.; Thomas, K.; Strologo, L.D.; Sayer, J.A.; Bekri, S.; Bertholet-Thomas, A.; Bultitude, M.; Capolongo, G.; Cerkauskiene, R.; Daudon, M.; et al. Cystinuria: Clinical practice recommendation. Kidney Int. 2021, 99, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Hubert, J.; Hubert, C.; Jungers, P.; Daudon, M.; Hartemann, P. Drinking water and urinary stones. Which drinking water and which modalities of diuresis? Prog Urol. 2002, 12, 692–699. [Google Scholar] [PubMed]
- Roux, S.; Baudoin, C.; Boute, D.; Brazier, M.; De La Guéronniere, V.; De Vernejoul, M.C. Biological effects of drinking-water mineral composition on calcium balance and bone remodeling markers. J. Nutr. Health Aging 2004, 8, 380–384. [Google Scholar] [PubMed]
- Belykh, N.A.; Blokhova, E.E.; Ryazan State Medical University. Vitamin D status and calcium-phosphoric metabolism in children with excessive body weight and obesity. Probl. Nutr. 2021, 90, 83–90. [Google Scholar] [CrossRef]
- Bacchetta, J.; Edouard, T.; Laverny, G.; Bernardor, J.; Bertholet-Thomas, A.; Castanet, M.; Garnier, C.; Gennero, I.; Harambat, J.; Lapillonne, A.; et al. Vitamin D and calcium intakes in general pediatric populations: A French expert consensus paper. Arch. Pédiatrie 2022, 29, 312–325. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Barone, B.; di Domenico, D.; Fabozzi, A.; D’Errico, G.; Prezioso, G. Correlation between lon Composition of Oligomineral Water and Calcium Oxalate Crystal Formation. Crystals 2021, 11, 1507. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for calcium. EFSA J. 2010, 13, 4101. Available online: https://data.europa.eu/doi/10.2903/j.efsa.2015.4101 (accessed on 13 December 2022).
- Borghi, L.; Schianchi, T.; Meschi, T.; Guerra, A.; Allegri, F.; Maggiore, U.; Novarini, A. Comparison of Two Diets for the Prevention of Recurrent Stones in Idiopathic Hypercalciuria. N. Engl. J. Med. 2002, 346, 77–84. [Google Scholar] [CrossRef]
- Schwaderer, A.L.; Srivastava, T.; Schueller, L.; Cronin, R.; Mahan, J.D.; Hains, D. Dietary modifications alone do not improve bone mineral density in children with idiopathic hypercalciuria. Clin. Nephrol. 2011, 76, 341–347. [Google Scholar] [CrossRef]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Dietary reference values for vitamin D. EFSA J. 2016, 14. Available online: https://data.europa.eu/doi/10.2903/j.efsa.2016.4547 (accessed on 16 December 2022).
- Fidler Mis, N.; Braegger, C.; Bronsky, J.; Campoy, C.; Domellöf, M.; Embleton, N.D.; Hojsak, I.; Hulst, J.; Indrio, F.; Lapillonne, A.; et al. Sugar in Infants, Children and Adolescents: A Position Paper of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition Committee on Nutrition. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 681–696. [Google Scholar] [PubMed]
- Malik, V.S.; Schulze, M.B.; Hu, F.B. Intake of sugar-sweetened beverages and weight gain: A systematic review. Am. J. Clin. Nutr. 2006, 84, 274–288. [Google Scholar] [PubMed] [Green Version]
First line | Blood Biology | Urinary Biology | Others |
Ionogram: sodium, potassium, chloremia, creatinine, calcium, phosphate, bicarbonate, uric acid, magnesium, PTH, 25OHVitD | Density, osmolarity, calcium, phosphate, oxalate, cystine, citrate, magnesium, uric acid, creatinine, sodium, urea | Spectroscopy analysis: a carbonation rate (detected by infrared spectrometry) of less than 10% suggests lithiasis of metabolic origin (phosphate), whereas a carbonation rate of 15% or more points to infectious stones. Crystalluria (if available) | |
Additional explorations | When? | What? | Why? |
If hypercalciuria, or weddellite or brushite stones | Calcium load test | To show resorption or absorption hypercalciuria, or abnormalities of PTH regulation or Vitamin D metabolism | |
If normal bicarbonate, hypocitraturia, normal or increased urinary pH, and carbapatite or weddellite stones | Acid load test | To demonstrate incomplete tubular acidosis |
Age | Ratio Solute/Creatinine (95 e per) mmol/mmol mg/mg | Urinary 24 h (d) | ||
---|---|---|---|---|
Calcium | 0–6 months 7–12 months 1–3 years 3–5 years 5–7 years >7 years | <2 <1.5 <1.5 <1.1 <0.8 <0.6 | <0.8 <0.6 <0.53 <0.39 <0.28 <0.21 | <0.1 mmol/kg/d (<4 mg/kg/d) |
Oxalate | 0–6 months 7–24 months 2–5 years 5–14 years >16 years | <0.36 <0.17 <0.10 <0.08 <0.04 | <0.26 <0.14 <0.08 <0.06 <0.03 | <0.5 mmol/1.73 m2/d (<45 mg/1.73 m2/d) |
Citrate | 0–5 years >5 years | >0.25 >0.15 | >0.42 >0.25 | M: > 1.9 mmol/1.73 m2/d (>365 mg/1.73 m2/d) F: > 1.6 mmol/1.73 m2/d (> 310 mg/1.73 m2/d) |
Uric acid | <1 years 1–3 years 3–5 years 5–10 years >10 years | <1.5 <1.3 <1.0 <0.6 <0.4 | <2.2 <1.9 <1.5 <0.9 <0.6 | <70 µmol/kg/d (<1.3 mg/kg/d) <65 µmol/kg/d (<1.1 mg/kg/d) <65 µmol/kg/d (<1.1 mg/kg/d) <55 µmol/kg/d (<0.9 mg/kg/d) <55 µmol/kg/d (<0.9 mg/kg/d) |
Magnesium | >2 years | >0.63 | >0.13 | >0.04 mmol/kg/d (>0.8 mg/kg/d) |
Cystine | <10 years >10 years Adult | <12 <12 <12 | <0.07 | <55 µmol/1.73 m2/d (<13 mg/1.73 m2/d) <200 µmol/1.73 m2/d (<48 mg/1.73 m2/d) <250 µmol/1.73 m2/d (<60 mg/1.73 m2/d) |
Creatinine | 3–5 years 6–8 years 14–18 years | 12–20 mg/d 15–25 mg/d M: 18–27 mg/d F: 17–24 mg/d | ||
Phosphore | mmol/L | TmP/GFR (mmol/L) urinary | ||
1–3 years 3–5 years 5–7 years 7–9 years 9–11 years 11–13 years 13–16 years 16–19 years | 1.38–2.19 1.38–2.19 1.33–1.92 1.33–1.92 1.33–1.92 1.33–1.92 F: 1.02–1.79 M: 1.14–1.99 0.95–1.62 | 1.53 (1.13–1.92) 1.47 (1.19–1.74) 1.42 (1.13–1.70) 1.40 (1.11–1.69) 1.41 (1.14–1.67) 1.41 (1.14–1.67) F: 1.24 (0.87–1.60) M: 1.34 (0.98–1.69) F: 1.12 (0.77–1.46) M: 1.16 (0.71–1.61) |
Biology | Etiology | Lithiasis | Genetic | |
---|---|---|---|---|
Hypercalciuria | Normal Ca Normal PTH Normal Ca/creat (U) After calcium loading, adapted PTH braking and Delta Ca/creat (U) >0.05 mmol/mmol | Anomaly VitD metabolism | Weddellite (IIa)/carbapatite (IVa1)/Brushite (Ivd) | Inhibitory mutations of 24 hydroxylase (CYP24A1 gene) |
Familial hyperparathyroidism | MEN1 | |||
HRPT2 | ||||
Ca Sr genes | ||||
Normal or high Ca High PTH High Ca/creat(U) After calcium loading, high PTH and delta Ca(U)/creat(U) < 0.05 mmol/L | Anomaly tubular reabsorption Ph | Gene Npt2a, Npt2c | ||
Gene NHERF1 | ||||
Hyperoxaluria | Oxalate/creat U increased | Type 1 | Whewellite (Ia/Ic) | AGXT |
Type 2 | GRHPR | |||
Type 3 | HOGA1 | |||
Tubular acidosis, Uric acid lithiasis | Acide pH U Urinary uric acide/creatinuria > 1.5 mmol/mmol (<2 years), >0.4mmol/mmol (>10 years) | Hyperuciemia | Type III | HRPT (Lesh Nyhan syndrom) X-linked recessive |
PRPPS | X-linked recessive | |||
APRT | Autosomal recessive | |||
Cystinuria | Alkaline pH Cystinuria increased | Defects in the reabsorption of dibasic amino acids | Type V | SLC3A1 (type A), SLC7A9 (type B) |
IoM 2004 | EFSA 2010 | WHO 2003, 2005 | |
---|---|---|---|
1–2 years | 1.3 L/d | 1.1 to 1.2 L/d | 1.0 L/d |
2–3 years | 1.3 L/d | ||
4–8 years | 1.7 L/d | 1.6 L/d | Female: 2.2 L/d Male: 2.9 L/d |
9–13 years | Female: 2.1 L/d Male: 2.4 L/d | Female: 1.9 L/d Male: 2.1 L/d | |
14–18 years | Female: 2.3 L/d Male: 3.3 L/d | Female: 2.0 L/d Male: 2.5 L/d | |
>18 years | Female: 2.7 L/d Male: 3.7 L/d |
D-A-CH (2015) | NCM (2014) | IOM (2011) | WHO/FAO (2004) | Afssa (2001) | NL (2000) | SCF (19934) | DH (1991) | |
---|---|---|---|---|---|---|---|---|
Age (months) PRI (mg/d) | 4–12 330 | 6–11 540 | 6–12 260 | 7–12 400 | 6–11 450 | 6–11 400 | 0–12 525 | |
Age (years) PRI (mg/d) | 1–4 600 | 1–5 600 | 1–3 700 | 1–3 500 | 1–3 500 | 1–3 500 | 1–3 400 | 1–3 350 |
Age (years) PRI (mg/d) | 4–7 750 | 6–9 700 | 4–8 1000 | 4–6 600 | 4–6 600 | 4–8 700 | 4–6 450 | 4–6 450 |
Age (years) PRI (mg/d) | 7–10 900 | 10–17 900 | 9–18 1300 | 7–9 700 | 7–9 900 | 9–18 1200 (M) 1100 (F) | 7–10 550 | 7–10 550 |
Age (years) PRI (mg/d) | 10–13 1100 | 10–18 1300 | 10–19 1200 | 11–17 1000 (M) 800 (F) | 11–18 1000 (M) 800 (F) | |||
Age (years) PRI (mg/d) | 13–19 1200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Injeyan, M.; Bidault, V.; Bacchetta, J.; Bertholet-Thomas, A. Hydration and Nephrolithiasis in Pediatric Populations: Specificities and Current Recommendations. Nutrients 2023, 15, 728. https://doi.org/10.3390/nu15030728
Injeyan M, Bidault V, Bacchetta J, Bertholet-Thomas A. Hydration and Nephrolithiasis in Pediatric Populations: Specificities and Current Recommendations. Nutrients. 2023; 15(3):728. https://doi.org/10.3390/nu15030728
Chicago/Turabian StyleInjeyan, Maud, Valeska Bidault, Justine Bacchetta, and Aurélia Bertholet-Thomas. 2023. "Hydration and Nephrolithiasis in Pediatric Populations: Specificities and Current Recommendations" Nutrients 15, no. 3: 728. https://doi.org/10.3390/nu15030728
APA StyleInjeyan, M., Bidault, V., Bacchetta, J., & Bertholet-Thomas, A. (2023). Hydration and Nephrolithiasis in Pediatric Populations: Specificities and Current Recommendations. Nutrients, 15(3), 728. https://doi.org/10.3390/nu15030728