Influence of Intrauterine Inflammation, Delivery, and Postnatal Feeding on the Temporal Changes of Serum Alpha 1 Acid Glycoprotein Levels in Extremely-Low-Birth-Weight Infants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Laboratory Studies
2.4. Data Analysis
3. Results
3.1. Characteristics of the Study Patients
3.2. Crude Dependence of Alpha 1 Acid Glycoprotein Levels on Clinical Variables
3.3. Dependence of Alpha 1 Acid Glycoprotein Levels on Postnatal Age, Clinical Variables, and Their Interactions
3.4. Independent Variables of Early and Late Alpha 1 Acid Glycoprotein Levels
4. Discussion
4.1. Influence of Intrauterine Inflammation and Delivery on Temporal Changes in the α1AG Levels after Birth
4.2. Enteral Feeding, Probiotics, and Temporal Changes in the α1AG Levels after Birth
4.3. Shortage of Energy Substrates in Utero and Temporal Changes in α1AG Levels after Birth
4.4. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Johnson, H.L.; Cousens, S.; Perin, J.; Scott, S.; Lawn, J.E.; Rudan, I.; Campbell, H.; Cibulskis, R.; Li, M.; et al. Global, regional, and national causes of child mortality: An updated systematic analysis for 2010 with time trends since 2000. Lancet 2012, 379, 2151–2161. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.L. Defining neonatal sepsis. Curr. Opin. Pediatr. 2016, 28, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Barton, L.; Hodgman, J.E.; Pavlova, Z. Causes of death in the extremely low birth weight infant. Pediatrics 1999, 103, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Gregoriano, C.; Heilmann, E.; Molitor, A.; Schuetz, P. Role of procalcitonin use in the management of sepsis. J. Thorac. Dis. 2020, 12, S5–S15. [Google Scholar] [CrossRef] [PubMed]
- Benitz, W.E.; Han, M.Y.; Madan, A.; Ramachandra, P. Serial serum C-reactive protein levels in the diagnosis of neonatal infection. Pediatrics 1998, 102, E41. [Google Scholar] [CrossRef] [Green Version]
- Hofer, N.; Zacharias, E.; Muller, W.; Resch, B. An update on the use of C-reactive protein in early-onset neonatal sepsis: Current insights and new tasks. Neonatology 2012, 102, 25–36. [Google Scholar] [CrossRef]
- Sharma, D.; Farahbakhsh, N.; Shastri, S.; Sharma, P. Biomarkers for diagnosis of neonatal sepsis: A literature review. J. Matern. Neonatal Med. 2018, 31, 1646–1659. [Google Scholar] [CrossRef]
- Lee, J.; Bang, Y.H.; Lee, E.H.; Choi, B.M.; Hong, Y.S. The influencing factors on procalcitonin values in newborns with noninfectious conditions during the first week of life. Korean J. Pediatr. 2017, 60, 10–16. [Google Scholar] [CrossRef]
- Bteich, M. An overview of albumin and alpha-1-acid glycoprotein main characteristics: Highlighting the roles of amino acids in binding kinetics and molecular interactions. Heliyon 2019, 5, e02879. [Google Scholar] [CrossRef] [Green Version]
- Goto, H. The reliability for APR-Sc of newborn infection and clinical application in NICU. Jpn. J. Pediatr. 1988, 41, 1709–1717. [Google Scholar]
- Goto, H. Early diagnosis of neonatal sepsis in extremely-low-birth infants. J. Jpn. Soc. Permature Newborn Med. 2014, 26, 612. [Google Scholar]
- Maharaj, A.R.; Gonzalez, D.; Cohen-Wolkowiez, M.; Hornik, C.P.; Edginton, A.N. Improving Pediatric Protein Binding Estimates: An Evaluation of alpha1-Acid Glycoprotein Maturation in Healthy and Infected Subjects. Clin. Pharmacokinet. 2018, 57, 577–589. [Google Scholar] [CrossRef]
- Anell-Olofsson, M.; Ahmadi, S.; Lonnqvist, P.A.; Eksborg, S.; von Horn, H.; Bartocci, M. Plasma concentrations of alpha-1-acid glycoprotein in preterm and term newborns: Influence of mode of delivery and implications for plasma protein binding of local anaesthetics. Br. J. Anaesth. 2018, 121, 427–431. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Matsubara, K.; Nakamoto, O.; Ushijima, J.; Ohkuchi, A.; Koide, K.; Makino, S.; Mimura, K.; Morikawa, M.; Naruse, K.; et al. Outline of the New Definition and Classification of “Hypertensive Disorders of Pregnancy (HDP)”: A Revised JSSHP statement of 2005. Hypertens. Res. Pregnancy 2018, 6, 33–37. [Google Scholar] [CrossRef] [Green Version]
- Blanc, W.A. Pathology of the placenta and cord in ascending and in haematogenous infection. In Perinatal Infections, CIBA Foundation Symposium; Elsevier: Amsterdam, The Netherland, 1979; pp. 17–38. [Google Scholar] [CrossRef]
- Redline, R.W.; Faye-Petersen, O.; Heller, D.; Qureshi, F.; Savell, V.; Vogler, C.; Society for Pediatric Pathology, P.S.A.F.I.N.C. Amniotic infection syndrome: Nosology and reproducibility of placental reaction patterns. Pediatr. Dev. Pathol. 2003, 6, 435–448. [Google Scholar] [CrossRef]
- Isojima, T.; Kato, N.; Ito, Y.; Kanzaki, S.; Murata, M. Growth standard charts for Japanese children with mean and standard deviation (SD) values based on the year 2000 national survey. Clin. Pediatr. Endocrinol. 2016, 25, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Papile, L.A.; Burstein, J.; Burstein, R.; Koffler, H. Incidence and evolution of subependymal and intraventricular hemorrhage: A study of infants with birth weights less than 1500 gm. J. Pediatr. 1978, 92, 529–534. [Google Scholar] [CrossRef]
- Leona, S.; Aiken, S.G.W.; Reno, R.R. Multiple Regression: Testing and Interpreting Interactions; SAGE: New York, NY, USA, 1991. [Google Scholar]
- Althouse, A.D. Adjust for Multiple Comparisons? It’s Not That Simple. Ann. Thorac. Surg. 2016, 101, 1644–1645. [Google Scholar] [CrossRef] [Green Version]
- Barone, G.; Maggio, L.; Saracino, A.; Perri, A.; Romagnoli, C.; Zecca, E. How to feed small for gestational age newborns. Ital. J. Pediatr. 2013, 39, 28. [Google Scholar] [CrossRef]
- Sharma, D.; Shastri, S.; Sharma, P. Intrauterine Growth Restriction: Antenatal and Postnatal Aspects. Clin. Med. Insights Pediatr. 2016, 10, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, M.; Sato, M.; Ogasawara, K.; Imamura, T.; Hashimoto, K.; Momoi, N.; Hosoya, M. Serum cytokine concentrations, chorioamnionitis and the onset of bronchopulmonary dysplasia in premature infants. J. Neonatal. Perinatal. Med. 2017, 10, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Wigmore, S.J.; Fearon, K.C.; Maingay, J.P.; Lai, P.B.; Ross, J.A. Interleukin-8 can mediate acute-phase protein production by isolated human hepatocytes. Am. J. Physiol. 1997, 273, E720–E726. [Google Scholar] [CrossRef] [PubMed]
- Sabic, D.; Koenig, J.M. A perfect storm: Fetal inflammation and the developing immune system. Pediatr. Res. 2020, 87, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Kallapur, S.G.; Kramer, B.W.; Knox, C.L.; Berry, C.A.; Collins, J.J.; Kemp, M.W.; Nitsos, I.; Polglase, G.R.; Robinson, J.; Hillman, N.H.; et al. Chronic fetal exposure to Ureaplasma parvum suppresses innate immune responses in sheep. J. Immunol. 2011, 187, 2688–2695. [Google Scholar] [CrossRef] [Green Version]
- Gleditsch, D.D.; Shornick, L.P.; Van Steenwinckel, J.; Gressens, P.; Weisert, R.P.; Koenig, J.M. Maternal inflammation modulates infant immune response patterns to viral lung challenge in a murine model. Pediatr. Res. 2014, 76, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Azizia, M.; Lloyd, J.; Allen, M.; Klein, N.; Peebles, D. Immune status in very preterm neonates. Pediatrics 2012, 129, e967–e974. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, L.; Jin, B.; Xu, X.; Zuo, X.; Li, Y.; Li, Z. The Effects of Delivery Mode on the Gut Microbiota and Health: State of Art. Front. Microbiol. 2021, 12, 724449. [Google Scholar] [CrossRef]
- Malamitsi-Puchner, A.; Protonotariou, E.; Boutsikou, T.; Makrakis, E.; Sarandakou, A.; Creatsas, G. The influence of the mode of delivery on circulating cytokine concentrations in the perinatal period. Early Hum. Dev. 2005, 81, 387–392. [Google Scholar] [CrossRef]
- Mitsuoka, T.H.K.; Die Faekal Flora bei Menschen, I. Die Zusammensetzung der Faekalflora der verschiedenen Altersgruppen. Zent. Bakteriol. Mikrobiol. Hyg. 1973, 233, 333–342. [Google Scholar]
- Gritz, E.C.; Bhandari, V. The human neonatal gut microbiome: A brief review. Front. Pediatr. 2015, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A.; Yoo, J.Y.; Valeria Ozorio Dutra, S.; Morgan, K.H.; Groer, M. The Association between Early-Life Gut Microbiota and Long-Term Health and Diseases. J. Clin. Med. 2021, 10, 459. [Google Scholar] [CrossRef]
- Reilly, N.; Poylin, V.; Menconi, M.; Onderdonk, A.; Bengmark, S.; Hasselgren, P.O. Probiotics potentiate IL-6 production in IL-1beta-treated Caco-2 cells through a heat shock-dependent mechanism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R1169–R1179. [Google Scholar] [CrossRef]
- Djaldetti, M.; Bessler, H. Probiotic strains modulate cytokine production and the immune interplay between human peripheral blood mononucear cells and colon cancer cells. FEMS Microbiol. Lett. 2017, 364, fnx014. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Liu, S.; Kling, D.E.; Leone, S.; Lawlor, N.T.; Huang, Y.; Feinberg, S.B.; Hill, D.R.; Newburg, D.S. The human milk oligosaccharide 2’-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation. Gut 2016, 65, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Bakker, R.; Steegers, E.A.; Hofman, A.; Jaddoe, V.W. Blood pressure in different gestational trimesters, fetal growth, and the risk of adverse birth outcomes: The generation R study. Am. J. Epidemiol. 2011, 174, 797–806. [Google Scholar] [CrossRef]
- Simonsen, K.A.; Anderson-Berry, A.L.; Delair, S.F.; Davies, H.D. Early-onset neonatal sepsis. Clin. Microbiol. Rev. 2014, 27, 21–47. [Google Scholar] [CrossRef] [Green Version]
- Nist, M.D.; Pickler, R.H. An Integrative Review of Cytokine/Chemokine Predictors of Neurodevelopment in Preterm Infants. Biol. Res. Nurs. 2019, 21, 366–376. [Google Scholar] [CrossRef]
Variables | |
---|---|
Maternal variables | n = 75 |
Antenatal steroid | 39 (52.0%) |
Premature rupture of membranes | 26 (34.7%) |
Hypertensive disorders of pregnancy | 18 (24.0%) |
Maternal antibiotics | 23 (30.7%) |
Chorioamnionitis | 14 (18.7%) |
Funisitis | 13 (17.3%) |
Variables at birth | n = 75 |
Male sex | 32 (42.7%) |
Gestational age in weeks | 26.5 ± 2.2 |
Birth weight in grams | 746 ± 162 |
z-score of birth weight | −1.2 ± 1.3 |
Apgar score (1 min) | 4 {2,6} |
Apgar score (5 min) | 6 {5,8} |
Cesarean delivery | 60 (80.0%) |
Postnatal variables | n = 75 |
Postnatal antibiotics | 16 (21.3%) |
Septicemia | 2 (2.7%) |
Intestinal perforation | 4 (5.3%) |
Patent ductus arteriosus requiring surgery | 11 (14.7%) |
Grade III/IV intraventricular hemorrhage | 17 (22.7%) |
Postnatal variables at the time of blood sampling | n = 255 * |
Postnatal age in days | 2.1 ± 1.8 |
Commencement of enteral nutrition | 81 (31.8%) |
Commencement of probiotics | 46 (18.0%) |
Variables | Regression Coefficient | p | ||
---|---|---|---|---|
Mean | 95% CI | |||
Lower | Upper | |||
Maternal variables | ||||
Antenatal steroid | 1.481 | −5.495 | 8.456 | 0.677 |
Premature rupture of membranes | −10.539 | −17.263 | −3.815 | 0.002 |
Hypertensive disorders of pregnancy | 11.808 | 6.210 | 17.406 | <0.001 |
Maternal antibiotics | 1.10 | −6.47 | 8.66 | 0.776 |
Chorioamnionitis | 8.469 | −1.517 | 18.456 | 0.096 |
Funisitis | 0.619 | −7.862 | 9.099 | 0.886 |
Variables at birth | ||||
Male sex | 6.186 | −0.817 | 13.190 | 0.083 |
Gestational age in weeks | 1.361 | 0.071 | 2.650 | 0.039 |
Birth weight in grams | 0.005 | −0.015 | 0.025 | 0.632 |
z-score of birth weight | −2.894 | −5.091 | −0.698 | 0.010 |
Apgar score (1 min) | 0.406 | −1.018 | 1.831 | 0.576 |
Apgar score (5 min) | 0.423 | −1.133 | 1.979 | 0.594 |
Cesarean delivery | −6.556 | −15.516 | 2.404 | 0.152 |
Postnatal variables | ||||
Postnatal antibiotics | 11.386 | 1.323 | 21.449 | 0.027 |
Septicemia | 40.101 | 11.432 | 68.770 | 0.006 |
Intestinal perforation | 17.574 | 7.246 | 27.901 | 0.001 |
Patent ductus arteriosus requiring surgery | 3.351 | −5.682 | 12.385 | 0.467 |
Grade Ⅲ/Ⅳ intraventricular hemorrhage | −1.599 | −8.550 | 5.351 | 0.652 |
Postnatal variables at blood sampling | ||||
Postnatal age in days | 6.689 | 5.425 | 7.952 | <0.001 |
Commencement of enteral nutrition | 11.395 | 4.959 | 17.830 | 0.001 |
Commencement of probiotics | 16.687 | 9.023 | 24.351 | <0.001 |
C-reactive protein (mg/dL) | 14.831 | 10.266 | 19.396 | <0.001 |
Variables | Regression Coefficient | p | ||
---|---|---|---|---|
Mean | 95% CI | |||
Lower | Upper | |||
Maternal variables | ||||
Antenatal steroid | 0.805 | −5.267 | 6.877 | 0.795 |
Postnatal age (day) | 6.574 | 4.510 | 8.639 | <0.001 |
Antenatal glucocorticoid × Postnatal age | −0.035 | −2.621 | 2.550 | 0.979 |
PROM | −9.218 | −15.220 | −3.215 | 0.003 |
Postnatal age (day) | 7.635 | 6.088 | 9.183 | <0.001 |
PROM x Postnatal age | −3.816 | −5.982 | −1.651 | 0.001 |
HDP | 7.521 | 2.721 | 12.321 | 0.002 |
Postnatal age (day) | 4.815 | 3.677 | 5.952 | <0.001 |
HDP x Postnatal age | 4.902 | 2.541 | 7.263 | <0.001 |
Maternal antibiotics | 0.799 | −5.837 | 7.436 | 0.813 |
Postnatal age (day) | 6.991 | 5.639 | 8.342 | <0.001 |
Maternal antibiotics x Postnatal age | −1.290 | −4.211 | 1.630 | 0.386 |
Chorioamnionitis | 8.639 | −0.837 | 18.116 | 0.074 |
Postnatal age (day) | 7.568 | 6.209 | 8.928 | <0.001 |
Chorioamnionitis x Postnatal age | −5.089 | −7.480 | −2.698 | <0.001 |
Funisitis | 0.387 | −7.841 | 8.616 | 0.927 |
Postnatal age (day) | 7.619 | 6.290 | 8.948 | <0.001 |
Funisitis x Postnatal age | −5.227 | −7.749 | −2.705 | <0.001 |
Variables at birth | ||||
Male sex | 5.968 | −0.187 | 12.124 | 0.057 |
Postnatal age (day) | 7.201 | 5.576 | 8.826 | <0.001 |
Male sex x Postnatal age | −1.544 | −4.121 | 1.033 | 0.24 |
Gestational age (week) | 1.202 | 0.056 | 2.348 | 0.04 |
Postnatal age (day) | 6.585 | 5.382 | 7.787 | <0.001 |
Gestational age x Postnatal age | 0.607 | 0.165 | 1.050 | 0.007 |
Birth weight | 0.008 | −0.008 | 0.025 | 0.314 |
Postnatal age (day) | 6.534 | 5.314 | 7.749 | <0.001 |
Birth weight x Postnatal age | −0.005 | −0.013 | 0.003 | 0.198 |
z-score of birth weight | −2.114 | −4.029 | −0.199 | 0.031 |
Postnatal age (day) | 6.392 | 5.401 | 7.382 | <0.001 |
z-score of birth weight x Postnatal age | −2.002 | −2.770 | −1.235 | <0.001 |
Apgar score (5 min) | 0.337 | −0.995 | 1.670 | 0.62 |
Postnatal age (day) | 6.597 | 5.336 | 7.857 | <0.001 |
Apgar score (5 min) x Postnatal age | 0.175 | −0.296 | 0.645 | 0.466 |
Cesarean delivery | −6.415 | −14.998 | 2.169 | 0.143 |
Postnatal age (day) | 3.918 | 1.577 | 6.258 | 0.001 |
Cesarean delivery x Postnatal age | 3.316 | 0.575 | 6.056 | 0.018 |
Postnatal variables | ||||
Postnatal antibiotics | 6.625 | −1.065 | 14.315 | 0.091 |
Postnatal age (day) | 5.755 | 4.515 | 6.995 | <0.001 |
Postnatal antibiotics x Postnatal age | 2.718 | −0.205 | 5.641 | 0.068 |
Septicemia | 88.338 | 18.734 | 157.942 | 0.013 |
Postnatal age (day) | 6.364 | 5.177 | 7.550 | <0.001 |
Septicemia x Postnatal age | −24.364 | −58.931 | 10.204 | 0.167 |
Intestinal perforation | 4.592 | −2.055 | 11.238 | 0.176 |
Postnatal age (day) | 6.401 | 5.061 | 7.740 | <0.001 |
Intestinal perforation x Postnatal age | 1.433 | −2.126 | 4.991 | 0.43 |
PDA requiring surgery | 2.891 | −5.767 | 11.550 | 0.513 |
Postnatal age (day) | 6.859 | 5.454 | 8.263 | <0.001 |
PDA requiring surgery x Postnatal age | −2.001 | −5.077 | 1.076 | 0.202 |
Severe IVH * | −1.920 | −7.812 | 3.972 | 0.523 |
Postnatal age (day) | 6.842 | 5.315 | 8.369 | <0.001 |
Severe IVH x Postnatal age | −1.257 | −3.568 | 1.054 | 0.286 |
Postnatal variables at blood sampling | ||||
Enteral nutrition ** | 3.375 | −4.588 | 11.338 | 0.406 |
Postnatal age (day) | 8.022 | 6.498 | 9.545 | <0.001 |
Enteral nutrition ** x Postnatal age | −5.548 | −8.777 | −2.319 | 0.001 |
Probiotics ** | 12.354 | 3.136 | 21.573 | 0.009 |
Postnatal age (day) | 6.677 | 5.248 | 8.106 | <0.001 |
Probiotics ** x Postnatal age | −4.720 | −8.859 | −0.580 | 0.025 |
C-reactive protein (mg/dL) | 14.553 | 10.083 | 19.023 | <0.001 |
Postnatal age (day) | 6.631 | 5.476 | 7.786 | <0.001 |
C-reactive protein x Postnatal age | −0.938 | −5.391 | 3.515 | 0.68 |
Variables | Early * | Late * | ||||||
---|---|---|---|---|---|---|---|---|
Regression Coefficient | p | Regression Coefficient | p | |||||
Mean | 95% CI | Mean | 95% CI | |||||
Lower | Upper | Lower | Upper | |||||
Premature rupture of membranes | −1.585 | −7.999 | 4.829 | 0.628 | −16.850 | −25.122 | −8.578 | <0.001 |
Hypertensive disorders of pregnancy | −2.282 | −8.317 | 3.752 | 0.459 | 17.324 | 9.958 | 21.249 | <0.001 |
Chorioamnionitis | 18.817 | 8.500 | 29.133 | <0.001 | −1.538 | −12.442 | 9.366 | 0.782 |
Funisitis | 10.841 | 0.220 | 21.463 | 0.045 | −10.067 | −18.639 | −1.494 | 0.021 |
Gestational age in weeks | −0.013 | −1.457 | 1.431 | 0.986 | 2.416 | 0.965 | 3.868 | 0.001 |
z-score of birth weight | 1.891 | −0.389 | 4.171 | 0.104 | −6.119 | −8.736 | −3.502 | <0.001 |
Cesarean delivery | −13.046 | −24.449 | −1.643 | 0.025 | 0.217 | −8.582 | 9.015 | 0.961 |
Commencement of enteral nutrition | 14.471 | 2.096 | 26.846 | 0.022 | −7.721 | −15.276 | −0.167 | 0.045 |
Commencement of probiotics | 21.794 | 6.724 | 36.863 | 0.005 | 2.915 | −6.028 | 11.858 | 0.523 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, Y.; Iwata, S.; Yokoi, K.; Mizutani, Y.; Yoshikane, M.; Kawase, K.; Kato, T.; Kobayashi, S.; Goto, H.; Saitoh, S.; et al. Influence of Intrauterine Inflammation, Delivery, and Postnatal Feeding on the Temporal Changes of Serum Alpha 1 Acid Glycoprotein Levels in Extremely-Low-Birth-Weight Infants. Nutrients 2022, 14, 5162. https://doi.org/10.3390/nu14235162
Nakamura Y, Iwata S, Yokoi K, Mizutani Y, Yoshikane M, Kawase K, Kato T, Kobayashi S, Goto H, Saitoh S, et al. Influence of Intrauterine Inflammation, Delivery, and Postnatal Feeding on the Temporal Changes of Serum Alpha 1 Acid Glycoprotein Levels in Extremely-Low-Birth-Weight Infants. Nutrients. 2022; 14(23):5162. https://doi.org/10.3390/nu14235162
Chicago/Turabian StyleNakamura, Yasuhisa, Sachiko Iwata, Kyoko Yokoi, Yuko Mizutani, Masatoshi Yoshikane, Koya Kawase, Takenori Kato, Satoru Kobayashi, Haruo Goto, Shinji Saitoh, and et al. 2022. "Influence of Intrauterine Inflammation, Delivery, and Postnatal Feeding on the Temporal Changes of Serum Alpha 1 Acid Glycoprotein Levels in Extremely-Low-Birth-Weight Infants" Nutrients 14, no. 23: 5162. https://doi.org/10.3390/nu14235162
APA StyleNakamura, Y., Iwata, S., Yokoi, K., Mizutani, Y., Yoshikane, M., Kawase, K., Kato, T., Kobayashi, S., Goto, H., Saitoh, S., & Iwata, O. (2022). Influence of Intrauterine Inflammation, Delivery, and Postnatal Feeding on the Temporal Changes of Serum Alpha 1 Acid Glycoprotein Levels in Extremely-Low-Birth-Weight Infants. Nutrients, 14(23), 5162. https://doi.org/10.3390/nu14235162