Red Meat Intake, Indole-3-Acetate, and Dorea longicatena Together Affect Insulin Resistance after Gastric Bypass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Food Intake
2.3. Tryptophan Metabolites
2.4. Gut Microbiota (GM)
2.5. Outcomes
2.6. Statistical Analysis
3. Results
3.1. Patient’s Descriptive Data
3.2. Food Intake
3.3. Tryptophan Metabolites
3.4. Gut Microbiota (GM)
3.5. Regression Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, N.T.; Varela, J.E. Bariatric Surgery for Obesity and Metabolic Disorders: State of the Art. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Kong, X. Diabetes Remission and Relapse after Metabolic Surgery. J. Diabetes Investig. 2018, 9, 1237–1238. [Google Scholar] [CrossRef] [PubMed]
- Vaz, M.; Pereira, S.S.; Monteiro, M.P. Metabolomic Signatures after Bariatric Surgery—A Systematic Review. Rev. Endocr. Metab. Disord. 2022, 23, 503–519. [Google Scholar] [CrossRef]
- Souteiro, P.; Belo, S.; Neves, J.S.; Magalhães, D.; Silva, R.B.; Oliveira, S.C.; Costa, M.M.; Saavedra, A.; Oliveira, J.; Cunha, F.; et al. Preoperative Beta Cell Function Is Predictive of Diabetes Remission After Bariatric Surgery. Obes. Surg. 2017, 27, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Bai, R.; Yan, M.; Song, M. Preoperative Fasting Plasma C-Peptide Levels as Predictors of Remission of Type 2 Diabetes Mellitus after Bariatric Surgery: A Systematic Review and Meta-Analysis. J. Investig. Surg. 2017, 30, 383–393. [Google Scholar] [CrossRef]
- Sarosiek, K.; Pappan, K.L.; Gandhi, A.V.; Saxena, S.; Kang, C.Y.; McMahon, H.; Chipitsyna, G.I.; Tichansky, D.S.; Arafat, H.A. Conserved Metabolic Changes in Nondiabetic and Type 2 Diabetic Bariatric Surgery Patients: Global Metabolomic Pilot Study. J. Diabetes Res. 2016, 2016, 3467403. [Google Scholar] [CrossRef] [Green Version]
- Favennec, M.; Hennart, B.; Verbanck, M.; Pigeyre, M.; Caiazzo, R.; Raverdy, V.; Verkindt, H.; Leloire, A.; Guillemin, G.J.; Yengo, L.; et al. Post-Bariatric Surgery Changes in Quinolinic and Xanthurenic Acid Concentrations Are Associated with Glucose Homeostasis. PLoS ONE 2016, 11, e0158051. [Google Scholar] [CrossRef] [Green Version]
- Yeung, K.T.D.; Penney, N.; Whiley, L.; Ashrafian, H.; Lewis, M.R.; Purkayastha, S.; Darzi, A.; Holmes, E. The Impact of Bariatric Surgery on Serum Tryptophan–Kynurenine Pathway Metabolites. Sci. Rep. 2022, 12, 294. [Google Scholar] [CrossRef]
- Palego, L.; Betti, L.; Rossi, A.; Giannaccini, G. Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans. J. Amino Acids 2016, 2016, 8952520. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.-J.; Movassat, J.; Portha, B. Emerging Role for Kynurenines in Metabolic Pathologies. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 82–90. [Google Scholar] [CrossRef]
- Lu, Y.; Chong, J.; Shen, S.; Chammas, J.-B.; Chalifour, L.; Xia, J. TrpNet: Understanding Tryptophan Metabolism across Gut Microbiome. Metabolites 2021, 12, 10. [Google Scholar] [CrossRef]
- Qi, Q.; Li, J.; Yu, B.; Moon, J.-Y.; Chai, J.C.; Merino, J.; Hu, J.; Ruiz-Canela, M.; Rebholz, C.; Wang, Z.; et al. Host and Gut Microbial Tryptophan Metabolism and Type 2 Diabetes: An Integrative Analysis of Host Genetics, Diet, Gut Microbiome and Circulating Metabolites in Cohort Studies. Gut 2022, 71, 1095–1105. [Google Scholar] [CrossRef] [PubMed]
- Roager, H.M.; Licht, T.R. Microbial Tryptophan Catabolites in Health and Disease. Nat. Commun. 2018, 9, 3294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holz, G.G.; Chepurny, O.G. Glucagon-like Peptide-1 Synthetic Analogs: New Therapeutic Agents for Use in the Treatment of Diabetes Mellitus. Curr. Med. Chem. 2003, 10, 2471–2483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; DiBaise, J.K.; Zuccolo, A.; Kudrna, D.; Braidotti, M.; Yu, Y.; Parameswaran, P.; Crowell, M.D.; Wing, R.; Rittmann, B.E.; et al. Human Gut Microbiota in Obesity and after Gastric Bypass. Proc. Natl. Acad. Sci. USA 2009, 106, 2365–2370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, N.; Caixàs, A.; Ahlers, M.; Patel, K.; Gao, Z.; Dutia, R.; Blaser, M.J.; Clemente, J.C.; Laferrère, B. Longitudinal Changes of Microbiome Composition and Microbial Metabolomics after Surgical Weight Loss in Individuals with Obesity. Surg. Obes. Relat. Dis. 2019, 15, 1367–1373. [Google Scholar] [CrossRef]
- Tremaroli, V.; Karlsson, F.; Werling, M.; Ståhlman, M.; Kovatcheva-Datchary, P.; Olbers, T.; Fändriks, L.; le Roux, C.W.; Nielsen, J.; Bäckhed, F. Roux-En-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation. Cell Metab. 2015, 22, 228–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furet, J.-P.; Kong, L.-C.; Tap, J.; Poitou, C.; Basdevant, A.; Bouillot, J.-L.; Mariat, D.; Corthier, G.; Doré, J.; Henegar, C.; et al. Differential Adaptation of Human Gut Microbiota to Bariatric Surgery-Induced Weight Loss: Links with Metabolic and Low-Grade Inflammation Markers. Diabetes 2010, 59, 3049–3057. [Google Scholar] [CrossRef] [Green Version]
- Sala, P.; Belarmino, G.; Machado, N.M.; Cardinelli, C.S.; Al Assal, K.; Silva, M.M.; Fonseca, D.C.; Ishida, R.K.; Santo, M.A.; de Moura, E.G.H.; et al. The SURMetaGIT Study: Design and Rationale for a Prospective Pan-Omics Examination of the Gastrointestinal Response to Roux-En-Y Gastric Bypass Surgery. J. Int. Med. Res. 2016, 44, 1359–1375. [Google Scholar] [CrossRef] [Green Version]
- American Diabetes Association 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, J.P.; Chiarello, P. Consumo Alimentar: Visualizando Porções, 1st ed.; Guanabara Koogan: Rio de Janeiro, Brazil, 2007; pp. 1–92. [Google Scholar]
- Pinheiro, A.B. Tabela para Avaliação de Consumo Alimentar Em Medidas Caseiras, 5th ed.; Atheneu: Sao Paulo, Brazil, 2004; pp. 1–131. [Google Scholar]
- NEPA UNICAMP. Tabela Brasileira de Composição de Alimentos TACO, 4th ed.; NEPA UNICAMP: Campinas, Brazil, 2011; pp. 1–161. [Google Scholar]
- Philippi, S.T. Table of Food Composition: Nutritional Support for Decision, 2nd ed.; Coronário: Sao Paulo, Brazil, 2002; 135p. [Google Scholar]
- U.S Department of Agriculture. USDA Database for the Tryptophan Content of Common Foods. Available online: https://fdc.nal.usda.gov/fdc-app.html#/?component=1210 (accessed on 18 November 2019).
- DifE Muliple Source Method (MSM). Available online: https://msm.dife.de/ (accessed on 6 February 2020).
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for Total Energy Intake in Epidemiologic Studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S, discussion 1229S–1231S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, N.M. Impact of Roux-em-Y Gastric Bypass on Metabolomic Profile of Obese Women with Type 2 Diabetes. Ph.D. Thesis, Doctoral Research Degree—Gastroenterology Science, Universidade de São Paulo, São Paulo, Brazil, 2019. [Google Scholar]
- Al Assal, K.; Prifti, E.; Belda, E.; Sala, P.; Clément, K.; Dao, M.-C.; Doré, J.; Levenez, F.; Taddei, C.R.; Fonseca, D.C.; et al. Gut Microbiota Profile of Obese Diabetic Women Submitted to Roux-En-Y Gastric Bypass and Its Association with Food Intake and Postoperative Diabetes Remission. Nutrients 2020, 12, 278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pires, D.E.V.; Oliveira, F.S.; Correa, F.B.; Morais, D.K.; Fernandes, G.R. TAG.ME: Taxonomic Assignment of Genetic Markers for Ecology. BioRxiv 2018, 263293. [Google Scholar] [CrossRef] [Green Version]
- Beccati, A.; Gerken, J.; Quast, C.; Yilmaz, P.; Glöckner, F.O. SILVA Tree Viewer: Interactive Web Browsing of the SILVA Phylogenetic Guide Trees. BMC Bioinform. 2017, 18, 433. [Google Scholar] [CrossRef] [Green Version]
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis Model Assessment: Insulin Resistance and Beta-Cell Function from Fasting Plasma Glucose and Insulin Concentrations in Man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinze, G.; Wallisch, C.; Dunkler, D. Variable Selection—A Review and Recommendations for the Practicing Statistician. Biom. J. Biom. Z. 2018, 60, 431–449. [Google Scholar] [CrossRef] [Green Version]
- Hebbali, A. Tools for Building OLS Regression Models. 2022. Available online: https://cran.r-project.org/web/packages/olsrr/olsrr.pdf (accessed on 12 September 2022).
- Nicoletti, C.F.; de Oliveira, B.A.P.; Barbin, R.; Marchini, J.S.; Salgado Junior, W.; Nonino, C.B. Red Meat Intolerance in Patients Submitted to Gastric Bypass: A 4-Year Follow-up Study. Surg. Obes. Relat. Dis. 2015, 11, 842–846. [Google Scholar] [CrossRef]
- Boerlage, T.C.C.; van de Laar, A.W.J.M.; Westerlaken, S.; Gerdes, V.E.A.; Brandjes, D.P.M. Gastrointestinal Symptoms and Food Intolerance 2 Years after Laparoscopic Roux-en-Y Gastric Bypass for Morbid Obesity. Br. J. Surg. 2017, 104, 393–400. [Google Scholar] [CrossRef]
- de A Godoy, C.M.; Aprígio, L.C.S.; de Godoy, E.P.; Furtado, M.C.; Coelho, D.; de Souza, L.B.R.; de Oliveira, A.M.G. Food Tolerance and Eating Behavior After Roux-En-Y Gastric Bypass Surgery. Obes. Surg. 2018, 28, 1540–1545. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Sun, Q.; Bernstein, A.M.; Manson, J.E.; Willett, W.C.; Hu, F.B. Changes in Red Meat Consumption and Subsequent Risk of Type 2 Diabetes Mellitus: Three Cohorts of US Men and Women. JAMA Intern. Med. 2013, 173, 1328–1335. [Google Scholar] [CrossRef] [PubMed]
- Baleato, C.L.; Ferguson, J.J.A.; Oldmeadow, C.; Mishra, G.D.; Garg, M.L. Plant-Based Dietary Patterns versus Meat Consumption and Prevalence of Impaired Glucose Intolerance and Diabetes Mellitus: A Cross-Sectional Study in Australian Women. Nutrients 2022, 14, 4152. [Google Scholar] [CrossRef] [PubMed]
- Würtz, A.M.L.; Jakobsen, M.U.; Bertoia, M.L.; Hou, T.; Schmidt, E.B.; Willett, W.C.; Overvad, K.; Sun, Q.; Manson, J.E.; Hu, F.B.; et al. Replacing the Consumption of Red Meat with Other Major Dietary Protein Sources and Risk of Type 2 Diabetes Mellitus: A Prospective Cohort Study. Am. J. Clin. Nutr. 2021, 113, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Sanders, L.M.; Wilcox, M.L.; Maki, K.C. Red Meat Consumption and Risk Factors for Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Eur. J. Clin. Nutr. 2023, 77, 156–165. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Keogh, J.; Clifton, P. A Review of Potential Metabolic Etiologies of the Observed Association between Red Meat Consumption and Development of Type 2 Diabetes Mellitus. Metabolism. 2015, 64, 768–779. [Google Scholar] [CrossRef]
- Odstrcil, E.A.; Martinez, J.G.; Santa Ana, C.A.; Xue, B.; Schneider, R.E.; Steffer, K.J.; Porter, J.L.; Asplin, J.; Kuhn, J.A.; Fordtran, J.S. The Contribution of Malabsorption to the Reduction in Net Energy Absorption after Long-Limb Roux-En-Y Gastric Bypass. Am. J. Clin. Nutr. 2010, 92, 704–713. [Google Scholar] [CrossRef] [Green Version]
- Van Hecke, T.; Vossen, E.; Goethals, S.; Boon, N.; De Vrieze, J.; De Smet, S. In Vitro and in Vivo Digestion of Red Cured Cooked Meat: Oxidation, Intestinal Microbiota and Fecal Metabolites. Food Res. Int. Ott. Ont 2021, 142, 110203. [Google Scholar] [CrossRef]
- Bartlett, A.; Kleiner, M. Dietary Protein and the Intestinal Microbiota: An Understudied Relationship. iScience 2022, 25, 105313. [Google Scholar] [CrossRef]
- Wu, S.; Bhat, Z.F.; Gounder, R.S.; Mohamed Ahmed, I.A.; Al-Juhaimi, F.Y.; Ding, Y.; Bekhit, A.E.-D.A. Effect of Dietary Protein and Processing on Gut Microbiota-A Systematic Review. Nutrients 2022, 14, 453. [Google Scholar] [CrossRef]
- Yin, Y.; Cai, J.; Zhou, L.; Xing, L.; Zhang, W. Dietary Oxidized Beef Protein Alters Gut Microbiota and Induces Colonic Inflammatory Damage in C57BL/6 Mice. Front. Nutr. 2022, 9, 980204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, J.; Tan, H.; Zhong, Y.; Nie, S. Akkermansia Muciniphila, an Important Link between Dietary Fiber and Host Health. Curr. Opin. Food Sci. 2022, 47, 100905. [Google Scholar] [CrossRef]
- Brennan, C.A.; Garrett, W.S. Fusobacterium Nucleatum—Symbiont, Opportunist and Oncobacterium. Nat. Rev. Microbiol. 2019, 17, 156–166. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, N.; Tan, H.-Y.; Li, S.; Zhang, C.; Feng, Y. Function of Akkermansia Muciniphila in Obesity: Interactions With Lipid Metabolism, Immune Response and Gut Systems. Front. Microbiol. 2020, 11, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dao, M.C.; Everard, A.; Aron-Wisnewsky, J.; Sokolovska, N.; Prifti, E.; Verger, E.O.; Kayser, B.D.; Levenez, F.; Chilloux, J.; Hoyles, L.; et al. Akkermansia Muciniphila and Improved Metabolic Health during a Dietary Intervention in Obesity: Relationship with Gut Microbiome Richness and Ecology. Gut 2016, 65, 426–436. [Google Scholar] [CrossRef] [Green Version]
- Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.-M.; Kennedy, S.; et al. Richness of Human Gut Microbiome Correlates with Metabolic Markers. Nature 2013, 500, 541–546. [Google Scholar] [CrossRef]
- Xu, J.; Liang, R.; Zhang, W.; Tian, K.; Li, J.; Chen, X.; Yu, T.; Chen, Q. Faecalibacterium Prausnitzii-Derived Microbial Anti-Inflammatory Molecule Regulates Intestinal Integrity in Diabetes Mellitus Mice via Modulating Tight Junction Protein Expression. J. Diabetes 2020, 12, 224–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biobaku, F.; Ghanim, H.; Monte, S.V.; Caruana, J.A.; Dandona, P. Bariatric Surgery: Remission of Inflammation, Cardiometabolic Benefits, and Common Adverse Effects. J. Endocr. Soc. 2020, 4, bvaa049. [Google Scholar] [CrossRef]
- Debédat, J.; Clément, K.; Aron-Wisnewsky, J. Gut Microbiota Dysbiosis in Human Obesity: Impact of Bariatric Surgery. Curr. Obes. Rep. 2019, 8, 229–242. [Google Scholar] [CrossRef]
- Agus, A.; Planchais, J.; Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe 2018, 23, 716–724. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, P.J.; Cryan, J.F.; Dinan, T.G.; Clarke, G. Kynurenine Pathway Metabolism and the Microbiota-Gut-Brain Axis. Neuropharmacology 2017, 112, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Christensen, M.H.E.; Fadnes, D.J.; Røst, T.H.; Pedersen, E.R.; Andersen, J.R.; Våge, V.; Ulvik, A.; Midttun, Ø.; Ueland, P.M.; Nygård, O.K.; et al. Inflammatory Markers, the Tryptophan-Kynurenine Pathway, and Vitamin B Status after Bariatric Surgery. PLoS ONE 2018, 13, e0192169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, Y.; Jang, M.; Lee, Y.; Ha, J.; Park, S. Metabolomic Analysis of the Improvements in Insulin Secretion and Resistance After Sleeve Gastrectomy: Implications of the Novel Biomarkers. Obes. Surg. 2021, 31, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Dong, F.; Perdew, G.H. The Aryl Hydrocarbon Receptor as a Mediator of Host-Microbiota Interplay. Gut Microbes 2020, 12, 1859812. [Google Scholar] [CrossRef]
- Bosi, A.; Banfi, D.; Bistoletti, M.; Giaroni, C.; Baj, A. Tryptophan Metabolites Along the Microbiota-Gut-Brain Axis: An Interkingdom Communication System Influencing the Gut in Health and Disease. Int. J. Tryptophan Res. 2020, 13, 1178646920928984. [Google Scholar] [CrossRef]
- Dehhaghi, M.; Kazemi Shariat Panahi, H.; Guillemin, G.J. Microorganisms, Tryptophan Metabolism, and Kynurenine Pathway: A Complex Interconnected Loop Influencing Human Health Status. Int. J. Tryptophan Res. 2019, 12, 1178646919852996. [Google Scholar] [CrossRef] [Green Version]
Variables | Preoperative | Postoperative (3 Months) | p-Value 1 |
---|---|---|---|
Age, years | 46.6 ± 6.5 | NA 2 | |
Albumin supplement, n (%) | 0 (0) | 7 (35) | |
Oral hypoglycemic | |||
Metformin, n (%) | 5 (25) | 1 (5) | |
Glibenclamide, n (%) | 1 (5) | 0 (0) | |
Acarbose, n, (%) | 0 (0) | 0 (0) | |
Glicazide, n (%) | 0 (0) | 0 (0) | |
Multimedication, n (%) | 14 (70) | 1 (5) | |
Antihyperlipidemic agents, n (%) 3 | 9 (45) | 2 (10) | |
Anthropometric data | |||
Weight, kg | 114.4 ± 16.4 | 93.6 ± 12.9 | 0.000 |
BMI 4, kg/m2 | 46.5 ± 5.9 | 38.0 ± 4.6 | 0.000 |
EWL 5, % | NA2 | 33.7 ± 5.5 | |
Biochemical data | |||
FBG 6, mg/dL | 219.6 ± 77.2 | 100.6 ± 19.9 | 0.000 |
HbA1c, % | 9.3 ± 1.7 | 6.1 ± 0.4 | 0.000 |
Insulin, µU/mL | 15.7 (6.8) | 7.8 (4.9) | 0.001 |
HOMA 7-IR | 7.9 (5.7) | 1.9 (1.2) | 0.000 |
HOMA 7 Beta | 47.1 (53.3) | 90.8 (72.2) | 0.019 |
Triglycerides, mg/dL | 136 (64) | 103 (25) | 0.012 |
HDL-c 8, mg/dL | 45.3 ± 10.4 | 42.9 ± 10.2 | 0.254 |
Variables | Preoperative | Postoperative (3 Months) | p-Value 1 |
---|---|---|---|
Energy, kcal | 1.696.9 ± 375.4 | 973.2 ± 211.6 | 0.000 |
Protein, g | 68.7 ± 11.9 | 47.9 ± 13.9 | 0.006 |
Protein, % | 16.7 ± 2.3 | 22.2 ± 5.6 | 0.000 |
Carbohydrates, g | 209.8 ± 42.4 | 107.7 ± 25.5 | 0.000 |
Carbohydrates, % | 50.9 ± 3.7 | 44.8 ± 5.5 | 0.000 |
Lipids, g | 62.1 ± 15.5 | 37.7 ± 7.7 | 0.000 |
Lipids, % | 33.6 ± 3.5 | 35.4 ± 3.5 | 0.083 |
Fiber, g | 14.8 ± 5.3 | 9.1 ± 3.4 | 0.000 |
Tryptophan, mg | 232.1 (66.1) | 230.5 (170.0) | 0.299 |
Tryptophan, mg/kg | 2.0 (1.0) | 2.4 (2.3) | 0.027 |
Red meat, g | 51.4 (103.0) | 28.9 (26.8) | 0.015 |
Refined cereals, g | 361.8 (341.2) | 59.2 (60.4) | 0.000 |
Plasma Metabolites | Fold Change | p-Value 1 |
---|---|---|
Tryptophan | −1.62 | 0.112 |
N-acetyl-serotonin | 1.32 | 0.008 |
Indole-3-acetate | 1.77 | 0.016 |
Glutamic acid | −1.07 | 0.372 |
L-alanine | 1.06 | 0.528 |
α-ketoglutarate acid | 1.14 | 0.157 |
Anthranilic acid | −1.87 | 0.004 |
Bacterial Taxonomy | Preoperative | Postoperative | p-adj 1 | ||||||
---|---|---|---|---|---|---|---|---|---|
sq | Phylum | Class | Order | Family | Genus | Species | (3 Months) | ||
sq18 | Firmicutes | Clostridia | Clostridiales | Veillonellaceae | Veillonella | Veillonella parvula | 0.103 ± 0.137 | 1.827 ± 4.187 | 0.0002 |
sq28 | Firmicutes | Bacilli | Lactobacillales | Streptococcaceae | Streptococcus | Streptococcus salivarius | 0.240 ± 0.562 | 1.385 ± 2.216 | 0.0037 |
sq58 | Firmicutes | Clostridia | Clostridiales | Lachnospiraceae | Lachnoclostridium | Clostridium clostridioforme | 0.115 ± 0.242 | 0.940 ± 3.278 | 0.0421 |
sq96 | Firmicutes | Clostridia | Clostridiales | Lachnospiraceae | Blautia | Blautia luti | 0.538 ± 0.669 | 0.141 ± 0.222 | 0.0020 |
sq80 | Firmicutes | Negativicutes | Selenomonadales | Veillonellaceae | Veillonella | Veillonella parvula | 0.143 ± 0.568 | 0.482 ± 0.887 | 0.0069 |
sq93 | Firmicutes | Bacilli | Lactobacillales | Streptococcaceae | Streptococcus | Streptococcus parasanguinis | 0.062 ± 0.185 | 0.456 ± 0.606 | 0.0045 |
sq315 | Firmicutes | Negativicutes | Selenomonadales | Veillonellaceae | Veillonella | Veillonella parvula | 0.000 ± 0.000 | 0.079 ± 0.180 | 0.0225 |
sq311 | Firmicutes | Bacilli | Bacillales | Family XI | Gemella | Gemella haemolysans | 0.006 ± 0.010 | 0.069 ± 0.097 | 0.0064 |
sq338 | Firmicutes | Clostridia | Clostridiales | Clostridiaceae 1 | Sarcina | Clostridium tarantellae | 0.005 ± 0.020 | 0.064 ± 0.099 | 0.0167 |
sq380 | Firmicutes | Clostridia | Clostridiales | Lachnospiraceae | Lachnoclostridium | Clostridium lavalense | 0.011 ± 0.019 | 0.047 ± 0.092 | 0.0033 |
sq421 | Firmicutes | Bacilli | Lactobacillales | Carnobacteriaceae | Granulicatella | Granulicatella adiacens | 0.003 ± 0.009 | 0.039 ± 0.056 | 0.0253 |
sq768 | Firmicutes | Clostridia | Clostridiales | Lachnospiraceae | Eisenbergiella | Eisenbergiella tayi | 0.002 ± 0.007 | 0.018 ± 0.038 | 0.0209 |
sq649 | Firmicutes | Clostridia | Clostridiales | Ruminococcaceae | Faecalibacterium | Faecalibacterium prausnitzii | 0.013 ± 0.021 | 0.003 ± 0.006 | 0.0440 |
sq691 | Firmicutes | Clostridia | Clostridiales | Lachnospiraceae | Lachnoclostridium | Clostridium clostridioforme | 0.003 ± 0.008 | 0.011 ± 0.019 | 0.0445 |
sq1127 | Firmicutes | Bacilli | Lactobacillales | Enterococcaceae | Enterococcus | Enterococcus faecalis | 0.001 ± 0.004 | 0.004 ± 0.008 | 0.0120 |
sq1542 | Firmicutes | Clostridia | Clostridiales | Lachnospiraceae | Oribacterium | Oribacterium parvum | 0.000 ± 0.000 | 0.004 ± 0.006 | 0.0223 |
sq1408 | Firmicutes | Clostridia | Clostridiales | Lachnospiraceae | Ruminococcus torques group | Dorea longicatena | 0.000 ± 0.000 | 0.003 ± 0.005 | 0.0360 |
sq1316 | Firmicutes | Negativicutes | Selenomonadales | Veillonellaceae | Dialister | Dialister invisus | 0.000 ± 0.001 | 0.002 ± 0.003 | 0.0440 |
sq1698 | Firmicutes | Clostridia | Clostridiales | Family XIII | Mogibacterium | Mogibacterium vescum | 0.000 ± 0.000 | 0.002 ± 0.003 | 0.0225 |
sq2371 | Firmicutes | Clostridia | Clostridiales | Peptostreptococcaceae | Clostridioides | Clostridioides difficile | 0.001 ± 0.002 | 0.000 ± 0.000 | 0.0213 |
sq368 | Fusobacteria | Fusobacteriia | Fusobacteriales | Fusobacteriaceae | Fusobacterium | Fusobacterium periodonticum | 0.002 ± 0.007 | 0.055 ± 0.099 | 0.0016 |
sq381 | Fusobacteria | Fusobacteriia | Fusobacteriales | Fusobacteriaceae | Fusobacterium | Fusobacterium nucleatum | 0.000 ± 0.000 | 0.039 ± 0.079 | 0.0025 |
sq612 | Fusobacteria | Fusobacteriia | Fusobacteriales | Fusobacteriaceae | Fusobacterium | Fusobacterium nucleatum | 0.000 ± 0.000 | 0.019 ± 0.032 | 0.0092 |
sq1129 | Fusobacteria | Fusobacteriia | Fusobacteriales | Fusobacteriaceae | Fusobacterium | Fusobacterium nucleatum | 0.000 ± 0.000 | 0.004 ± 0.009 | 0.0143 |
sq3 | Proteobacteria | Gammaproteobacteria | Enterobacteriales | Enterobacteriaceae | Escherichia-Shigella | Escherichia coli | 1.255 ± 2.522 | 6.397 ± 6.410 | 0.0003 |
sq647 | Proteobacteria | Gammaproteobacteria | Betaproteobacteriales | Neisseriaceae | Neisseria | Neisseria flavescens | 0.000 ± 0.000 | 0.008 ± 0.014 | 0.0141 |
sq15 | Verrucomicrobia | Verrucomicrobiae | Verrucomicrobiales | Akkermansiaceae | Akkermansia | Akkermansia muciniphila | 0.010 ± 0.018 | 2.116 ± 4.761 | 0.0280 |
Variables | HOMA-IR 1 |
---|---|
Food intake | |
Red meat (g) | 0.01 (0.005, 0.01) p = 0.0003 |
Metabolites | |
Indole-3-acetate | −0.001 (−0.001, −0.0001) p = 0.06 |
Gut Microbiota | |
Dorea longicatena (sq1408) | 0.03 (0.01, 0.06) p = 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prudêncio, A.P.A.; Fonseca, D.C.; Machado, N.M.; Alves, J.T.M.; Sala, P.; Fernandes, G.R.; Torrinhas, R.S.; Waitzberg, D.L. Red Meat Intake, Indole-3-Acetate, and Dorea longicatena Together Affect Insulin Resistance after Gastric Bypass. Nutrients 2023, 15, 1185. https://doi.org/10.3390/nu15051185
Prudêncio APA, Fonseca DC, Machado NM, Alves JTM, Sala P, Fernandes GR, Torrinhas RS, Waitzberg DL. Red Meat Intake, Indole-3-Acetate, and Dorea longicatena Together Affect Insulin Resistance after Gastric Bypass. Nutrients. 2023; 15(5):1185. https://doi.org/10.3390/nu15051185
Chicago/Turabian StylePrudêncio, Ana Paula Aguiar, Danielle Cristina Fonseca, Natasha Mendonça Machado, Juliana Tepedino Martins Alves, Priscila Sala, Gabriel R. Fernandes, Raquel Susana Torrinhas, and Dan Linetzky Waitzberg. 2023. "Red Meat Intake, Indole-3-Acetate, and Dorea longicatena Together Affect Insulin Resistance after Gastric Bypass" Nutrients 15, no. 5: 1185. https://doi.org/10.3390/nu15051185
APA StylePrudêncio, A. P. A., Fonseca, D. C., Machado, N. M., Alves, J. T. M., Sala, P., Fernandes, G. R., Torrinhas, R. S., & Waitzberg, D. L. (2023). Red Meat Intake, Indole-3-Acetate, and Dorea longicatena Together Affect Insulin Resistance after Gastric Bypass. Nutrients, 15(5), 1185. https://doi.org/10.3390/nu15051185