Effect of Resistant Dextrin on Intestinal Gas Homeostasis and Microbiota
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Aspects
2.2. Participants
2.3. Intervention
2.4. Diet
2.5. Outcomes
2.5.1. Evacuations of Gas Per Anus (Primary Outcome)
2.5.2. Daily Symptom Questionnaire
2.5.3. Effects Induced by a Pleasant Meal
2.5.4. Intestinal Gas Production
2.5.5. Colonic Content Measurement
2.5.6. Microbiota Composition and Functionality
2.5.7. Metabolomic Analysis
2.6. Reagents
2.7. Untargeted Urine Metabolomics Analysis by UPLC-QTOF-MS
2.8. Urine and Fecal Metabolomics Analysis by GC-MS
2.9. Ancillary Study
2.10. Statistical Analysis
2.10.1. Sample size calculation
2.10.2. General Statistics
2.10.3. Metabolomic Data
3. Results
3.1. Demographic Data
3.2. Evacuations of Gas Per Anus
3.3. Digestive Perceptions and Bowel Habit
3.4. Response to the Comfort Meal
3.5. Gas Production Test
3.6. Colonic Volume
3.7. Metagenomic Study
3.8. Untargeted Urine Metabolomics
3.9. Targeted Analysis of Bile Acids and SCFAs
4. Discussion
5. Limitations
6. Conclusions and Inference
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azpiroz, F. Intestinal gas. In Sleisenger and Fordtran’s Gastrointestinal and Liver Disease: Pathophysiology, Diagnosis, Management; Feldman, M.F.L., Brand, L.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 224–231. [Google Scholar]
- Manichanh, C.; Eck, A.; Varela, E.; Roca, J.; Clemente, J.C.; Gonzalez, A.; Knights, D.; Knight, R.; Estrella, S.; Hernandez, C.; et al. Anal gas evacuation and colonic microbiota in patients with flatulence: Effect of diet. Gut 2014, 63, 401–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barber, C.; Mego, M.; Sabater, C.; Vallejo, F.; Bendezu, R.A.; Masihy, M.; Guarner, F.; Espín, J.C.; Margolles, A.; Azpiroz, F. Differential Effects of Western and Mediterranean-Type Diets on Gut Microbiota: A Metagenomics and Metabolomics Approach. Nutrients 2021, 13, 2368. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobden, M.R.; Martin-Morales, A.; Guerin-Deremaux, L.; Wils, D.; Costabile, A.; Walton, G.E.; Rowland, I.; Kennedy, O.B.; Gibson, G.R. In Vitro fermentation of NUTRIOSE((R)) FB06, a wheat dextrin soluble fibre, in a continuous culture human colonic model system. PLoS ONE 2013, 8, e77128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thirion, F.; Da Silva, K.; Plaza Onate, F.; Alvarez, A.S.; Thabuis, C.; Pons, N.; Berland, M.; Le Chatelier, E.; Galleron, N.; Levenez, F. Diet Supplementation with NUTRIOSE, a Resistant Dextrin, Increases the Abundance of Parabacteroides distasonis in the Human Gut. Mol. Nutr. Food Res. 2022, 66, e2101091. [Google Scholar] [CrossRef]
- Wlodarczyk, M.; Slizewska, K. Efficiency of Resistant Starch and Dextrins as Prebiotics: A Review of the Existing Evidence and Clinical Trials. Nutrients 2021, 13, 3808. [Google Scholar] [CrossRef]
- Van den Heuvel, E.G.; Wils, D.; Pasman, W.J.; Bakker, M.; Saniez, M.H.; Kardinaal, A.F. Short-term digestive tolerance of different doses of NUTRIOSE FB, a food dextrin, in adult men. Eur. J. Clin. Nutr. 2004, 58, 1046–1055. [Google Scholar] [CrossRef]
- Pasman, W.; Wils, D.; Saniez, M.H.; Kardinaal, A. Long-term gastrointestinal tolerance of NUTRIOSE FB in healthy men. Eur. J. Clin. Nutr. 2006, 60, 1024–1034. [Google Scholar] [CrossRef] [Green Version]
- Vermorel, M.; Coudray, C.; Wils, D.; Sinaud, S.; Tressol, J.C.; Montaurier, C.; Vernet, J.; Brandolini, M.; Bouteloup-Demange, C.; Rayssiguier, Y. Energy value of a low-digestible carbohydrate, NUTRIOSE FB, and its impact on magnesium, calcium and zinc apparent absorption and retention in healthy young men. Eur. J. Nutr. 2004, 43, 344–352. [Google Scholar] [CrossRef]
- Azpiroz, F.; Hernandez, C.; Guyonnet, D.; Accarino, A.; Santos, J.; Malagelada, J.R.; Guarner, F. Effect of a low-flatulogenic diet in patients with flatulence and functional digestive symptoms. Neurogastroenterol. Motil. 2014, 26, 779–785. [Google Scholar] [CrossRef]
- Barba, E.; Burri, E.; Accarino, A.; Cisternas, D.; Quiroga, S.; Monclus, E.; Navazo, I.; Malagelada, J.R.; Azpiroz, F. Abdomino-thoracic mechanisms of functional abdominal distension and correction by biofeedback. Gastroenterology 2015, 148, 732–738. [Google Scholar] [CrossRef] [Green Version]
- Burri, E.; Barba, E.; Huaman, J.W.; Cisternas, D.; Accarino, A.; Soldevilla, A.; Malagelada, J.-R.; Azpiroz, F. Mechanisms of postprandial abdominal bloating and distension in functional dyspepsia. Gut 2014, 63, 395–400. [Google Scholar] [CrossRef]
- Malagelada, C.; Drozdzal, M.; Segui, S.; Mendez, S.; Vitria, J.; Radeva, P.; Santos, J.; Accarino, A.; Malagelada, J.R.; Azpiroz, F. Classification of functional bowel disorders by objective physiological criteria based on endoluminal image analysis. Am. J. Physiol. Liver Physiol. 2015, 309, G413–G419. [Google Scholar] [CrossRef] [Green Version]
- Malagelada, C.; Barba, I.; Accarino, A.; Molne, L.; Mendez, S.; Campos, E.; Gonzalez, A.; Alonso-Cotoner, C.; Santos, J.; Malagelada, J.-R. Cognitive and hedonic responses to meal ingestion correlate with changes in circulating metabolites. Neurogastroenterol. Motil. 2016, 28, 1806–1814. [Google Scholar] [CrossRef]
- Serra, J.; Azpiroz, F.; Malagelada, J.R. Gastric distension and duodenal lipid infusion modulate intestinal gas transit and tolerance in humans. Am. J. Gastroenterol. 2002, 97, 2225–2230. [Google Scholar] [CrossRef]
- Serra, J.; Azpiroz, F.; Malagelada, J.R. Mechanisms of intestinal gas retention in humans: Impaired propulsion versus obstructed evacuation. Am. J. Physiol. 2001, 281, G138–G143. [Google Scholar] [CrossRef]
- Serra, J.; Azpiroz, F.; Malagelada, J.R. Intestinal gas dynamics and tolerance in humans. Gastroenterology 1998, 115, 542–550. [Google Scholar] [CrossRef]
- Serra, J.; Azpiroz, F.; Malagelada, J.R. Impaired transit and tolerance of intestinal gas in the irritable bowel syndrome. Gut 2001, 48, 14–19. [Google Scholar] [CrossRef]
- Malagelada, C.; Accarino, A.; Molne, L.; Mendez, S.; Campos, E.; Gonzalez, A.; Azpiroz, F. Digestive, cognitive and hedonic responses to a meal. Neurogastroenterol. Motil. 2015, 27, 389–396. [Google Scholar] [CrossRef]
- Serra, J.; Salvioli, B.; Azpiroz, F.; Malagelada, J.R. Lipid-induced intestinal gas retention in the irritable bowel syndrome. Gastroenterology 2002, 123, 700–706. [Google Scholar] [CrossRef]
- Hernando-Harder, A.C.; Serra, J.; Azpiroz, F.; Mila, M.; Aguade, S.; Malagelada, C.; Tremolaterra, F.; Villoria, A.; Malagelada, J.R. Colonic responses to gas loads in subgroups of patients with abdominal bloating. Am. J. Gastroenterol. 2010, 105, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Barba, E.; Burri, E.; Quiroga, S.; Accarino, A.; Azpiroz, F. Visible abdominal distension in functional gut disorders: Objective evaluation. Neurogastroenterol. Motil. 2022, e14466. [Google Scholar] [CrossRef] [PubMed]
- Tremolaterra, F.; Villoria, A.; Azpiroz, F.; Serra, J.; Aguade, S.; Malagelada, J.R. Impaired viscerosomatic reflexes and abdominal wall dystony associated with bloating. Gastroenterology 2006, 130, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
- Passos, M.C.; Tremolaterra, F.; Serra, J.; Azpiroz, F.; Malagelada, J.R. Impaired reflex control of intestinal gas transit in patients with abdominal bloating. Gut 2005, 54, 344–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvioli, B.; Serra, J.; Azpiroz, F.; Lorenzo, C.; Aguade, S.; Castell, J.; Malagelada, J.R. Origin of gas retention and symptoms in patients with bloating. Gastroenterology 2005, 128, 574–579. [Google Scholar] [CrossRef] [PubMed]
- Caldarella, M.P.; Serra, J.; Azpiroz, F.; Malagelada, J.R. Prokinetic effects in patients with intestinal gas retention. Gastroenterology 2002, 122, 1748–1755. [Google Scholar] [CrossRef]
- Bendezu, R.A.; Mego, M.; Monclus, E.; Merino, X.; Accarino, A.; Malagelada, J.R.; Navazo, I.; Azpiroz, F. Colonic content: Effect of diet, meals, and defecation. Neurogastroenterol Motil. 2017, 29, e12930. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Franzosa, E.A.; McIver, L.J.; Rahnavard, G.; Thompson, L.R.; Schirmer, M.; Weingart, G.; Lipson, K.S.; Knight, R.; Caporaso, J.G.; Segata, N. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 2018, 15, 962–968. [Google Scholar] [CrossRef]
- Truong, D.T.; Tett, A.; Pasolli, E.; Huttenhower, C.; Segata, N. Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res. 2017, 27, 626–638. [Google Scholar] [CrossRef]
- Lozupone, C.; Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef] [Green Version]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [Green Version]
- Lahti, L.; Shetty, S. Tools for Microbiome Analysis in R, Version 2.1.24. 2017. Available online: https://microbiome.github.io/tutorials/(accessed on 29 September 2022).
- Mallick, H.; Rahnavard, A.; McIver, L.J.; Ma, S.; Zhang, Y.; Nguyen, L.H.; Tickle, T.L.; Weingart, G.; Ren, B.; Schwager, E.H.; et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 2021, 17, e1009442. [Google Scholar] [CrossRef]
- Avila-Galvez, M.A.; Garcia-Villalba, R.; Martinez-Diaz, F.; Ocana-Castillo, B.; Monedero-Saiz, T.; Torrecillas-Sanchez, A.; Abellan, B.; Gonzalez-Sarrias, A.; Espin, J.C. Metabolic Profiling of Dietary Polyphenols and Methylxanthines in Normal and Malignant Mammary Tissues from Breast Cancer Patients. Mol. Nutr. Food Res. 2019, 63, e1801239. [Google Scholar] [CrossRef]
- Garcia-Villalba, R.; Gimenez-Bastida, J.A.; Garcia-Conesa, M.T.; Tomas-Barberan, F.A.; Carlos Espin, J.; Larrosa, M. Alternative method for gas chromatography-mass spectrometry analysis of short-chain fatty acids in faecal samples. J. Sep. Sci. 2012, 35, 1906–1913. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, F.; Ding, X.; Wu, G.; Lam, Y.Y.; Wang, X.; Fu, H.; Xue, X.; Lu, C.; Ma, J. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 2018, 359, 1151–1156. [Google Scholar] [CrossRef] [Green Version]
- Wastyk, H.C.; Fragiadakis, G.K.; Perelman, D.; Dahan, D.; Merrill, B.D.; Yu, F.B.; Topf, M.; Gonzalez, C.G.; Van Treuren, W.; Han, S.; et al. Gut-microbiota-targeted diets modulate human immune status. Cell 2021, 184, 4137–4153.e14. [Google Scholar] [CrossRef]
- Mego, M.; Manichanh, C.; Accarino, A.; Campos, D.; Pozuelo, M.; Varela, E.; Vulevic, J.; Tzortzis, G.; Gibson, G.; Guarner, F.; et al. Metabolic adaptation of colonic microbiota to galactooligosaccharides: A proof-of-concept-study. Aliment. Pharmacol. Ther. 2017, 45, 670–680. [Google Scholar] [CrossRef] [Green Version]
- Huaman, J.W.; Mego, M.; Manichanh, C.; Canellas, N.; Canueto, D.; Segurola, H.; Jansana, M.; Malagelada, C.; Accarino, A.; Vulevic, J.; et al. Effects of Prebiotics Vs a Diet Low in Fodmaps in Patients with Functional Gut Disorder. Gastroenterology 2018, 155, 1004–1007. [Google Scholar] [CrossRef]
- Zheng, J.; Hoffman, K.L.; Chen, J.S.; Shivappa, N.; Sood, A.; Browman, G.J.; Dirba, D.D.; Hanash, S.; Wei, P.; Hebert, J.R.; et al. Dietary inflammatory potential in relation to the gut microbiome: Results from a cross-sectional study. Br. J. Nutr. 2020, 124, 931–942. [Google Scholar] [CrossRef]
- Dey, S.; Lane, J.M.; Lee, R.E.; Rubin, E.J.; Sacchettini, J.C. Structural characterization of the Mycobacterium tuberculosis biotin biosynthesis enzymes 7,8-diaminopelargonic acid synthase and dethiobiotin synthetase. Biochemistry 2010, 49, 6746–6760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridlon, J.M.; Kang, D.J.; Hylemon, P.B.; Bajaj, J.S. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 2014, 30, 332–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- So, D.; Whelan, K.; Rossi, M.; Morrison, M.; Holtmann, G.; Kelly, J.T.; Shanahan, E.R.; Staudacher, H.M.; Campbell, K.L. Dietary fiber intervention on gut microbiota composition in healthy adults: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2018, 107, 965–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neyrinck, A.M.; Rodriguez, J.; Zhang, Z.; Seethaler, B.; Sanchez, C.R.; Roumain, M.; Hiel, S.; Bindels, L.B.; Cani, P.D.; Paquot, N.; et al. Prebiotic dietary fibre intervention improves fecal markers related to inflammation in obese patients: Results from the Food4Gut randomized placebo-controlled trial. Eur. J. Nutr. 2021, 60, 3159–3170. [Google Scholar] [CrossRef] [PubMed]
- Van der Beek, C.M.; Canfora, E.E.; Kip, A.M.; Gorissen, S.H.M.; Olde Damink, S.W.M.; van Eijk, H.M.; Holst, J.J.; Blaak, E.E.; Dejong, C.H.C.; Lenaerts, K.; et al. The prebiotic inulin improves substrate metabolism and promotes short-chain fatty acid production in overweight to obese men. Metabolism 2018, 87, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Reider, S.J.; Moosmang, S.; Tragust, J.; Trgovec-Greif, L.; Tragust, S.; Perschy, L.; Przysiecki, N.; Sturm, S.; Tilg, H.; Stuppner, H.; et al. Prebiotic Effects of Partially Hydrolyzed Guar Gum on the Composition and Function of the Human Microbiota-Results from the PAGODA Trial. Nutrients 2020, 12, 1257. [Google Scholar] [CrossRef]
- Parker, B.J.; Wearsch, P.A.; Veloo, A.C.M.; Rodriguez-Palacios, A. The Genus Alistipes: Gut Bacteria with Emerging Implications to Inflammation, Cancer, and Mental Health. Front. Immunol. 2020, 11, 906. [Google Scholar] [CrossRef]
- Mukherjee, A.; Lordan, C.; Ross, R.P.; Cotter, P.D. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes 2020, 12, 1802866. [Google Scholar] [CrossRef]
- Scott, K.P.; Antoine, J.M.; Midtvedt, T.; van Hemert, S. Manipulating the gut microbiota to maintain health and treat disease. Microb. Ecol. Health Dis. 2015, 26, 25877. [Google Scholar] [CrossRef]
- Li, M.; Yue, H.; Wang, Y.; Guo, C.; Du, Z.; Jin, C.; Ding, K. Intestinal microbes derived butyrate is related to the immunomodulatory activities of Dendrobium officinale polysaccharide. Int. J. Biol. Macromol. 2020, 149, 717–723. [Google Scholar] [CrossRef]
- Medawar, E.; Haange, S.B.; Rolle-Kampczyk, U.; Engelmann, B.; Dietrich, A.; Thieleking, R.; Wiegank, C.; Fries, C.; Horstmann, A.; Villringer, A.; et al. Gut microbiota link dietary fiber intake and short-chain fatty acid metabolism with eating behavior. Transl. Psychiatry 2021, 11, 500. [Google Scholar] [CrossRef]
- Soto-Martin, E.C.; Warnke, I.; Farquharson, F.M.; Christodoulou, M.; Horgan, G.; Derrien, M.; Faurie, J.M.; Flint, H.J.; Duncan, S.H.; Louis, P. Vitamin Biosynthesis by Human Gut Butyrate-Producing Bacteria and Cross-Feeding in Synthetic Microbial Communities. Mbio 2020, 11, e00886-20. [Google Scholar] [CrossRef]
- Lefranc-Millot, C.; Guerin-Deremaux, L.; Wils, D.; Neut, C.; Miller, L.E.; Saniez-Degrave, M.H. Impact of a resistant dextrin on intestinal ecology: How altering the digestive ecosystem with NUTRIOSE(R), a soluble fibre with prebiotic properties, may be beneficial for health. J. Int. Med. Res. 2012, 40, 211–224. [Google Scholar] [CrossRef]
- Livovsky, D.M.; Azpiroz, F. Gastrointestinal Contributions to the Postprandial Experience. Nutrients 2021, 13, 893. [Google Scholar] [CrossRef]
Basal | Initial Intervention | Late Intervention | Post-Intervention | ||||||
---|---|---|---|---|---|---|---|---|---|
Level | Taxa | Mean | SD | Mean | SD | Mean | SD | Mean | SD |
Taxonomic clades showing highest abundances during initial intervention period | |||||||||
Class | Firmicutes unclassified | 1.11 | 1.20 | 2.67 | 5.78 | 2.07 | 2.97 | 1.57 | 1.73 |
Strain | Oscillibacter sp. CAG 241 | 0.45 | 0.55 | 0.95 | 1.73 | 0.78 | 1.94 | 0.61 | 0.91 |
Taxonomic clades showing highest abundances during late intervention period | |||||||||
Family | Tannerellaceae | 2.10 | 1.91 | 6.86 | 8.80 | 7.66 | 10.07 | 2.55 | 4.44 |
Genus | Parabacteroides | 2.10 | 1.91 | 6.86 | 8.80 | 7.66 | 10.07 | 2.55 | 4.44 |
Species | Parabacteroides distasonis | 1.36 | 1.44 | 4.74 | 6.29 | 5.79 | 8.16 | 1.88 | 4.36 |
Taxonomic clades showing highest abundances during post-intervention period | |||||||||
Phylum | Firmicutes | 39.15 | 13.15 | 35.28 | 12.68 | 37.83 | 16.66 | 45.63 | 18.63 |
Class | Clostridia | 33.13 | 11.76 | 28.20 | 10.91 | 31.65 | 14.61 | 39.75 | 17.17 |
Order | Clostridiales | 33.13 | 11.76 | 28.20 | 10.91 | 31.65 | 14.61 | 39.75 | 17.17 |
Order | Eggerthellales | 0.31 | 0.28 | 0.34 | 0.30 | 0.41 | 0.54 | 0.44 | 0.56 |
Family | Eggerthellaceae | 0.31 | 0.28 | 0.34 | 0.30 | 0.41 | 0.54 | 0.44 | 0.56 |
Family | Eubacteriaceae | 3.42 | 2.57 | 3.05 | 2.75 | 2.63 | 1.89 | 4.60 | 4.29 |
Family | Ruminococcaceae | 11.30 | 3.58 | 10.52 | 4.59 | 10.79 | 5.27 | 13.52 | 7.40 |
Genus | Anaerostipes | 0.36 | 0.51 | 0.27 | 0.39 | 0.46 | 0.94 | 0.62 | 0.98 |
Genus | Eubacterium | 3.42 | 2.57 | 3.05 | 2.75 | 2.63 | 1.89 | 4.60 | 4.29 |
Genus | Lachnospira | 0.49 | 0.66 | 0.50 | 0.69 | 0.90 | 1.78 | 1.23 | 2.32 |
Genus | Roseburia | 3.29 | 3.46 | 2.46 | 2.14 | 3.31 | 4.03 | 4.89 | 6.67 |
Genus | Ruminococcaceae unclassified | 1.25 | 3.40 | 1.73 | 3.49 | 1.27 | 2.62 | 2.34 | 4.85 |
Genus | Ruminococcus | 2.96 | 3.02 | 3.15 | 3.58 | 3.26 | 2.63 | 4.01 | 4.43 |
Species | Anaerostipes hadrus | 0.36 | 0.51 | 0.27 | 0.39 | 0.46 | 0.94 | 0.62 | 0.98 |
Species | Bifidobacterium longum | 0.60 | 1.05 | 0.51 | 0.74 | 0.61 | 1.34 | 0.69 | 1.62 |
Species | Blautia obeum | 0.19 | 0.21 | 0.11 | 0.06 | 0.17 | 0.12 | 0.26 | 0.25 |
Species | Dorea longicatena | 0.82 | 1.08 | 0.49 | 0.47 | 0.48 | 0.29 | 0.94 | 1.44 |
Species | Eubacterium eligens | 1.26 | 1.33 | 1.03 | 1.39 | 0.97 | 0.79 | 2.39 | 2.47 |
Species | Lachnospira pectinoschiza | 0.49 | 0.66 | 0.50 | 0.69 | 0.90 | 1.78 | 1.23 | 2.32 |
Species | Roseburia faecis | 0.93 | 1.19 | 1.02 | 1.31 | 1.91 | 3.67 | 3.14 | 5.24 |
Species | Roseburia inulinivorans | 0.98 | 1.07 | 0.60 | 0.68 | 0.69 | 0.73 | 1.12 | 2.01 |
Species | Ruminococcus bromii | 1.47 | 2.08 | 2.16 | 2.84 | 1.95 | 1.98 | 2.63 | 3.33 |
Initial Intervention | Late Intervention | Post-Intervention | |||
---|---|---|---|---|---|
Microbial Gene Families Modulated by NUTRIOSE® Administration | |||||
Bacterial Species | n | Bacterial Species | n | Bacterial Species | n |
Bacteroides uniformis | 106 | Parabacteroides distasonis | 1837 | Ruminococcus torques | 622 |
Firmicutes bacterium CAG 83 | 86 | Eubacterium rectale | 860 | Ruminococcus bromii | 617 |
Fusicatenibacter saccharivorans | 65 | Fusicatenibacter saccharivorans | 572 | Roseburia inulinivorans | 261 |
Parabacteroides distasonis | 63 | Bacteroides uniformis | 395 | Blautia obeum | 201 |
Eubacterium rectale | 57 | Bacteroides uniformis CAG 3 | 112 | Roseburia faecis | 198 |
Parabacteroides merdae | 53 | Ruminococcus torques | 112 | Eubacterium eligens | 142 |
Roseburia hominis | 44 | Roseburia inulinivorans | 90 | Dorea longicatena | 134 |
Dorea longicatena | 41 | Roseburia hominis | 73 | Coprococcus comes | 123 |
Blautia obeum | 37 | Blautia obeum | 44 | Fusicatenibacter saccharivorans | 114 |
Coprococcus comes | 29 | Ruminococcus bromii | 44 | Firmicutes bacterium CAG 83 | 111 |
Roseburia inulinivorans | 29 | Dorea longicatena | 42 | Eubacterium rectale | 97 |
Ruminococcus bromii | 27 | Coprococcus comes | 27 | Eubacterium eligens CAG 72 | 77 |
Firmicutes bacterium CAG 110 | 26 | Parabacteroides merdae | 22 | Eubacterium hallii | 67 |
Ruminococcus torques | 22 | Roseburia faecis | 17 | Roseburia hominis | 61 |
Eubacterium ramulus | 18 | Eubacterium hallii | 16 | Bacteroides uniformis | 43 |
Roseburia intestinalis | 14 | Coprococcus catus | 14 | Anaerostipes hadrus | 41 |
Eubacterium hallii | 11 | Firmicutes bacterium CAG 83 | 9 | Coprococcus catus | 27 |
Coprococcus catus | 9 | Eubacterium eligens | 6 | Eubacterium ramulus | 27 |
Eubacterium ventriosum | 6 | Eubacterium ramulus | 5 | Firmicutes bacterium CAG 110 | 20 |
Anaerostipes hadrus | 5 | Eubacterium siraeum | 5 | Eubacterium siraeum | 16 |
Bacteroides uniformis CAG 3 | 5 | Anaerostipes hadrus | 3 | Eubacterium ventriosum | 15 |
Bifidobacterium longum | 5 | Bifidobacterium longum | 3 | Parabacteroides distasonis | 13 |
Eubacterium siraeum | 4 | Eubacterium eligens CAG 72 | 2 | Roseburia intestinalis | 12 |
Roseburia faecis | 2 | Eubacterium ventriosum | 2 | Bifidobacterium longum | 5 |
Eubacterium eligens | 1 | Ruminococcus bicirculans | 2 | Roseburia inulinivorans CAG 15 | 4 |
Total | 765 | Coprococcus comes CAG 19 | 1 | Ruminococcus bicirculans | 4 |
Total | 4315 | Dorea longicatena CAG 42 | 3 | ||
Lachnospira pectinoschiza | 3 | ||||
Coprococcus comes CAG 19 | 2 | ||||
Eubacterium hallii CAG 12 | 1 | ||||
Total | 3061 | ||||
Microbial metabolic pathways modulated by NUTRIOSE® administration | |||||
Roseburia hominis | 35 | Parabacteroides distasonis | 65 | Roseburia faecis | 52 |
Firmicutes bacterium CAG 110 | 1 | Bacteroides uniformis | 58 | Blautia obeum | 50 |
Parabacteroides merdae | 1 | Bacteroides uniformis CAG 3 | 51 | Eubacterium eligens CAG 72 | 39 |
Total | 37 | Fusicatenibacter saccharivorans | 48 | Anaerostipes hadrus | 36 |
Eubacterium rectale | 41 | Eubacterium eligens | 23 | ||
Firmicutes bacterium CAG 83 | 3 | Ruminococcus bromii | 21 | ||
Bifidobacterium longum | 1 | Ruminococcus torques | 11 | ||
Bifidobacterium longum CAG 69 | 1 | Dorea longicatena | 6 | ||
Ruminococcus bicirculans | 1 | Dorea longicatena CAG 42 | 6 | ||
Total | 269 | Roseburia inulinivorans | 5 | ||
Coprococcus comes | 3 | ||||
Roseburia inulinivorans CAG 15 | 2 | ||||
Coprococcus catus | 1 | ||||
Eubacterium hallii | 1 | ||||
Eubacterium siraeum | 1 | ||||
Lachnospira pectinoschiza | 1 | ||||
Total | 258 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barber, C.; Sabater, C.; Ávila-Gálvez, M.Á.; Vallejo, F.; Bendezu, R.A.; Guérin-Deremaux, L.; Guarner, F.; Espín, J.C.; Margolles, A.; Azpiroz, F. Effect of Resistant Dextrin on Intestinal Gas Homeostasis and Microbiota. Nutrients 2022, 14, 4611. https://doi.org/10.3390/nu14214611
Barber C, Sabater C, Ávila-Gálvez MÁ, Vallejo F, Bendezu RA, Guérin-Deremaux L, Guarner F, Espín JC, Margolles A, Azpiroz F. Effect of Resistant Dextrin on Intestinal Gas Homeostasis and Microbiota. Nutrients. 2022; 14(21):4611. https://doi.org/10.3390/nu14214611
Chicago/Turabian StyleBarber, Claudia, Carlos Sabater, María Ángeles Ávila-Gálvez, Fernando Vallejo, Rogger Alvaro Bendezu, Laetitia Guérin-Deremaux, Francisco Guarner, Juan Carlos Espín, Abelardo Margolles, and Fernando Azpiroz. 2022. "Effect of Resistant Dextrin on Intestinal Gas Homeostasis and Microbiota" Nutrients 14, no. 21: 4611. https://doi.org/10.3390/nu14214611
APA StyleBarber, C., Sabater, C., Ávila-Gálvez, M. Á., Vallejo, F., Bendezu, R. A., Guérin-Deremaux, L., Guarner, F., Espín, J. C., Margolles, A., & Azpiroz, F. (2022). Effect of Resistant Dextrin on Intestinal Gas Homeostasis and Microbiota. Nutrients, 14(21), 4611. https://doi.org/10.3390/nu14214611