Megamonas funiformis, Plasma Zonulin, and Sodium Intake Affect C3 Complement Levels in Inactive Systemic Lupus Erythematosus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Subjects
2.2. Patient’s Characterizing Data
2.3. Food Intake
2.4. Intestinal Permeability
2.5. Gut Microbiota (GM)
2.6. Outcomes
2.7. Statistical Analysis
3. Results
3.1. Patient’s Descriptive Data
3.2. Food Intake
3.3. Gut Microbiota (GM)
3.4. Regression Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, D.; Liwinski, T.; Elinav, E. Interaction between Microbiota and Immunity in Health and Disease. Cell Res. 2020, 30, 492–506. [Google Scholar] [CrossRef]
- Xu, H.; Liu, M.; Cao, J.; Li, X.; Fan, D.; Xia, Y.; Lu, X.; Li, J.; Ju, D.; Zhao, H. The Dynamic Interplay between the Gut Microbiota and Autoimmune Diseases. J. Immunol. Res. 2019, 27, 7546047. [Google Scholar] [CrossRef]
- Miyauchi, E.; Shimokawa, C.; Steimle, A.; Desai, M.S.; Ohno, H. The Impact of the Gut Microbiome on Extra-Intestinal Autoimmune Diseases. Nat. Rev. Immunol. 2023, 23, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Gergianaki, I.; Bortoluzzi, A.; Bertsias, G. Update on the Epidemiology, Risk Factors, and Disease Outcomes of Systemic Lupus Erythematosus. Best Pract. Res. Clin. Rheumatol. 2018, 32, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Dörner, T.; Furie, R. Novel Paradigms in Systemic Lupus Erythematosus. Lancet 2019, 393, 2344–2358. [Google Scholar] [CrossRef] [PubMed]
- Tsokos, G.C.; Lo, M.S.; Costa Reis, P.; Sullivan, K.E. New Insights into the Immunopathogenesis of Systemic Lupus Erythematosus. Nat. Rev. Rheumatol. 2016, 12, 716–730. [Google Scholar] [CrossRef] [PubMed]
- Pesqueda-Cendejas, K.; Rivera-Escoto, M.; Meza-Meza, M.R.; Campos-López, B.; Parra-Rojas, I.; Montoya-Buelna, M.; De la Cruz-Mosso, U. Nutritional Approaches to Modulate Cardiovascular Disease Risk in Systemic Lupus Erythematosus: A Literature Review. Nutrients 2023, 15, 1036. [Google Scholar] [CrossRef]
- Hevia, A.; Milani, C.; López, P.; Cuervo, A.; Arboleya, S.; Duranti, S.; Turroni, F.; González, S.; Suárez, A.; Gueimonde, M.; et al. Intestinal Dysbiosis Associated with Systemic Lupus Erythematosus. mBio 2014, 5, e01548-14. [Google Scholar] [CrossRef]
- He, Z.; Shao, T.; Li, H.; Xie, Z.; Wen, C. Alterations of the Gut Microbiome in Chinese Patients with Systemic Lupus Erythematosus. Gut Pathog. 2016, 8, 64. [Google Scholar] [CrossRef]
- Greiling, T.M.; Dehner, C.; Chen, X.; Hughes, K.; Iñiguez, A.J.; Boccitto, M.; Ruiz, D.Z.; Renfroe, S.C.; Vieira, S.M.; Ruff, W.E.; et al. Commensal Orthologs of the Human Autoantigen Ro60 as Triggers of Autoimmunity in Lupus. Sci. Transl. Med. 2018, 10, eaan2306. [Google Scholar] [CrossRef]
- van der Meulen, T.A.; Harmsen, H.J.M.; Vila, A.V.; Kurilshikov, A.; Liefers, S.C.; Zhernakova, A.; Fu, J.; Wijmenga, C.; Weersma, R.K.; de Leeuw, K.; et al. Shared Gut, but Distinct Oral Microbiota Composition in Primary Sjögren’s Syndrome and Systemic Lupus Erythematosus. J. Autoimmun. 2019, 97, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Azzouz, D.; Omarbekova, A.; Heguy, A.; Schwudke, D.; Gisch, N.; Rovin, B.H.; Caricchio, R.; Buyon, J.P.; Alekseyenko, A.V.; Silverman, G.J. Lupus Nephritis is Linked to Disease-Activity Associated Expansions and Immunity to a Gut Commensal. Ann. Rheum. Dis. 2019, 78, 947–956. [Google Scholar] [CrossRef] [PubMed]
- Al Khalili, A.; Scott, L.; Dutz, J.P. New-onset Autoantibody-Mediated Nephritis During Ustekinumab Therapy for Psoriasis in Patients with and without Prior Systemic Lupus Erythematosus. JAAD Case Rep. 2019, 5, 682–685. [Google Scholar] [CrossRef] [PubMed]
- Christ, A.; Lauterbach, M.; Latz, E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019, 51, 794–811. [Google Scholar] [CrossRef]
- Mazzucca, C.B.; Raineri, D.; Cappellano, G.; Chiocchetti, A. How to Tackle the Relationship between Autoimmune Diseases and Diet: Well Begun is Half-Done. Nutrients 2021, 13, 3956. [Google Scholar] [CrossRef]
- Dong, T.S.; Gupta, A. Influence of Early Life, Diet, and the Environment on the Microbiome. Clin. Gastroenterol. Hepatol. 2019, 17, 231–242. [Google Scholar] [CrossRef]
- Hochberg, M.C. Updating the American College of Rheumatology Revised Criteria for the Classification of Systemic Lupus Erythematosus. Arthritis Rheum. 1997, 40, 1725. [Google Scholar] [CrossRef]
- Gladman, D.; Ibañez, D.; Urowitz, M. Systemic Lupus Erythematosus Disease Activity Index 2000. J. Rheumatol. 2002, 29, 288–291. [Google Scholar]
- Peschken, C.; Wang, Y.; Abrahamowicz, M.; Pope, J.; Silverman, E.; Sayani, A.; Iczkovitz, S.; Ross, J.; Zummer, M.; Tucker, L.; et al. Persistent Disease Activity Remains a Burden for Patients with Systemic Lupus Erythematosus. J. Rheumatol. 2019, 46, 166–175. [Google Scholar] [CrossRef]
- Fisberg, R.M.; Marchioni, D.M.L.; Colucci, A.C.A. Avaliação do Consumo Alimentar e da Ingestão de Nutrientes na Prática Clínica. Arq. Bras. Endocrinol. Metab. 2009, 53, 617–624. [Google Scholar] [CrossRef]
- Pinheiro, A.B. Tabela Para Avaliação de Consumo Alimentar Em Medidas Caseiras, 5th ed.; Atheneu: Sao Paulo, Brazil, 2004; pp. 1–131. [Google Scholar]
- NEPA UNICAMP. Tabela Brasileira de Composição de Alimentos TACO, 4th ed.; NEPA UNICAMP: Campinas, Brazil, 2011; pp. 1–161. [Google Scholar]
- IBGE (Instituto Brasileiro de Geografia e Estatística). Pesquisa de Orçamento Familiares POF, 1st ed.; IBGE: Rio de Janeiro, Brazil, 2011.
- Norde, M.M.; Tabung, F.K.; Giovannucci, E.L.; Fisberg, R.M.; Rogero, M.M. Validation and Adaptation of the Empirical Dietary Inflammatory Pattern Across Nations: A Test Case. Nutrition 2020, 79–80, 110843. [Google Scholar] [CrossRef] [PubMed]
- DifE Multiple Source Method (MSM). Available online: https://msm.dife.de/ (accessed on 1 December 2022).
- Willett, W.C.; Howe, G.R.; Kushi, L.H. Adjustment for Total Energy Intake in Epidemiologic Studies. Am. J. Clin. Nutr. 1997, 65, 1220S–1228S. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.E.V.; Oliveira, F.S.; Correa, F.B.; Morais, D.K.; Fernandes, G.R. TAG.ME: Taxonomic Assignment of Genetic Markers for Ecology. BioRxiv 2018, 263293. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef]
- Beccati, A.; Gerken, J.; Quast, C.; Yilmaz, P.; Glöckner, F.O. SILVA Tree Viewer: Interactive Web Browsing of the SILVA Phylogenetic Guide Trees. BMC Bioinform. 2017, 18, 433. [Google Scholar] [CrossRef] [PubMed]
- Walport, M.J. Complement Second of Two Parts. N. Engl. J. Med. 2001, 344, 1140–1144. [Google Scholar] [CrossRef]
- Liu, F.; Du, J.; Zhai, Q.; Hu, J.; Miller, A.W.; Ren, T.; Feng, Y.; Jiang, P.; Hu, L.; Sheng, J.; et al. The Bladder Microbiome, Metabolome, Cytokines, and Phenotypes in Patients with Systemic Lupus Erythematosus. Microbiol. Spectr. 2022, 10, e0021222. [Google Scholar] [CrossRef]
- Cheng, T.; Wang, X.; Zhang, S.X.; Yang, J.; Zhao, C.; Wang, Y.; An, J.; Chen, J. Op0307 Gut Microbiota and its Relevance to Peripheral Lymphocyte Subpopulation in Patients with Systemic Lupus Erythematosus. Ann. Rheum. Dis. 2021, 80, 188–189. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Sun, W.; Wang, M.; Li, M. Characteristics of Gut Microbiota in Patients with Primary Sjögren’s Syndrome in Northern China. PLoS ONE 2022, 17, e0277270. [Google Scholar] [CrossRef]
- Ling, Z.; Jin, C.; Xie, T.; Cheng, Y.; Li, L.; Wu, N. Alterations in the Fecal Microbiota of Patients with HIV-1 Infection: An Observational Study in A Chinese Population. Sci. Rep. 2016, 6, 30673. [Google Scholar] [CrossRef]
- Aparicio-Soto, M.; Sánchez-Hidalgo, M.; Alarcón-de-la-Lastra, C. An Update on Diet and Nutritional Factors in Systemic Lupus Erythematosus Management. Nutr. Res. Rev. 2017, 30, 118–137. [Google Scholar] [CrossRef] [PubMed]
- Katz-Agranov, N.; Zandman-Goddard, G. The Microbiome and Systemic Lupus Erythematosus. Immunol. Res. 2017, 65, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Hucke, S.; Eschborn, M.; Liebmann, M.; Herold, M.; Freise, N.; Engbers, A.; Ehling, P.; Meuth, S.G.; Roth, J.; Kuhlmann, T.; et al. Sodium Chloride Promotes Pro-Inflammatory Macrophage Polarization Thereby Aggravating CNS Autoimmunity. J. Autoimmun. 2016, 67, 90–101. [Google Scholar] [CrossRef]
- Carranza-León, D.A.; Oeser, A.; Marton, A.; Wang, P.; Gore, J.C.; Titze, J.; Stein, C.M.; Chung, C.P.; Ormseth, M.J. Tissue Sodium Content in Patients with Systemic Lupus Erythematosus: Association with Disease Activity and Markers of Inflammation. Lupus 2020, 29, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Huang, X.; Qiu, H.; Zhao, M.; Liao, W.; Yuan, S.; Xie, Y.; Dai, Y.; Chang, C.; Yoshimura, A.; et al. High Salt Promotes Autoimmunity by TET2-Induced DNA Demethylation and Driving the Differentiation of Tfh Cells. Sci. Rep. 2016, 6, 28065. [Google Scholar] [CrossRef] [PubMed]
- Scrivo, R.; Massaro, L.; Barbati, C.; Vomero, M.; Ceccarelli, F.; Spinelli, F.R.; Riccieri, V.; Spagnoli, A.; Alessandri, C.; Desideri, G.; et al. The Role of Dietary Sodium Intake on the Modulation of T Helper 17 Cells and Regulatory T Cells in Patients with Rheumatoid Arthritis and Systemic Lupus Erythematosus. PLoS ONE 2017, 12, e0184449. [Google Scholar] [CrossRef]
- Volynets, V.; Louis, S.; Pretz, D.; Lang, L.; Ostaff, M.J.; Wehkamp, J.; Bischoff, S.C. Intestinal Barrier Function and the Gut Microbiome are Differentially Affected in Mice Fed a Western-Style Diet or Drinking Water Supplemented with Fructose. J. Nutr. 2017, 147, 770–780. [Google Scholar] [CrossRef]
- Li, K.; Huang, T.; Zheng, J.; Wu, K.; Li, D. Effect of Marine-Derived N-3 Polyunsaturated Fatty Acids on C-Reactive Protein, Interleukin 6 and Tumor Necrosis Factor A: A Meta-analysis. PLoS ONE 2014, 9, e88103. [Google Scholar] [CrossRef]
- Abdelhamid, L.; Luo, X.M. Diet and Hygiene in Modulating Autoimmunity during the Pandemic Era. Front. Immunol. 2022, 12, 749774. [Google Scholar] [CrossRef]
- Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon, N.; Muller, A.; et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell 2016, 167, 1339–1353. [Google Scholar] [CrossRef]
- Dehner, C.; Fine, R.; Kriegel, M.A. The Microbiome in Systemic Autoimmune Disease: Mechanistic Insights from Recent Studies. Curr. Opin. Rheumatol. 2019, 31, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Silverman, G.J.; Azzouz, D.F.; Alekseyenko, A.V. Systemic Lupus Erythematosus and Dysbiosis in the Microbiome: Cause or Effect or Both? Curr. Opin. Immunol. 2019, 61, 80–85. [Google Scholar] [CrossRef]
- Shi, L.; Zhang, Z.; Yu, A.M.; Wang, W.; Wei, Z.; Akhter, E.; Maurer, K.; Reis, P.C.; Song, L.; Petri, M.; et al. The SLE Transcriptome Exhibits Evidence of Chronic Endotoxin Exposure and has Widespread Dysregulation of non-Coding and Coding RNAs. PLoS ONE 2014, 9, e93846. [Google Scholar] [CrossRef] [PubMed]
- Ogunrinde, E.; Zhou, Z.; Luo, Z.; Alekseyenko, A.; Li, Q.Z.; Macedo, D.; Kamen, D.L.; Oates, J.C.; Gilkeson, G.S.; Jiang, W. A Link Between Plasma Microbial Translocation, Microbiome, and Autoantibody Development in First-Degree Relatives of Systemic Lupus Erythematosus Patients. Arthritis Rheumatol. 2019, 71, 1858–1868. [Google Scholar] [CrossRef] [PubMed]
- Issara-Amphorn, J.; Surawut, S.; Worasilchai, N.; Thim-Uam, A.; Finkelman, M.; Chindamporn, A.; Palaga, T.; Hirankarn, N.; Pisitkun, P.; Leelahavanichkul, A. The Synergy of Endotoxin and (1→3)-Beta-D-Glucan, From Gut Translocation, Worsens Sepsis Severity in a Lupus Model of Fc Gamma Receptor IIb-Deficient Mice. J. Innate Immun. 2018, 10, 189–201. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Morel, L. Loss of Gut Barrier Integrity in Lupus. Front. Immunol. 2022, 13, 919792. [Google Scholar] [CrossRef] [PubMed]
Variables | iSLE 1 (n = 22) | HC 2 (n = 20) | p-Value 3 |
---|---|---|---|
Age, years | 36.23 ± 6.17 | 31.55 ± 6.48 | 0.013 |
Gender | |||
Female, n (%) | 22 (100) | 20 (100) | 1.0 |
Masculine, n (%) | 0 (0) | 0 (0) | |
Anthropometric data | |||
Weight, kg | 66.48 ± 8.08 | 60.75 ± 8.35 | 0.015 |
Heigh, cm | 163 ± 0.08 | 164 ± 0.05 | 0.811 |
BMI 4, kg/m2 | 24.9 ± 2.7 | 22.6 ± 2.6 | 0.015 |
Body Composition data | |||
LMW 5, kg | 43.6 ± 5.4 | 42.4 ± 4.0 | 0.272 |
LMP 6, % | 66.4 ± 5.8 | 68.7 ± 5.1 | 0.182 |
FMW 7, kg | 22.3 ± 5.2 | 19.7 ± 5.3 | 0.123 |
FMP 8, % | 33.6 ± 5.8 | 31.4 ± 5.1 | 0.182 |
Disease data | |||
Time of ilness, years | 12.5 ± 6.4 | NA 9 | |
Time Remission, years | 4.2 ± 5.4 | NA 9 | |
SLEDAI-2K score 10 | 0.0 ± 0.4 | NA 9 | |
Medication data | |||
HCQ 11, mg/kg/day | 4.7 ± 0.6 | NA 9 | |
SDT-HCQ 12, years | 2.5 ± 1.4 | NA 9 | |
Laboratorial parameters | |||
C3 Complement, mg/dL | 99.1 ± 18.2 | NA 9 | |
C4 Complement, mg/dL | 17.3 ± 5.4 | NA 9 | |
C-reactive protein, mg/dL | 1.8 ± 1.9 | NA 9 | |
Intestinal Permeability | |||
Plasma zonulin, ng/mL | 40.3 ± 11.5 | NA 9 |
Variables | iSLE 1 (n = 22) | HC 2 (n = 20) | p-Value 3 |
---|---|---|---|
Energy, kcal | 1753.7 ± 18.6 | 1593.9 ± 338.1 | 0.116 |
Carbohydrates, g | 222.4 ± 63.7 | 177.5 ± 44.1 | 0.004 |
Protein, g | 72.5 ± 11.0 | 77.5 ± 18.6 | 0.609 |
Total fat, g | 62.8 ± 3.5 | 63.0 ± 3.5 | 0.541 |
Saturated fat, g | 20.1 ± 0.2 | 22.9 ± 3.2 | 0.005 |
Monounsaturated fat, g | 17.6 ± 0.3 | 19.1 ± 5.2 | 0.284 |
Polyunsaturated fat, g | 14.3 ± 3.5 | 13.0 ± 2.7 | 0.268 |
Cholesterol, mg | 246.4 ± 62.7 | 316.1 ± 59.4 | <0.001 |
Fiber, g | 16.8 ± 2.8 | 17.8 ± 4.3 | 0.529 |
Sodium, mg | 3379.6 ± 742.5 | 2762.0 ± 589.3 | 0.006 |
Calcium, mg | 604.2 ± 174.5 | 683.6 ± 121.7 | 0.085 |
Iron, mg | 8.2 ± 1.5 | 8.2 ± 1.9 | 0.930 |
Magnesium, mg | 218.5 ± 75.2 | 238.0 ± 83.9 | 0.509 |
Selenium, µg | 19.0 ± 0.3 | 19.2 ± 2.9 | 0.124 |
Phosphorus, mg | 435.4 ± 101.1 | 482.5 ± 75.0 | 0.050 |
Copper, µg | 0.4 ± 0.2 | 0.7 ± 0.2 | <0.001 |
Manganese, mg | 0.3 ± 0.1 | 1.2 ± 0.3 | <0.001 |
Potassium, mg | 2017.2 ± 510.0 | 2206.9 ± 725.0 | 0.525 |
Zinc, mg | 8.7 ± 2.3 | 8.5 ± 2.1 | 0.681 |
Thiamine, mg | 0.9 ± 0.0 | 0.8 ± 0.2 | 0.301 |
Niacin, mg | 3.9 ± 0.7 | 5.9 ± 2.5 | <0.001 |
Pyridoxxine, mg | 0.6 ± 0.4 | 0.5 ± 0.1 | 0.199 |
Vitamin B12, µg | 1.5 ± 0.6 | 1.1 ± 0.3 | 0.022 |
Vitamin A, µg | 194.6 ± 73.1 | 264.9 ± 80.7 | 0.010 |
Vitamin C, mg | 77.3 ± 27.4 | 123.8 ± 49.7 | <0.001 |
Vitamin D, µg | 1.5 ± 0.7 | 1.4 ± 0.5 | 0.488 |
Vitamin E, mg | 1.8 ± 0.0 | 1.6 ± 0.4 | 0.434 |
Folate, µg | 81.1 ± 13.7 | 66.2 ± 15.6 | <0.001 |
Variables | iSLE 1 (n = 22) | HC 2 (n = 20) | p-Value 3 |
---|---|---|---|
Fruits and vegetables, g | 188.1 ± 95.4 | 291.0 ± 103.2 | 0.002 |
Juices, mL | 123.6 ± 61.1 | 84.9 ± 71.2 | 0.042 |
Rice and beans, g | 182.5 ± 78.8 | 123.2 ± 86.9 | 0.026 |
Pasta, g | 48.3 ± 42.3 | 28.3 ± 40.9 | 0.023 |
Roots and tubers, g | 68.8 ± 66.3 | 50.8 ± 38.1 | 0.753 |
Bread, g | 49.9 ± 40.8 | 22.9 ± 11.3 | 0.129 |
Whole wheat bread, g | 2.6 ± 8.0 | 17.8 ± 17.5 | <0.001 |
Red meat, g | 61.7 ± 31.3 | 54.4 ± 40.1 | 0.336 |
Processed meat, g | 21.6 ± 7.5 | 7.7 ± 6.5 | <0.001 |
Poultry, g | 50.7 ± 27.8 | 59.3 ± 19.5 | 0.260 |
Fish, g | 0.0 ± 0.0 | 15.5 ± 10.4 | NA 4 |
Eggs, g | 9.3 ± 13.6 | 33.9 ± 11.4 | <0.001 |
Cheese, g | 15.0 ± 9.7 | 39.0 ± 12.9 | <0.001 |
Milk, mL | 110.5 ± 110.9 | 85.3 ± 77.3 | 0.288 |
Yogurt, g | 18.3 ± 49.1 | 21.7 ± 27.2 | <0.001 |
Butter and margarine, g | 3.7 ± 4.4 | 3.7 ± 3.6 | 0.465 |
Coffe and tea, mL | 107.1 ± 76.1 | 176.4 ± 81.2 | 0.007 |
Sodas and sport drinks, mL | 115.0 ± 81.0 | 0.0 ± 0.0 | NA 4 |
Alcoholic beverages, g | 33.2 ± 64.5 | 76.0 ± 116.7 | 0.187 |
Sweets, g | 103.2 ± 37.5 | 63.2 ± 30.8 | <0.001 |
Salty pastries and pizza, g | 39.3 ± 28.4 | 21.1 ± 14.7 | 0.025 |
Variables | C3 1 |
---|---|
Gut Microbiota | |
Megamonas funiformis | −128.33 (−45.01, −211.64) p = 0.03 |
Intestinal Permeability | |
Plasma zonulin (ng/mL) | −0.63 (−0.20, 1.05) p = 0.03 |
Food intake | |
Sodium (mg) | −0.06 (−0.10, −0.01) p = 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balmant, B.D.; Fonseca, D.C.; Prudêncio, A.P.A.; Rocha, I.M.; Callado, L.; Alves, J.T.M.; Torrinhas, R.S.M.d.M.; Borba, E.F.; Waitzberg, D.L. Megamonas funiformis, Plasma Zonulin, and Sodium Intake Affect C3 Complement Levels in Inactive Systemic Lupus Erythematosus. Nutrients 2023, 15, 1999. https://doi.org/10.3390/nu15081999
Balmant BD, Fonseca DC, Prudêncio APA, Rocha IM, Callado L, Alves JTM, Torrinhas RSMdM, Borba EF, Waitzberg DL. Megamonas funiformis, Plasma Zonulin, and Sodium Intake Affect C3 Complement Levels in Inactive Systemic Lupus Erythematosus. Nutrients. 2023; 15(8):1999. https://doi.org/10.3390/nu15081999
Chicago/Turabian StyleBalmant, Bianca Depieri, Danielle Cristina Fonseca, Ana Paula Aguiar Prudêncio, Ilanna Marques Rocha, Letícia Callado, Juliana Tepedino Martins Alves, Raquel Susana Matos de Miranda Torrinhas, Eduardo Ferreira Borba, and Dan Linetzky Waitzberg. 2023. "Megamonas funiformis, Plasma Zonulin, and Sodium Intake Affect C3 Complement Levels in Inactive Systemic Lupus Erythematosus" Nutrients 15, no. 8: 1999. https://doi.org/10.3390/nu15081999
APA StyleBalmant, B. D., Fonseca, D. C., Prudêncio, A. P. A., Rocha, I. M., Callado, L., Alves, J. T. M., Torrinhas, R. S. M. d. M., Borba, E. F., & Waitzberg, D. L. (2023). Megamonas funiformis, Plasma Zonulin, and Sodium Intake Affect C3 Complement Levels in Inactive Systemic Lupus Erythematosus. Nutrients, 15(8), 1999. https://doi.org/10.3390/nu15081999