Antileukemic, Antioxidant, Anti-Inflammatory and Healing Activities Induced by a Polyphenol-Enriched Fraction Extracted from Leaves of Myrtus communis L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Plant Material
2.3. Polyphenol Extraction
2.4. Polyphenol Composition Analysis
2.4.1. Sample Preparation
2.4.2. Qualitative Analysis
2.5. Animals
2.6. Antileukemic Activity
2.6.1. Cell Culture
2.6.2. Cytotoxicity Assay
2.7. In Vitro Hemolysis, Hemolytic Effect of the PEMC
2.8. Anti-Inflammatory Activity
2.8.1. In Vivo Carrageenan-Induced Edema Test
2.8.2. In Vivo Wound Healing Activity
A. Formulation of Ointments
B. Wound Healing Assessment
2.9. Antioxidant Activity
2.9.1. β-Carotene Bleaching Test
2.9.2. Assessment of the Ferric Reducing Antioxidant Power (FRAP)
2.9.3. Total Antioxidant Capacity (TAC)
2.10. Acute Toxicity Study
2.11. Statistical Analysis
3. Results
3.1. Polyphenol Analysis
3.2. Antileukemic Activity
3.3. In Vitro Hemolysis
3.4. Anti-Inflammatory Activity
3.4.1. In Vivo Carrageenan-Induced Edema Test
3.4.2. In Vivo Wound Healing Activity
3.5. Antioxidant Activity
3.5.1. β-Carotene Bleaching Test
3.5.2. Ferric Reducing Antioxidant Power (FRAP)
3.5.3. Total Antioxidant Capacity (TAC)
3.6. In Vivo Acute Toxicity Study
3.6.1. Body Weight and General Aspect
3.6.2. Biochemical Analysis
3.6.3. Effect of Acute Administration of the PEMC on the Relative Weight of Organs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swamy, M.K.; Akhtar, M.S. Natural Bio-Active Compounds: Volume 2: Chemistry, Pharmacology and Health Care Practices; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 9811372055. [Google Scholar]
- Amaral, R.; dos Santos, S.A.; Andrade, L.N.; Severino, P.; Carvalho, A.A. Natural Products as Treatment against Cancer: A Historical and Current Vision. Clin. Oncol. 2019, 4, 1562. [Google Scholar]
- Bouayed, J. Polyphenols: A Potential New Strategy for the Prevention and Treatment of Anxiety and Depression. CNF 2010, 6, 13–18. [Google Scholar] [CrossRef]
- Es-Safi, I.; Mechchate, H.; Amaghnouje, A.; Calarco, A.; Boukhira, S.; Noman, O.M.; Mothana, R.A.; Nasr, F.A.; Bekkari, H.; Bousta, D. Defatted Hydroethanolic Extract of Ammodaucus Leucotrichus Cosson and Durieu Seeds: Antidiabetic and Anti-Inflammatory Activities. Appl. Sci. 2020, 10, 9147. [Google Scholar] [CrossRef]
- Dhama, K.; Karthik, K.; Khandia, R.; Munjal, A.; Tiwari, R.; Rana, R.; Khurana, S.K.; Ullah, S.; Khan, R.U.; Alagawany, M. Medicinal and Therapeutic Potential of Herbs and Plant Metabolites/Extracts Countering Viral Pathogens-Current Knowledge and Future Prospects. Curr. Drug Metab. 2018, 19, 236–263. [Google Scholar] [CrossRef] [PubMed]
- Mechchate, H.; Es-safi, I.; Haddad, H.; Bekkari, H.; Grafov, A.; Bousta, D. Combination of Catechin, Epicatechin, and Rutin:Optimization of a Novel Complete Antidiabetic Formulation Using a Mixture Design Approach. J. Nutr. Biochem. 2020, 88, 108520. [Google Scholar] [CrossRef] [PubMed]
- Babin, V.N.; Belousov, Y.A.; Borisov, V.I.; Gumenyuk, V.V.; Nekrasov, Y.S.; Ostrovskaya, L.A.; Sviridova, I.K.; Sergeeva, N.S.; Simenel, A.A.; Snegur, L.V. Ferrocenes as Potential Anticancer Drugs. Facts Hypotheses Russ. Chem. Bull. 2014, 63, 2405–2422. [Google Scholar] [CrossRef]
- Parveen, A.; Parveen, B.; Parveen, R.; Ahmad, S. Challenges and Guidelines for Clinical Trial of Herbal Drugs. J. Pharm. Bioall Sci. 2015, 7, 329–333. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and Resupply of Pharmacologically Active Plant-Derived Natural Products: A Review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [Green Version]
- Ahmadu, T.; Ahmad, K. An Introduction to Bioactive Natural Products and General Applications. In Bioactive Natural Products for Pharmaceutical Applications; Springer: Berlin/Heidelberg, Germany, 2021; pp. 41–91. [Google Scholar]
- Gurib-Fakim, A. Medicinal Plants: Traditions of Yesterday and Drugs of Tomorrow. Mol. Asp. Med. 2006, 27, 1–93. [Google Scholar] [CrossRef]
- Woods, L.M.; Rachet, B.; Coleman, M.P. Origins of Socio-Economic Inequalities in Cancer Survival: A Review. Ann. Oncol. 2006, 17, 5–19. [Google Scholar] [CrossRef]
- Raschi, E.; Vasina, V.; Ursino, M.G.; Boriani, G.; Martoni, A.; De Ponti, F. Anticancer Drugs and Cardiotoxicity: Insights and Perspectives in the Era of Targeted Therapy. Pharmacol. Ther. 2010, 125, 196–218. [Google Scholar] [CrossRef] [PubMed]
- Armartmuntree, N.; Murata, M.; Techasen, A.; Yongvanit, P.; Loilome, W.; Namwat, N.; Pairojkul, C.; Sakonsinsiri, C.; Pinlaor, S.; Thanan, R. Prolonged Oxidative Stress Down-Regulates Early B Cell Factor 1 with Inhibition of Its Tumor Suppressive Function against Cholangiocarcinoma Genesis. Redox Biol. 2018, 14, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Vaidya, V.S.; Ferguson, M.A.; Bonventre, J.V. Biomarkers of Acute Kidney Injury. Annu. Rev. Pharmacol. Toxicol. 2008, 48, 463–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative Stress, Inflammation, and Cancer: How Are They Linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [Green Version]
- Zappavigna, S.; Cossu, A.M.; Grimaldi, A.; Bocchetti, M.; Ferraro, G.A.; Nicoletti, G.F.; Filosa, R.; Caraglia, M. Anti-Inflammatory Drugs as Anticancer Agents. Int. J. Mol. Sci. 2020, 21, 2605. [Google Scholar] [CrossRef] [Green Version]
- Bourgonje, A.R.; Feelisch, M.; Faber, K.N.; Pasch, A.; Dijkstra, G.; van Goor, H. Oxidative Stress and Redox-Modulating Therapeutics in Inflammatory Bowel Disease. Trends Mol. Med. 2020, 26, 1034–1046. [Google Scholar] [CrossRef]
- Sell, S. Leukemia. Stem Cell Rev. 2005, 1, 197–205. [Google Scholar] [CrossRef]
- De Kouchkovsky, I.; Abdul-Hay, M. Acute Myeloid Leukemia: A Comprehensive Review and 2016 Update. Blood Cancer J. 2016, 6, e441. [Google Scholar] [CrossRef] [Green Version]
- Asati, V.; Mahapatra, D.K.; Bharti, S.K. PI3K/Akt/MTOR and Ras/Raf/MEK/ERK Signaling Pathways Inhibitors as Anticancer Agents: Structural and Pharmacological Perspectives. Eur. J. Med. Chem. 2016, 109, 314–341. [Google Scholar] [CrossRef]
- Wilkes, G.M. Targeted Therapy: Attacking Cancer with Molecular and Immunological Targeted Agents. Asia-Pac. J. Oncol. Nurs. 2018, 5, 137. [Google Scholar] [CrossRef]
- Zhou, T.; Medeiros, L.J.; Hu, S. Chronic Myeloid Leukemia: Beyond BCR-ABL1. Curr. Hematol. Malig. Rep. 2018, 13, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Basso, I.N.; Kim, D.D.H. Target Spectrum of the BCR-ABL Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia. Int. J. Hematol. 2021, 113, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Zrira, S. Some Important Aromatic and Medicinal Plants of Morocco. In Medicinal and Aromatic Plants of the World-Africa Volume 3; Springer: Berlin/Heidelberg, Germany, 2017; pp. 91–125. [Google Scholar]
- Sisay, M.; Gashaw, T. Ethnobotanical, Ethnopharmacological, and Phytochemical Studies of Myrtus Communis Linn: A Popular Herb in Unani System of Medicine. J. Evid. Based Complement. Altern. Med. 2017, 22, 1035–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dukić, N.M.; Bugarin, D.; Grbović, S.; Mitić-Ćulafić, D.; Vuković-Gačić, B.; Orčić, D.; Jovin, E.; Couladis, M. Essentia l Oil of Myrtus communis L. as a Potential Antioxidant and Antimutageni c Agents. Molecules 2010, 15, 2759–2770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayder, N.; Bouhlel, I.; Skandrani, I.; Kadri, M.; Steiman, R.; Guiraud, P.; Mariotte, A.-M.; Ghedira, K.; Dijoux-Franca, M.-G.; Chekir-Ghedira, L. In Vitro Antioxidant and Antigenotoxic Potentials of Myricetin-3-o-Galactoside and Myricetin-3-o-Rhamnoside from Myrtus communis: Modulation of Expression of Genes Involved in Cell Defence System Using CDNA Microarray. Toxicol. In Vitro 2008, 22, 567–581. [Google Scholar] [CrossRef]
- Tretiakova, I.; Blaesius, D.; Maxia, L.; Wesselborg, S.; Schulze-Osthoff, K.; Cinatl, J.; Michaelis, M.; Werz, O. Myrtucommulone from Myrtus communis Induces Apoptosis in Cancer Cells via the Mitochondrial Pathway Involving Caspase-9. Apoptosis 2008, 13, 119–131. [Google Scholar] [CrossRef]
- Corradini, E.; Foglia, P.; Giansanti, P.; Gubbiotti, R.; Samperi, R.; Laganà, A. Flavonoids: Chemical Properties and Analytical Methodologies of Identification and Quantitation in Foods and Plants. Nat. Prod. Res. 2011, 25, 469–495. [Google Scholar] [CrossRef] [PubMed]
- Kondratyuk, T.P.; Pezzuto, J.M. Natural Product Polyphenols of Relevance to Human Health. Pharm. Biol. 2004, 42, 46–63. [Google Scholar] [CrossRef] [Green Version]
- Ghasemzadeh, A. Flavonoids and Phenolic Acids: Role and Biochemical Activity in Plants and Human. J. Med. Plants Res. 2011, 5, 6697–6703. [Google Scholar] [CrossRef]
- Mierziak, J.; Kostyn, K.; Kulma, A. Flavonoids as Important Molecules of Plant Interactions with the Environment. Molecules 2014, 19, 16240–16265. [Google Scholar] [CrossRef] [Green Version]
- Hernández, I.; Alegre, L.; Van Breusegem, F.; Munné-Bosch, S. How Relevant Are Flavonoids as Antioxidants in Plants? Trends Plant Sci. 2009, 14, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-Inflammatory Effects of Flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef] [PubMed]
- Romagnolo, D.F.; Selmin, O.I. Flavonoids and Cancer Prevention: A Review of the Evidence. J. Nutr. Gerontol. Geriatr. 2012, 31, 206–238. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, H.; Yuan, B.; Hu, X.; Okazaki, M. Chemopreventive and Anticancer Activity of Flavonoids and Its Possibility for Clinical Use by Combining with Conventional Chemotherapeutic Agents. Am. J. Cancer Res. 2019, 9, 1517–1535. [Google Scholar]
- Koolaji, N.; Shammugasamy, B.; Schindeler, A.; Dong, Q.; Dehghani, F.; Valtchev, P. Citrus Peel Flavonoids as Potential Cancer Prevention Agents. Curr. Dev. Nutr. 2020, 4, nzaa025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagher, Z.; Ehterami, A.; Safdel, M.H.; Khastar, H.; Semiari, H.; Asefnejad, A.; Davachi, S.M.; Mirzaii, M.; Salehi, M. Wound Healing with Alginate/Chitosan Hydrogel Containing Hesperidin in Rat Model. J. Drug Deliv. Sci. Technol. 2020, 55, 101379. [Google Scholar] [CrossRef]
- Mi, Y.; Zhong, L.; Lu, S.; Hu, P.; Pan, Y.; Ma, X.; Yan, B.; Wei, Z.; Yang, G. Quercetin Promotes Cutaneous Wound Healing in Mice through Wnt/β-Catenin Signaling Pathway. J. Ethnopharmacol. 2022, 290, 115066. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.T.B.; Araújo-Filho, H.G.; Barreto, A.S.; Quintans-Júnior, L.J.; Quintans, J.S.S.; Barreto, R.S.S. Wound Healing Properties of Flavonoids: A Systematic Review Highlighting the Mechanisms of Action. Phytomedicine 2021, 90, 153636. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, A.J.; Banerjee, S.; Rezak, K.M.; Uhl, R.L. Advances in Wound Management. JAAOS J. Am. Acad. Orthop. Surg. 2018, 26, 833–843. [Google Scholar] [CrossRef]
- Budovsky, A.; Yarmolinsky, L.; Ben-Shabat, S. Effect of Medicinal Plants on Wound Healing. Wound Repair Regen. Off. Publ. Wound Health Soc. Eur. Tissue Repair Soc. 2015, 23, 171–183. [Google Scholar] [CrossRef]
- Mechchate, H.; Es-Safi, I.; Amaghnouje, A.; Boukhira, S.; Alotaibi, A.A.; Al-Zharani, M.; Nasr, A.F.; Noman, M.O.; Conte, R.; Amal, E.H.E.Y. Antioxidant, Anti-Inflammatory and Antidiabetic Proprieties of LC-MS/MS Identified Polyphenols from Coriander Seeds. Molecules 2021, 26, 487. [Google Scholar] [CrossRef] [PubMed]
- Li, G.-X.; Liu, Z.-Q. The Protective Effects of Ginsenosides on Human Erythrocytes against Hemin-Induced Hemolysis. Food Chem. Toxicol. 2008, 46, 886–892. [Google Scholar] [CrossRef]
- Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-Induced Edema in Hind Paw of the Rat as an Assay for Antiinflammatory Drugs. Exp. Biol. Med. 1962, 111, 544–547. [Google Scholar] [CrossRef]
- Morton, J.J.; Malone, M.H. Evaluation of Vulneray Activity by an Open Wound Procedure in Rats. Arch. Int. Pharmacodyn. Ther. 1972, 196, 117–126. [Google Scholar] [PubMed]
- Kartal, N.; Sokmen, M.; Tepe, B.; Daferera, D.; Polissiou, M.; Sokmen, A. Investigation of the Antioxidant Properties of Ferula orientalis L. Using a Suitable Extraction Procedure. Food Chem. 2007, 100, 584–589. [Google Scholar]
- Liyana-Pathirana, C.M.; Shahidi, F. Antioxidant Properties of Commercial Soft and Hard Winter Wheats (Triticum aestivum L.) and Their Milling Fractions. J. Sci. Food Agric. 2006, 86, 477–485. [Google Scholar] [CrossRef]
- Hong, P.K.; Betti, M. Non-Enzymatic Browning Reaction of Glucosamine at Mild Conditions: Relationship between Colour Formation, Radical Scavenging Activity and α-Dicarbonyl Compounds Production. Food Chem. 2016, 212, 234–243. [Google Scholar] [CrossRef]
- Kusano, C.; Ferrari, B. Total Antioxidant Capacity: A Biomarker in Biomedical and Nutritional Studies. J. Cell Mol. Biol. 2008, 7, 1–15. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Choe, E.; Min, D.B. Mechanisms of Antioxidants in the Oxidation of Foods. Compr. Rev. Food Sci. Food Saf. 2009, 8, 345–358. [Google Scholar] [CrossRef]
- Sadeq, O.; Mechchate, H.; Es-safi, I.; Bouhrim, M.; Jawhari, F.Z.; Ouassou, H.; Kharchoufa, L.; AlZain, N.M.; Alzamel, M.N.; Mohamed Al kamaly, O.; et al. Phytochemical Screening, Antioxidant and Antibacterial Activities of Pollen Extracts from Micromeria Fruticosa, Achillea Fragrantissima, and Phoenix Dactylifera. Plants 2021, 10, 676. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.F.; Russo, G.L.; Daglia, M.; Nabavi, S.M. Role of Quercetin as an Alternative for Obesity Treatment: You Are What You Eat! Food Chem. 2015, 179, 305–310. [Google Scholar] [CrossRef]
- Lee, W.J.; Shim, J.-Y.; Zhu, B.T. Mechanisms for the Inhibition of DNA Methyltransferases by Tea Catechins and Bioflavonoids. Mol. Pharm. 2005, 68, 1018–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashedi, J.; Ghorbani Haghjo, A.; Mesgari Abbasi, M.; Dastranj Tabrizi, A.; Yaqoubi, S.; Sanajou, D.; Ashrafi Jigheh, Z.; Namvaran, A.; Mohammadi, A.; Mohammadi Khoshraj, J.; et al. Anti-Tumor Effect of Quercetin Loaded Chitosan Nanoparticles on Induced Colon Cancer in Wistar Rats. Adv. Pharm. Bull. 2019, 9, 409–415. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Guo, Q.; Chen, J.; Chen, Z. Quercetin Enhances Cisplatin Sensitivity of Human Osteosarcoma Cells by Modulating MicroRNA-217-KRAS Axis. Mol. Cells 2015, 38, 638–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.J.; Chen, Y.R.; Tseng, T.H. Quercetin Induces FasL-Related Apoptosis, in Part, through Promotion of Histone H3 Acetylation in Human Leukemia HL-60 Cells. Oncol. Rep. 2011, 25, 583–591. [Google Scholar] [CrossRef]
- Attoub, S.; Hassan, A.H.; Vanhoecke, B.; Iratni, R.; Takahashi, T.; Gaben, A.-M.; Bracke, M.; Awad, S.; John, A.; Kamalboor, H.A.; et al. Inhibition of Cell Survival, Invasion, Tumor Growth and Histone Deacetylase Activity by the Dietary Flavonoid Luteolin in Human Epithelioid Cancer Cells. Eur. J. Pharmacol. 2011, 651, 18–25. [Google Scholar] [CrossRef]
- Lee, W.; Lee, S.Y.; Son, Y.-J.; Yun, J.-M. Gallic Acid Decreases Inflammatory Cytokine Secretion Through Histone Acetyltransferase/Histone Deacetylase Regulation in High Glucose-Induced Human Monocytes. J. Med. Food 2015, 18, 793–801. [Google Scholar] [CrossRef]
- Mard, S.A.; Mojadami, S.; Farbood, Y.; Naseri, M.K.G. The Anti-Inflammatory and Anti-Apoptotic Effects of Gallic Acid against Mucosal Inflammation-and Erosions-Induced by Gastric Ischemia-Reperfusion in Rats. In Proceedings of the Veterinary Research Forum; Faculty of Veterinary Medicine, Urmia University: Urmia, Iran, 2015; Volume 6, pp. 305–311. [Google Scholar]
- Bouyahya, A.; Mechchate, H.; Oumeslakht, L.; Zeouk, I.; Aboulaghras, S.; Balahbib, A.; Zengin, G.; Kamal, M.A.; Gallo, M.; Montesano, D.; et al. The Role of Epigenetic Modifications in Human Cancers and the Use of Natural Compounds as Epidrugs: Mechanistic Pathways and Pharmacodynamic Actions. Biomolecules 2022, 12, 367. [Google Scholar] [CrossRef]
- Zhaohui, W.; Yingli, N.; Hongli, L.; Haijing, W.; Xiaohua, Z.; Chao, F.; Liugeng, W.; Hui, Z.; Feng, T.; Linfeng, Y.; et al. Amentoflavone Induces Apoptosis and Suppresses Glycolysis in Glioma Cells by Targeting MiR-124-3p. Neurosci. Lett. 2018, 686, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-H.; Guo, H.; Xu, W.-B.; Ge, J.; Li, X.; Alimu, M.; He, D.-J. Rapid Identification of Flavonoid Constituents Directly from PTP1B Inhibitive Extract of Raspberry (Rubus idaeus L.) Leaves by HPLC-ESI-QTOF-MS-MS. J. Chromatogr. Sci. 2016, 54, 805–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinheiro, R.P.; Moraes, M.A.; Santos, B.C.S.; Fabri, R.L.; Del-Vechio-Vieira, G.; Yamamoto, C.H.; Araújo, A.L.S.M.; Araújo, A.L.A.; Sousa, O. V Identification of Compounds from Palicourea Rigida Leaves with Topical Anti-Inflammatory Potential Using Experimental Models. Inflammopharmacology 2018, 26, 1005–1016. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Banerjee, B.; Vedasiromoni, J.R. Cytotoxic and Apoptogenic Effect of Swietenia mahagoni (L.) Jacq. Leaf Extract in Human Leukemic Cell Lines U937, K562 and HL-60. Environ. Toxicol. Pharmacol. 2014, 37, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Park, C.M.; Song, Y.-S. Luteolin and Luteolin-7-O-Glucoside Protect against Acute Liver Injury through Regulation of Inflammatory Mediators and Antioxidative Enzymes in GalN/LPS-Induced Hepatitic ICR Mice. Nutr. Res. Pract. 2019, 13, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Maatouk, M.; Mustapha, N.; Mokdad-Bzeouich, I.; Chaaban, H.; Abed, B.; Iaonnou, I.; Ghedira, K.; Ghoul, M.; Ghedira, L.C. Thermal Treatment of Luteolin-7-O-β-Glucoside Improves Its Immunomodulatory and Antioxidant Potencies. Cell Stress Chaperones 2017, 22, 775–785. [Google Scholar] [CrossRef]
- De Stefano, A.; Caporali, S.; Di Daniele, N.; Rovella, V.; Cardillo, C.; Schinzari, F.; Minieri, M.; Pieri, M.; Candi, E.; Bernardini, S.; et al. Anti-Inflammatory and Proliferative Properties of Luteolin-7-O-Glucoside. Int. J. Mol. Sci. 2021, 22, 1321. [Google Scholar] [CrossRef]
- Ho, H.-Y.; Chen, P.-J.; Lo, Y.-S.; Lin, C.-C.; Chuang, Y.-C.; Hsieh, M.-J.; Chen, M.-K. Luteolin-7-O-Glucoside Inhibits Cell Proliferation and Modulates Apoptosis through the AKT Signaling Pathway in Human Nasopharyngeal Carcinoma. Environ. Toxicol. 2021, 36, 2013–2024. [Google Scholar] [CrossRef] [PubMed]
- Guay, J.; Bateman, K.; Gordon, R.; Mancini, J.; Riendeau, D. Carrageenan-Induced Paw Edema in Rat Elicits a Predominant Prostaglandin E2 (PGE2) Response in the Central Nervous System Associated with the Induction of Microsomal PGE2 Synthase-1. J. Biol. Chem. 2004, 279, 24866–24872. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Khanna, S.; Shah, H.; Rink, C.; Phillips, C.; Preuss, H.; Subbaraju, G.V.; Trimurtulu, G.; Krishnaraju, A.V.; Bagchi, M.; et al. Human Genome Screen to Identify the Genetic Basis of the Anti-Inflammatory Effects of Boswellia in Microvascular Endothelial Cells. DNA Cell Biol. 2005, 24, 244–255. [Google Scholar] [CrossRef]
- Chhabra, S.; Chhabra, N.; Kaur, A.; Gupta, N. Wound Healing Concepts in Clinical Practice of OMFS. J. Maxillofac. Oral Surg. 2017, 16, 403–423. [Google Scholar] [CrossRef]
- Liu, H.-Y.; Du, L.; Zhao, Y.-T.; Tian, W.-Q. In Vitro Hemocompatibility and Cytotoxicity Evaluation of Halloysite Nanotubes for Biomedical Application. J. Nanomater. 2015, 2015, e685323. [Google Scholar] [CrossRef]
- Lorusso, D.; Bria, E.; Costantini, A.; Di Maio, M.; Rosti, G.; Mancuso, A. Patients’ Perception of Chemotherapy Side Effects: Expectations, Doctor–Patient Communication and Impact on Quality of Life–An Italian Survey. Eur. J. Cancer Care 2017, 26, e12618. [Google Scholar] [CrossRef] [PubMed]
- Haq, M.I.; Nixon, J.; Stanley, A.J. Imatinib and Liver Toxicity. BMJ Case Rep. 2018, 11, e226740. [Google Scholar] [CrossRef]
- Efficace, F.; Baccarani, M.; Breccia, M.; Cottone, F.; Alimena, G.; Deliliers, G.L.; Baratè, C.; Specchia, G.; Di Lorenzo, R.; Luciano, L.; et al. Chronic Fatigue Is the Most Important Factor Limiting Health-Related Quality of Life of Chronic Myeloid Leukemia Patients Treated with Imatinib. Leukemia 2013, 27, 1511–1519. [Google Scholar] [CrossRef]
- Hensley, M.L.; Ford, J.M. Imatinib Treatment: Specific Issues Related to Safety, Fertility, and Pregnancy. Semin. Hematol. 2003, 40, 21–25. [Google Scholar] [CrossRef] [PubMed]
Constituent | [M − H]− | Relative Abundance |
---|---|---|
gallic acid | 168.9 | ++ |
quercetin | 301 | + |
p-coumaric acid | 162.9 | + |
hesperidin | 301.3 | + |
amentoflavone | 537.1 | ++ |
luteolin | 284.9 | + |
quercetin-3-O-glucoside | 463.1 | +++ |
quercetin-3-O-glucuronic acid | 477 | + |
isorhamnetin-7-O-Pentose | 447.1 | +++ |
luteolin 7-O-glucoside | 447 | +++ |
kaempferol-3-O-glucuronic acid | 461.1 | + |
kaempferol-3-O-pentose | 417.1 | + |
kaempferol-3-O-hexose deoxyhexose | 593.1 | + |
catechin gallate | 441 | + |
procyanidin | 577 | + |
kaempferol | 285 | + |
naringin | 579 | + |
Normal Control | PEMC 50 mg/kg | PEMC 100 mg/kg | PEMC 2000 mg/kg | |
---|---|---|---|---|
ALAT | 36.80 ± 1.11 | 37.67 ± 1.76 | 41.33 ± 2.6 | 33.67 ± 2.48 * |
ASAT | 307.7 ± 20.37 | 284.33 ± 17.12 | 318.67 ± 26.76 | 304 ± 31.33 ** |
Urea | 0.28 ± 0.02 | 0.26 ± 0.02 | 0.3 ± 0.01 | 0.28 ± 0.02 * |
Creatinine | 3.40 ± 0.31 | 3.93 ± 0.6 | 3.3 ± 0.24 | 3.6 ± 0.34 * |
Normal Control | PEMC 50 mg/kg | PEMC 100 mg/kg | PEMC 2000 mg/kg | |
---|---|---|---|---|
Liver (g) | 7.15 ± 0.73 | 6.34 ± 0.41 | 6.41 ± 0.44 | 6.92 ± 0.51 |
Kidneys (g) | 1.19 ± 0.24 | 1.12 ± 0.12 | 1.17 ± 0.14 | 1.21 ± 0.13 |
Spleen (g) | 0.44 ± 0.63 | 0.46 ± 0.04 | 0.47 ± 0.05 | 0.42 ± 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mechchate, H.; de Castro Alves, C.E.; Es-safi, I.; Amaghnouje, A.; Jawhari, F.Z.; Costa de Oliveira, R.; de Freitas Gomes, A.; Conte, R.; Soares Pontes, G.; Bousta, D.; et al. Antileukemic, Antioxidant, Anti-Inflammatory and Healing Activities Induced by a Polyphenol-Enriched Fraction Extracted from Leaves of Myrtus communis L. Nutrients 2022, 14, 5055. https://doi.org/10.3390/nu14235055
Mechchate H, de Castro Alves CE, Es-safi I, Amaghnouje A, Jawhari FZ, Costa de Oliveira R, de Freitas Gomes A, Conte R, Soares Pontes G, Bousta D, et al. Antileukemic, Antioxidant, Anti-Inflammatory and Healing Activities Induced by a Polyphenol-Enriched Fraction Extracted from Leaves of Myrtus communis L. Nutrients. 2022; 14(23):5055. https://doi.org/10.3390/nu14235055
Chicago/Turabian StyleMechchate, Hamza, Carlos Eduardo de Castro Alves, Imane Es-safi, Amal Amaghnouje, Fatima Zahra Jawhari, Regiane Costa de Oliveira, Alice de Freitas Gomes, Raffaele Conte, Gemilson Soares Pontes, Dalila Bousta, and et al. 2022. "Antileukemic, Antioxidant, Anti-Inflammatory and Healing Activities Induced by a Polyphenol-Enriched Fraction Extracted from Leaves of Myrtus communis L." Nutrients 14, no. 23: 5055. https://doi.org/10.3390/nu14235055
APA StyleMechchate, H., de Castro Alves, C. E., Es-safi, I., Amaghnouje, A., Jawhari, F. Z., Costa de Oliveira, R., de Freitas Gomes, A., Conte, R., Soares Pontes, G., Bousta, D., & Grafov, A. (2022). Antileukemic, Antioxidant, Anti-Inflammatory and Healing Activities Induced by a Polyphenol-Enriched Fraction Extracted from Leaves of Myrtus communis L. Nutrients, 14(23), 5055. https://doi.org/10.3390/nu14235055