Horticultural Therapy May Reduce Psychological and Physiological Stress in Adolescents with Anorexia Nervosa: A Pilot Study
Abstract
:1. Introduction
- To evaluate the impact of Horticultural Therapy (HCT) on the anorexic core psychopathology and psychiatric comorbidities;
- To assess the change in the stress level through the study of autonomic parameters (heart rate, heart rate variability, skin conductance, and facial thermography);
- To explore the olfactory function and its relationship with autonomic parameters as a possible variable of interest in response to odorous stimuli for both edible and non-edible compounds.
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Interventions
2.3.1. Treatment as Usual
2.3.2. Horticultural Therapy
2.4. Procedure
2.5. Instruments
2.5.1. Model Solutions Used for the Olfactory Stimulation
2.5.2. ECG Acquisition and Processing
- Time-domain features:
- o
- Heart rate (HR): number of heart pulses per unit of time. Measured in beats per minute (bpm);
- o
- Standard deviation of the normal R–R intervals (SDNN): measured in ms, it is an estimate of the HRV influenced by both the sympathetic and para-sympathetic branches of the ANS;
- o
- Root mean square of the successive differences (RMSSD): measured in ms, it represents the root mean square of the differences between neighboring R–R intervals. It is an estimate of the parasympathetic activity of the ANS;
- o
- Number of normal R–R intervals differing for more than 50 ms (NN50): it estimates the number (or the percentage) of the normal R–R intervals differing for more than 50 ms from each other. Under resting state short-term recordings, it refers to the parasympathetic activity of the ANS.
- Frequency-domain features:
- o
- Low frequency (LF): power spectral density of the ECG signal at low frequencies (0.04–0.15 Hz), employed as an estimator of the sympathetic activity of the ANS;
- o
- High frequency (HF): power spectral density of the ECG signal at high frequencies (0.15–0.4 Hz), employed as an estimator of the sympathetic and parasympathetic activity of the ANS;
- o
- Low- to high-frequency component ratio (LF/HF): it indicates the overall balance between low- and high-frequency components of the ECG signal.
2.5.3. GSR Acquisition and Processing
- o
- Tonic GSR component: mainly refers to slow changes in the electrical skin signal, dominant at rest and during relaxing activities, not including specific stimuli;
- o
- Phasic GSR component: extracted to study the response to the sensory (olfactory) stimulation, as it refers to quick responses to specific stimuli (also known as Skin Conductance Response, SCR).
2.5.4. Thermal Imaging Acquisition and Processing
2.6. Endpoint of the Study
- (1)
- (2)
- Basal level of stress evaluated by autonomic measures (values of Skin Conductance, SC; Heart Rate, HR and its variability, HRV; and facial thermal imaging);
- (3)
- Olfactory identification test (the number of correctly identified stimuli);
- (4)
- Level of stress during the olfactory test evaluated by autonomic response (values of Skin Conductance, SC, Heart Rate, HR, and its variability, HRV, and thermal mapping of the face, in response to olfactory stimuli).
2.7. Statistical Analysis of the Results
3. Results
3.1. Olfactory Stimuli
3.2. Clinical Assessment: Core Psychopathology and Psychiatric Comorbidities Variation
3.3. Cardiac Variables
3.4. Skin Conductance Responses
3.5. Thermal Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arcelus, J.; Mitchell, A.J.; Wales, J.; Nielsen, S. Mortality rates in patients with anorexia nervosa and other eating disorders. A meta-analysis of 36 studies. Arch. Gen. Psychiatry 2011, 68, 724–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang, U.; Goldacre, M.; James, A. Mortality following hospital discharge with a diagnosis of eating disorder: National record linkage study, England, 2001–2009. Int. J. Eat. Disord. 2014, 47, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Herpertz-Dahlmann, B. Adolescent eating disorders: Definitions, symptomatology, epidemiology and comorbidity. Child. Adol. Psych. Clin. 2008, 18, 31–47. [Google Scholar] [CrossRef] [PubMed]
- Favaro, A.; Tenconi, E.; Degortes, D.; Manara, R.; Santonastaso, P. Effects of obstetric complications on volume and functional connectivity of striatum in anorexia nervosa patients. Int. J. Eat. Disord. 2014, 47, 686–695. [Google Scholar] [CrossRef]
- Reas, D.L.; Rø, Ø. Time trends in healtHCTTare–detected incidence of anorexia nervosa and Bulimia nervosa in the Norwegian national patient register (2010–2016). Int. J. Eat. Disord. 2018, 51, 1144–1152. [Google Scholar] [CrossRef] [Green Version]
- van Eeden, A.E.; van Hoeken, D.; Hoek, H.W. Incidence, prevalence and mortality of anorexia nervosa and bulimia nervosa. Curr. Opin. Psychiatry 2021, 34, 515–524. [Google Scholar] [CrossRef]
- Oh, Y.A.; Park, S.A.; Ahn, B.E. Assessment of the psychopathological effects of a horticultural therapy program in patients with schizophrenia. Complement. Ther. Med. 2018, 36, 54–58. [Google Scholar] [CrossRef]
- Shao, Y.; Elsadek, M.; Liu, B. Horticultural Activity: Its Contribution to Stress Recovery and Wellbeing for Children. Int. J. Environ. Res. Public Health 2020, 17, 1229. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.S.; Lee, J.; Park, B.J.; Miyazaki, Y. Interaction with indoor plants may reduce psychological and physiological stress by suppressing autonomic nervous system activity in young adults: A randomized crossover study. J. Physiol. Anthropol. 2015, 34, 21. [Google Scholar] [CrossRef] [Green Version]
- Nicholas, S.O.; Giang, A.T.; Yap, P.L.K. The Effectiveness of Horticultural Therapy on Older Adults: A Systematic Review. J. Am. Med. Dir. Assoc. 2019, 20, 1351.e1–1351.e11. [Google Scholar] [CrossRef]
- Blair, C.K.; Adsul, P.; Guest, D.D.; Sussman, A.L.; Cook, L.S.; Harding, E.M.; Rodman, J.; Duff, D.; Burgess, E.; Quezada, K.; et al. Southwest Harvest for Health: An Adapted Mentored Vegetable Gardening Intervention for Cancer Survivors. Nutrients 2021, 13, 2319. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Ikei, H.; Miyazaki, Y. Physiological Effects of Nature Therapy: A Review of the Research in Japan. Int. J. Environ. Res. Public Health 2016, 13, 781. [Google Scholar] [CrossRef] [PubMed]
- Rappe, E. The Influence of a Green Environment and Horticultural Activities on the Subjective Well-Being of the Elderly Living in Long-Term Care; University of Helsinki: Helsinki, Finland, 2005. [Google Scholar]
- Ulrich, R.S.; Simons, R.F.; Losito, B.D.; Fiorito, E.; Miles, M.A.; Zelson, M. Stress recovery during exposure to natural and urban environments. J. Environ. Psychol. 1991, 11, 201–223. [Google Scholar] [CrossRef]
- Korpela, K.; Klemettilä, T.; Hietanen, J. Evidence for rapid affective evaluation of environmental scenes. Environ. Behav. 2002, 34, 634–650. [Google Scholar] [CrossRef]
- Zhong, Y.-Q.; Tu, H.-M. Horticultural Activity Type, Psychological Well-Being, and Fruit and Vegetable Intake. Nutrients 2020, 12, 3296. [Google Scholar] [CrossRef] [PubMed]
- Han, A.R.; Park, S.A.; Ahn, B.E. Reduced stress and improved physical functional ability in elderly with mental health problems following a horticultural therapy program. Complement. Ther. Med. 2018, 38, 19–23. [Google Scholar] [CrossRef]
- Pálsdóttir, M.R.; Grahn, P.; Persson, D. Changes in Experienced Value of Everyday Occupations After Nature-Based Vocational Rehabilitation. Scand. J. Occup. Ther. 2014, 21, 58–68. [Google Scholar]
- Clausen, L.; Rosenvinge, J.H.; Friborg, O.; Rokkedal, K. Validating the Eating Disorder Inventory-3 (EDI-3): A comparison between 561 female eating disorders patients and 878 females from the general population. J. Psychopathol. Behav. Assess. 2011, 33, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Cuzzolaro, M.; Vetrone, G.; Marano, G.; Garfinkel, P.E. The Body Uneasiness Test (BUT): Development and validation of a new body image assessment scale. Eat. Weight Disord. 2006, 11, 1–13. [Google Scholar] [CrossRef]
- Kovacs, M. Children’s Depression Inventory; Multi-Health Systems, Inc.: North Tonawanda, NY, USA, 1992. [Google Scholar]
- Tonacci, A.; Di Monte, J.; Meucci, M.B.; Sansone, F.; Pala, A.P.; Billeci, L.; Conte, R. Wearable Sensors to Characterize the Autonomic Nervous System Correlates of Food-Like Odors Perception: A Pilot Study. Electronics 2019, 8, 1481. [Google Scholar] [CrossRef] [Green Version]
- Tonacci, A.; Billeci, L.; Di Mambro, I.; Marangoni, R.; Sanmartin, C.; Venturi, F. Wearable Sensors for Assessing the Role of Olfactory Training on the Autonomic Response to Olfactory Stimulation. Sensors 2021, 21, 770. [Google Scholar] [CrossRef] [PubMed]
- Gioia, F.; Pascali, M.A.; Greco, A.; Colantonio, S.; Scilingo, E.P. Discriminating Stress From Cognitive Load Using Contactless Thermal Imaging Devices. In Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Virtual, 1–5 November 2021; pp. 608–611. [Google Scholar]
- Billeci, L.; Tonacci, A.; Brunori, E.; Raso, R.; Calderoni, S.; Maestro, S.; Morales, M.A. Autonomic Nervous System Response during Light Physical Activity in Adolescents with Anorexia Nervosa Measured by Wearable Devices. Sensors 2019, 19, 2820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billeci, L.; Tartarisco, G.; Brunori, E.; Crifaci, G.; Scardigli, S.; Balocchi, R.; Pioggia, G.; Maestro, S.; Morales, M.A. The role of wearable sensors and wireless technologies for the assessment of heart rate variability in anorexia nervosa. Eat. Weight Disord. 2015, 20, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Bachi, L.; Billeci, L.; Varanini, M. QRS Detection Based on Medical Knowledge and Cascades of Moving Average Filters. Appl. Sci. 2021, 11, 6995. [Google Scholar] [CrossRef]
- Billeci, L.; Marino, D.; Insana, L.; Vatti, G.; Varanini, M. Patient-specific seizure prediction based on heart rate variability and recurrence quantification analysis. PLoS ONE 2018, 13, e0204339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crifaci, G.; Billeci, L.; Tartarisco, G.; Balocchi, R.; Pioggia, G.; Brunori, E.; Maestro, S.; Morales, M.A. ECG and GSR measure and analysis using wearable systems: Application in anorexia nervosa adolescents. In Proceedings of the 8th International Symposium on Image and Signal Processing and Analysis (ISPA), Trieste, Italy, 4–6 September 2013; pp. 499–504. [Google Scholar]
- Benedek, M.; Kaernbach, C. A continuous measure of phasic electrodermal activity. J. Neurosci. Methods 2010, 190, 80–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puri, C.; Olson, L.; Pavlidis, I.; Levine, J.; Starren, J. Stresscam: Non-contact measurement of users’ emotional states through thermal imaging. In Proceedings of the CHI’05 Extended Abstracts on Human Factors in Computing Systems, Portland, OR, USA, 2–7 April 2005; pp. 1725–1728. [Google Scholar]
- Sorostinean, M.; Ferland, F.; Tapus, A. Reliable stress measurement using face temperature variation with a thermal camera in human-robot interaction. In Proceedings of the 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), Seoul, Republic of Korea, 3–5 November 2015; pp. 14–19. [Google Scholar]
- Filippini, C.; Spadolini, E.; Cardone, D.; Merla, A. Thermal imaging based affective computing for educational robot. Proceedings 2019, 27, 27. [Google Scholar]
- Chudecka, M.; Lubkowska, A. Thermal Imaging of Body Surface Temperature Distribution in Women with Anorexia Nervosa. Eur. Eat. Disord. Rev. 2016, 24, 57–61. [Google Scholar] [CrossRef]
- Tonacci, A.; Calderoni, S.; Billeci, L.; Maestro, S.; Fantozzi, P.; Ciuccoli, F.; Morales, M.A.; Narzisi, A.; Muratori, F. Autistic traits impact on olfactory processing in adolescent girls with Anorexia Nervosa restricting type. Psychiatry Res. 2019, 274, 20–26. [Google Scholar] [CrossRef]
- Curzio, O.; Calderoni, S.; Maestro, S.; Rossi, G.; De Pasquale, C.F.; Belmonti, V.; Apicella, F.; Muratori, F.; Retico, A. Lower gray matter volumes of frontal lobes and insula in adolescents with anorexia nervosa restricting type: Findings from a Brain Morphometry Study. Eur. Psychiatry 2020, 63, e27. [Google Scholar] [CrossRef] [PubMed]
- Poldrack, R.A.; Baker, C.I.; Durnez, J.; Gorgolewski, K.J.; Matthews, P.M.; Munafò, M.R.; Nichols, T.E.; Poline, J.B.; Vul, E.; Yarkoni, T. Scanning the horizon: Towards transparent and reproducible neuroimaging research. Nat. Rev. Neurosci. 2017, 18, 115–126. [Google Scholar] [CrossRef] [PubMed]
- McDermott, C.; Agras, W.S.; Crow, S.J.; Halmi, K.; Mitchell, J.E.; Bryson, S. Participant recruitment for an anorexia nervosa treatment study. Int. J. Eat. Disord. 2004, 35, 33–41. [Google Scholar] [CrossRef] [PubMed]
Sample Code | Odour Family | Specific Descriptor | Recipe |
---|---|---|---|
First trial | |||
1 | Fruity | Apricot | 80 mL of commercial juice + 100 mL of white table wine |
2 | Fresh vegetal | Tomato | 80 mL of commercial juice + 100 mL of white table wine |
3 | Fresh vegetal | Asparagus | 60 mL of cooking water + 100 mL of white table wine |
4 | Balsamic/woody | Swiss Pine | Commercial essential oil diluted in white table wine (1% v/v) |
5 | Fruity | Orange | 80 mL of commercial juice + 100 mL of white table wine |
6 | Floral | Lavender | Commercial essential oil diluted in white table wine (1% v/v) |
7 | Mediterranean spicy | Basil | Commercial essential oil diluted in white table wine (1% v/v) |
8 | Fresh vegetal | Olive oil | Pure EVOO |
9 | Fruity | Grapefruit | 80 mL of commercial juice + 100 mL of white table wine |
10 | Balsamic | Mint | Commercial essential oil diluted in white table wine (1% v/v) |
11 | Earthy | Dirt | Pure topsoil |
12 | Mediterranean spicy | Thyme | Commercial essential oil diluted in white table wine (1% v/v) |
Second trial | |||
1 | Fruity | Peach | 80 mL of commercial juice + 100 mL of white table wine |
2 | Fresh vegetal | Tomato | 80 mL of commercial juice + 100 mL of white table wine |
3 | Fresh vegetal | Sage | Commercial essential oil diluted in white table wine (1% v/v) |
4 | Balsamic/woody | Swiss Pine | Commercial essential oil diluted in white table wine (1% v/v) |
5 | Fruity | Orange | 80 mL of commercial juice + 100 mL of white table wine |
6 | Floral | Lavender | Commercial essential oil diluted in white table wine (1% v/v) |
7 | Mediterranean spicy | Basil | Commercial essential oil diluted in white table wine (1% v/v) |
8 | Fresh vegetal | Olive oil | Pure EVOO |
9 | Fruity | Tangerine | 80 mL of commercial juice + 100 mL of white table wine |
10 | Balsamic | Peppermint | Commercial essential oil diluted in white table wine (1% v/v) |
11 | Resinous | Scots pine | Commercial essential oil diluted in white table wine (1% v/v) |
12 | Mediterranean spicy | Thyme | Commercial essential oil diluted in white table wine (1% v/v) |
Variable | T0 | TF | Time Effect | Time × Group Effect | Post-Hoc |
---|---|---|---|---|---|
Body Mass Index | p = 0.17 | p = 0.96 | |||
Control | 16.56 (1.18) | 17.12 (0.86) | |||
Experimental | 17.33 (1.31) | 17.92 (1.23) | |||
Child Depression Inventory | p = 0.04 * | p = 0.47 | |||
Control | 42.50 (29.08) | 22.50 (3.42) | p = 0.25 | ||
Experimental | 30.00 (8.12) | 19.60 (12.28) | p = 0.02 * | ||
Body Uneasiness Test | p = 0.96 | p = 0.005 ** | |||
Control | 2.18 (1.27) | 3.39 (1.71) | p = 0.02 * | ||
Experimental | 3.40 (0.74) | 2.23 (1.49) | p = 0.08 | ||
Eating Disorder Inventory | |||||
Impulse to thinness | p = 0.46 | p = 0.04 * | |||
Control | 17.60 (8.82) | 21.40 (10.41) | p = 0.02 * | ||
Experimental | 23.80 (4.55) | 16.20 (8.89) | p = 0.08 | ||
Bulimia | p = 0.70 | p = 0.45 | |||
Control | 4.40 (3.67) | 5.60 (5.86) | |||
Experimental | 2.80 (2.17) | 2.40 (3.91) | |||
Dissatisfaction | p = 0.37 | p = 0.18 | |||
Control | 24.60 (14.08) | 26.60 (15.29) | |||
Experimental | 29.20 (9.06) | 19.80 (15.07) | |||
Risk | p = 0.47 | p = 0.11 | |||
Control | 46.60 (25.09) | 53.60 (29.16) | |||
Experimental | 55.80 (13.77) | 38.40 (29.50) | |||
Ineffectiveness | p = 0.28 | p = 0.08 | |||
Control | 25.60 (17.30) | 29.20 (17.08) | |||
Experimental | 36.80 (8.95) | 23.20 (14.82) | |||
Interpersonal Problems | p = 0.05 | p = 0.15 | |||
Control | 22.80 (11.77) | 21.00 (10.29) | |||
Experimental | 29.80 (6.38) | 19.20 (12.26) | |||
Affective Problems | p = 0.53 | p = 0.03 * | |||
Control | 23.60 (16.56) | 34.00 (20.83) | p = 0.17 | ||
Experimental | 38.25 (7.54) | 21.25 (17.84) | p = 0.03 * | ||
Overcontrol | p = 0.72 | p = 0.15 | |||
Control | 21.60 (10.94) | 28.40 (16.30) | |||
Experimental | 25.20 (10.13) | 21.00 (13.07) |
Variable | T0 | TF | Time Effect | Time × Group Effect | Post-Hoc |
---|---|---|---|---|---|
Baseline | |||||
HR | p = 0.35 | p = 0.21 | |||
Control | 69.41 (21.01) | 71.07 (6.17) | |||
Experimental | 80.32 (10.56) | 69.84 (13.24) | |||
SDNN | p = 0.21 | p = 0.86 | |||
Control | 0.04 (0.15) | 0.05 (0.02) | |||
Experimental | 0.04 (0.19) | 0.06 (0.02) | |||
RMSSD | p = 0.23 | p = 1.00 | |||
Control | 0.05 (0.02) | 0.06 (0.02) | |||
Experimental | 0.04 (0.03) | 0.05 (0.03) | |||
NN50 | p = 0.19 | p = 0.47 | |||
Control | 25.00 (6.83) | 32.43 (7.05) | |||
Experimental | 19.00 (21.04) | 21.33 (17.57) | |||
LFn | p = 0.27 | p = 0.29 | |||
Control | 0.17 (0.04) | 0.17 (0.04) | |||
Experimental | 0.29 (0.13) | 0.23 (0.12) | |||
HFn | p = 0.38 | p = 0.14 | |||
Control | 0.96 (0.79) | 0.85 (0.35) | |||
Experimental | 0.51 (0.48) | 0.92 (0.69) | |||
LF/HF | p = 0.03 * | p = 0.35 | |||
Control | 0.62 (0.79) | 0.26 (0.14) | p = 0.31 | ||
Experimental | 1.64 (1.53) | 0.86 (1.08) | p = 0.04 * | ||
Task ON | |||||
HR | p = 0.82 | p = 0.59 | |||
Control | 73.73 (22.21) | 75.34 (5.33) | |||
Experimental | 82.61 (10.35) | 78.74 (14.44) | |||
SDNN | p = 0.15 | p = 0.49 | |||
Control | 0.05 (0.02) | 0.05 (0.02) | |||
Experimental | 0.07 (0.03) | 0.06 (0.02) | |||
RMSSD | p = 0.28 | p = 0.80 | |||
Control | 0.05 (0.03) | 0.06 (0.02) | |||
Experimental | 0.03 (0.02) | 0.04 (0.02) | |||
NN50 | p = 0.02 * | p = 0.54 | |||
Control | 10.23 (2.65) | 4.87 (1.38) | p = 0.05 | ||
Experimental | 6.93 (7.15) | 3.46 (2.32) | p = 0.20 | ||
LFn | p < 0.001 ** | p = 0.25 | |||
Control | 0.21 (0.04) | 0.11 (0.01) | p = 0.007 ** | ||
Experimental | 0.25 (0.05) | 0.11 (0.01) | p = 0.002 ** | ||
HFn | p = 0.15 | p = 0.09 | |||
Control | 0.65 (0.60) | 0.23 (0.13) | |||
Experimental | 0.21 (0.17) | 0.25 (0.19) | |||
LF/HF | p = 0.05 | p = 0.22 | |||
Control | 1.49 (1.60) | 0.94 (0.62) | |||
Experimental | 3.18 (2.44) | 1.06 (0.88) | |||
Task OFF | |||||
HR | p = 0.45 | p = 0.47 | |||
Control | 74.50 (21.01) | 74.40 (6.81) | |||
Experimental | 85.29 (9.06) | 78.23 (14.60) | |||
SDNN | p = 0.69 | p = 0.26 | |||
Control | 0.08 (0.03) | 0.05 (0.02) | |||
Experimental | 0.06 (0.02) | 0.06 (0.02) | |||
RMSSD | p = 0.47 | p = 0.41 | |||
Control | 0.06 (0.03) | 0.05 (0.02) | |||
Experimental | 0.04 (0.02) | 0.04 (0.02) | |||
NN50 | p = 0.001 ** | p = 0.35 | |||
Control | 5.14 (0.75) | 13.13 (2.68) | p = 0.01 * | ||
Experimental | 2.78 (2.07) | 8.32 (5.33) | p = 0.03 * | ||
LFn | p = 0.001 * | p = 0.17 | |||
Control | 0.11 (0.03) | 0.18 (0.05) | p = 0.11 | ||
Experimental | 0.10 (0.03) | 0.23 (0.04) | p = 0.004 ** | ||
HFn | p = 0.12 | p = 0.38 | |||
Control | 0.37 (0.36) | 0.44 (0.21) | |||
Experimental | 0.15 (0.07) | 0.40 (0.34) | |||
LF/HF | p = 0.46 | p = 0.46 | |||
Control | 0.78 (0.60) | 0.79 (0.43) | |||
Experimental | 1.39 (1.00) | 2.16 (2.58) | |||
Recovery | |||||
HR | p = 0.96 | p = 0.40 | |||
Control | 66.89 (17.77) | 70.81 (2.52) | |||
Experimental | 78.95 (9.34) | 74.61 (14.81) | |||
SDNN | p = 0.25 | p = 0.48 | |||
Control | 0.05 (0.02) | 0.05 (0.02) | |||
Experimental | 0.04 (0.01) | 0.05 (0.02) | |||
RMSSD | p = 0.68 | p = 0.29 | |||
Control | 0.05 (0.02) | 0.05 (0.01) | |||
Experimental | 0.03 (0.02) | 0.04 (0.02) | |||
NN50 | p = 0.78 | p = 0.07 | |||
Control | 31.91 (5.39) | 26.50 (8.02) | |||
Experimental | 19.54 (18.39) | 23.66 (16.15) | |||
LFn | p = 0.81 | p = 0.83 | |||
Control | 0.26 (0.12) | 0.24 (0.12) | |||
Experimental | 0.27 (0.12) | 0.27 (0.14) | |||
HFn | p = 0.74 | p = 0.13 | |||
Control | 1.03 (0.72) | 0.78 (0.27) | |||
Experimental | 0.44 (0.34) | 0.82 (0.67) | |||
LF/HF | p = 0.45 | p = 0.44 | |||
Control | 0.59 (0.77) | 0.58 (0.61) | |||
Experimental | 1.42 (1.25) | 3.54 (6.56) |
Variable | T0 | TF | Time Effect | Time x Group Effect | Post-Hoc |
---|---|---|---|---|---|
Baseline | |||||
Tonic | p = 0.09 | p = 0.21 | |||
Control | 1.31 (0.94) | 1.07 (0.60) | |||
Experimental | 2.16 (1.22) | 0.81 (0.44) | |||
Task ON | |||||
Tonic | p = 0.05 | p = 0.47 | |||
Control | 2.74 (2.30) | 1.29 (0.87) | |||
Experimental | 4.16 (1.94) | 1.42 (1.33) | |||
Phasic | p = 0.15 | p = 0.70 | |||
Control | 0.24 (0.24) | 0.04 (0.02) | |||
Experimental | 0.51 (0.50) | 0.17 (0.34) | |||
nSCR | p = 0.05 | p = 0.89 | |||
Control | 6.33 (2.82) | 2.82 (1.98) | |||
Experimental | 6.83 (1.93) | 3.88 (3.24) | |||
Task OFF | |||||
Tonic | p = 0.05 | p = 0.41 | |||
Control | 2.73 (2.21) | 1.30 (0.86) | |||
Experimental | 4.38 (2.11) | 1.42 (1.31) | |||
Phasic | p = 0.06 | p = 0.34 | |||
Control | 0.14 (0.31) | 0.06 (0.05) | |||
Experimental | 0.30 (0.21) | 0.08 (0.12) | |||
nSCR | p = 0.01 * | p = 0.10 | |||
Control | 14.94 (7.31) | 11.19 (5.47) | p = 0.41 | ||
Experimental | 23.78 (4.33) | 10.71 (4.52) | p = 0.01 * | ||
Recovery | |||||
Tonic | p = 0.06 | p = 0.32 | |||
Control | 1.80 (0.89) | 0.92 (0.55) | |||
Experimental | 3.87 (1.83) | 1.42 (1.14) |
Variable | T0 | TF | Time Effect | Time × Group Effect | Post-Hoc |
---|---|---|---|---|---|
Acclimatization | |||||
Nose | p = 0.01 * | p = 0.94 | |||
Control | 31.38 (5.68) | 26.14 (2.08) | p = 0.10 | ||
Experimental | 35.15 (1.63) | 30.15 (4.49) | p = 0.09 | ||
Septum | p = 0.04 * | p = 0.875 | |||
Control | 33.36 (3.55) | 31.37 (2.21) | p = 0.26 | ||
Experimental | 35.03 (1.46) | 32.40 (2.15) | p = 0.09 | ||
Frontal right | p = 0.005 ** | p = 0.61 | |||
Control | 35.80 (1.75) | 34.39 (1.03) | p = 0.14 | ||
Experimental | 36.14 (0.39) | 34.27 (0.66) | p = 0.006 ** | ||
Frontal left | p = 0.04 * | p = 0.31 | |||
Control | 35.47 (2.06) | 34.79 (0.57) | p = 0.52 | ||
Experimental | 36.23 (0.39) | 34.43 (0.55) | p = 0.005 ** | ||
Nose-frontal § | p = 0.03 * | p = 0.77 | |||
Control | 4.25 (3.98) | 8.16 (1.15) | p = 0.10 | ||
Experimental | 1.03 (1.30) | 4.11 (4.26) | p = 0.22 | ||
Resting | |||||
Nose | p = 0.005 ** | p = 0.78 | |||
Control | 33.71 (5.21) | 27.45 (3.53) | p = 0.07 | ||
Experimental | 35.60 (2.09) | 30.22 (3.51) | p = 0.02 * | ||
Septum | p = 0.01 * | p = 0.81 | |||
Control | 34.43 (3.12) | 31.66 (2.38) | p = 0.18 | ||
Experimental | 35.71 (1.23) | 32.48 (1.95) | p = 0.01 * | ||
Frontal right | p < 0.001 ** | p = 0.94 | |||
Control | 36.42 (1.45) | 34.21 (1.28) | p = 0.02 * | ||
Experimental | 36.41 (0.41) | 34.25 (0.70) | p = 0.003 ** | ||
Frontal left | p = 0.001 ** | p = 0.35 | |||
Control | 36.12 (1.70) | 34.62 (0.60) | p = 0.09 | ||
Experimental | 36.55 (0.79) | 34.28 (0.60) | p = 0.005 ** | ||
Nose-frontal § | p = 0.01 * | p = 0.58 | |||
Control | 2.56 (3.97) | 7.25 (3.41) | p = 0.07 | ||
Experimental | 0.87 (1.84) | 4.13 (3.45) | p = 0.11 |
Facial ROI | Subject Group | T0 | TF | Temp. Variation (%) | Temp. Variation |
---|---|---|---|---|---|
Reduced | |||||
Nose | Control | 2.33 | −1.31 | 43.78 | TRUE |
Experimental | 0.45 | 0.07 | 84.44 | ||
Septum | Control | 1.07 | 0.29 | 72.90 | TRUE |
Experimental | 0.68 | 0.08 | 88.23 | ||
Frontal right | Control | 0.62 | −0.18 | 70.97 | TRUE |
Experimental | 0.27 | −0.02 | 92.59 | ||
Frontal left | Control | −1.35 | −0.17 | 87.41 | FALSE |
Experimental | 0.32 | −0.15 | 53.13 | ||
Nose-Frontal | Control | −1.69 | −0.91 | 46.15 | TRUE |
Experimental | −0.16 | 0.02 | 87.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curzio, O.; Billeci, L.; Belmonti, V.; Colantonio, S.; Cotrozzi, L.; De Pasquale, C.F.; Morales, M.A.; Nali, C.; Pascali, M.A.; Venturi, F.; et al. Horticultural Therapy May Reduce Psychological and Physiological Stress in Adolescents with Anorexia Nervosa: A Pilot Study. Nutrients 2022, 14, 5198. https://doi.org/10.3390/nu14245198
Curzio O, Billeci L, Belmonti V, Colantonio S, Cotrozzi L, De Pasquale CF, Morales MA, Nali C, Pascali MA, Venturi F, et al. Horticultural Therapy May Reduce Psychological and Physiological Stress in Adolescents with Anorexia Nervosa: A Pilot Study. Nutrients. 2022; 14(24):5198. https://doi.org/10.3390/nu14245198
Chicago/Turabian StyleCurzio, Olivia, Lucia Billeci, Vittorio Belmonti, Sara Colantonio, Lorenzo Cotrozzi, Carlotta Francesca De Pasquale, Maria Aurora Morales, Cristina Nali, Maria Antonietta Pascali, Francesca Venturi, and et al. 2022. "Horticultural Therapy May Reduce Psychological and Physiological Stress in Adolescents with Anorexia Nervosa: A Pilot Study" Nutrients 14, no. 24: 5198. https://doi.org/10.3390/nu14245198
APA StyleCurzio, O., Billeci, L., Belmonti, V., Colantonio, S., Cotrozzi, L., De Pasquale, C. F., Morales, M. A., Nali, C., Pascali, M. A., Venturi, F., Tonacci, A., Zannoni, N., & Maestro, S. (2022). Horticultural Therapy May Reduce Psychological and Physiological Stress in Adolescents with Anorexia Nervosa: A Pilot Study. Nutrients, 14(24), 5198. https://doi.org/10.3390/nu14245198