Nutritional Biomarkers and Heart Rate Variability in Patients with Subacute Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Nutritional Biomarkers
2.3. Heart Rate Variability
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Comparison of the HRV Parameters among Subgroups Categorized by Serum Albumin Level
3.3. Comparison of the HRV Parameters among Subgroups Categorized by Serum Prealbumin Level
3.4. Comparison of the HRV Parameters among Subgroups Categorized by Serum Transferrin Level
3.5. Correlation of Serum Albumin, Prealbumin, Transferrin Level with HRV Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, N.C.; Salter, K.L.; Robertson, J.; Teasell, R.W.; Woodbury, M.G. Which reported estimate of the prevalence of malnutrition after stroke is valid? Stroke 2009, 40, e66–e74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, F.; Emery, P.W.; Weekes, C.E. Risk of malnutrition is an independent predictor of mortality, length of hospital stay, and hospitalization costs in stroke patients. J. Stroke Cerebrovasc. Dis. 2016, 25, 799–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, H.; Gong, F.; Guo, H.; Dai, Z.; Wang, J.; Liu, B.; Li, T.; Tang, X.; Dong, J.; Pan, S.; et al. Malnutrition and risk of mortality in ischemic stroke patients treated with intravenous thrombolysis. Front. Aging Neurosci. 2022, 14, 834973. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, V.; Guida, S.; Holdoway, A.; Strilciuc, S.; Baijens, L.; Schols, J.; van Helvoort, A.; Lansink, M.; Muresanu, D.F. Impaired nutritional condition after stroke from the hyperacute to the chronic phase: A systematic review and meta-analysis. Front. Neurol. 2021, 12, 780080. [Google Scholar] [CrossRef]
- Keller, U. Nutritional laboratory markers in malnutrition. J. Clin. Med. 2019, 8, 775. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulou, S.K.; Voulgaridou, G.; Kondyli, F.S.; Drakaki, M.; Sianidou, K.; Andrianopoulou, R.; Rodopaios, N.; Pritsa, A. Nutritional and nutrition-related biomarkers as prognostic factors of sarcopenia, and their role in disease progression. Diseases 2022, 10, 42. [Google Scholar] [CrossRef]
- Sawada, S.; Ozaki, H.; Natsume, T.; Nakano, D.; Deng, P.; Yoshihara, T.; Osawa, T.; Kobayashi, H.; Machida, S.; Naito, H. Serum albumin levels as a predictive biomarker for low-load resistance training programs’ effects on muscle thickness in the community-dwelling elderly Japanese population: Interventional study result. BMC Geriatr. 2021, 21, 464. [Google Scholar] [CrossRef]
- Smith, S.H. Using albumin and prealbumin to assess nutritional status. Nursing 2017, 47, 65–66. [Google Scholar] [CrossRef]
- Ingenbleek, Y. Plasma transthyretin as a biomarker of sarcopenia in elderly subjects. Nutrients 2019, 11, 895. [Google Scholar] [CrossRef] [Green Version]
- Takemoto, E.; Yoo, J.; Blizzard, S.R.; Shannon, J.; Marshall, L.M. Preoperative prealbumin and transferring: Relation to 30-day risk of complication in elective spine surgical patients. Medicine 2019, 98, e14741. [Google Scholar] [CrossRef]
- Sergi, G.; Coin, A.; Enzi, G.; Volpato, S.; Inelmen, E.M.; Buttarello, M.; Peloso, M.; Mulone, S.; Marin, S.; Bonometto, P. Role of visceral proteins in detecting malnutrition in the elderly. Eur. J. Clin. Nutr. 2006, 60, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Mrad, I.; Ben Mrad, M.; Besbes, B.; Zairi, I.; Ben Kahla, N.; Kamoun, S.; Mzoughi, K.; Kraiem, S. Heart rate variability as an indicator of autonomic nervous system disturbance in Behcet’s disease. Int. J. Gen. Med. 2021, 14, 4877–4886. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Goldenberg, I.; Goldkorn, R.; Shlomo, N.; Einhorn, M.; Levitan, J.; Kuperstein, R.; Klempfner, R.; Johnson, B. Heart rate variability for risk assessment of myocardial ischemia in patients without known coronary artery disease: The HRV-detect (heart rate variability for the detection of myocardial ischemia) study. J. Am. Heart Assoc. 2019, 8, e014540. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.C.; Wu, Y.L.; Tsai, P.S. Heart rate variability and risk of all-cause death and cardiovascular events in patients with cardiovascular disease: A meta-analysis of cohort studies. Biol. Res. Nurs. 2020, 22, 45–56. [Google Scholar] [CrossRef]
- Sessa, F.; Anna, V.; Messina, G.; Cibelli, G.; Monda, V.; Marsala, G.; Ruberto, M.; Biondi, A.; Cascio, O.; Bertozzi, G.; et al. Heart rate variability as predictive factor for sudden cardiac death. Aging 2018, 10, 166–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lees, T.; Shad-Kaneez, F.; Simpson, A.M.; Nassif, N.T.; Lin, Y.; Lal, S. Heart rate variability as a biomarker for predicting stroke, post-stroke complications and functionality. Biomark. Insights 2018, 13, 1177271918786931. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Meng, X.; Pan, Y.; Li, Z.; Wang, M.; Wang, Y. The association between heart rate variability and 90-day prognosis in patients with transient ischemic attack and minor stroke. Front. Neurol. 2021, 12, 636474. [Google Scholar] [CrossRef]
- Kuzemczak, M.; Białek-Ławniczak, P.; Torzyńska, K.; Janowska-Kulińska, A.; Miechowicz, I.; Kramer, L.; Moczko, J.; Siminiak, T. Comparison of baseline heart rate variability in stable ischemic heart disease patients with and without stroke in long-term observation. J. Stroke Cerebrovasc. Dis. 2016, 25, 2526–2534. [Google Scholar] [CrossRef]
- Grassi, G.; Quarti-Trevano, F.; Seravalle, G.; Arenare, F.; Volpe, M.; Furiani, S.; Dell’Oro, R.; Mancia, G. Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension 2011, 57, 846–851. [Google Scholar] [CrossRef]
- Akirov, A.; Masri-Iraqi, H.; Atamna, A.; Shimon, I. Low albumin levels are associated with mortality risk in hospitalized patients. Am. J. Med. 2017, 130, e1411–e1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Pan, Y.; Tang, X.; Hao, G.; Xie, Y.; Ma, S.; Luo, J.; Guo, D.; Ding, F. Serum prealbumin and its changes over time are associated with mortality in acute kidney injury. Sci. Rep. 2017, 7, 41493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roche, M.; Law, T.Y.; Kurowicki, J.; Sodhi, N.; Rosas, S.; Elson, L.; Summers, S.; Sabeh, K.; Mont, M.A. Albumin, prealbumin, and transferrin may be predictive of wound complications following total knee arthroplasty. J. Knee Surg. 2018, 31, 946–951. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Kim, B.J.; Han, M.K.; Kim, J.T.; Choi, K.H.; Shin, D.I.; Cha, J.K.; Kim, D.H.; Kim, D.E.; Ryu, W.S.; et al. Effect of heart rate on 1-year outcome for patients with acute ischemic stroke. J. Am. Heart Assoc. 2022, 11, e025861. [Google Scholar] [CrossRef] [PubMed]
- Maida, C.; Tuttolomondo, A.; Di Raimondo, D.; Daidone, M.; Pinto, A. Management of blood pressure and heart rate in patients with acute stroke. Curr. Pharm. Des. 2017, 23, 4583–4597. [Google Scholar] [CrossRef]
- Zhao, M.; Guan, L.; Wang, Y. The association of autonomic nervous system function with ischemic stroke, and treatment strategies. Front. Neurol. 2019, 10, 1411. [Google Scholar] [CrossRef]
- Xiong, L.; Tian, G.; Leung, H.; Soo, Y.O.Y.; Chen, X.; Ip, V.H.L.; Mok, V.C.T.; Chu, W.C.W.; Wong, K.S.; Leung, T.W.H. Autonomic dysfunction predicts clinical outcomes after acute ischemic stroke: A prospective observational study. Stroke 2018, 49, 215–218. [Google Scholar] [CrossRef]
- Korpelainen, J.T.; Sotaniemi, K.A.; Myllylä, V.V. Autonomic nervous system disorders in stroke. Clin. Auton. Res. 1999, 9, 325–333. [Google Scholar] [CrossRef]
- Mo, J.; Huang, L.; Peng, J.; Ocak, U.; Zhang, J.; Zhang, J.H. Autonomic disturbances in acute cerebrovascular disease. Neurosci. Bull. 2019, 35, 133–144. [Google Scholar] [CrossRef]
- Guan, L.; Collet, J.P.; Mazowita, G.; Claydon, V.E. Autonomic nervous system and stress to predict secondary ischemic events after transient ischemic attack or minor stroke: Possible implications of heart rate variability. Front. Neurol. 2018, 9, 90. [Google Scholar] [CrossRef]
- Lee, Y.B.; Jun, J.E.; Lee, S.E.; Ahn, J.; Kim, G.; Jee, J.H.; Bae, J.C.; Jin, S.M.; Kim, J.H. Utility of serum albumin for predicting incident metabolic syndrome according to hyperuricemia. Diabetes Metab. J. 2018, 42, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.H.; Akbani, H.; Croft, D.C.; Worth, D.P. The relationship between serum albumin and hydration status in hemodialysis patients. J. Ren. Nutr. 2002, 12, 209–212. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.H.; Liao, L.N.; Chang, C.W.; Chang, Y.C.; Wu, K.H.; Ko, J.L. The alteration of ferritin and transferrin saturation under body mass index and blood pressure in first-time and regular male blood donors in Taiwan. Medicine 2019, 98, e15854. [Google Scholar] [CrossRef]
- Wu, E.C.-H.; Huang, Y.-T.; Chang, Y.-M.; Chen, I.-L.; Yang, C.-L.; Leu, S.-C.; Su, H.-L.; Kao, J.-L.; Tsai, S.-C.; Jhen, R.-N.; et al. The association between nutritional markers and heart rate variability indices in patients undergoing chronic hemodialysis. J. Clin. Med. 2019, 8, 1700. [Google Scholar] [CrossRef] [Green Version]
- Ferrario, M.; Moissl, U.; Garzotto, F.; Cruz, D.N.; Clementi, A.; Brendolan, A.; Tetta, C.; Gatti, E.; Signorini, M.G.; Cerutti, S.; et al. Effects of fluid overload on heart rate variability in chronic kidney disease patients on hemodialysis. BMC Nephrol. 2014, 15, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basolo, A.; Ando, T.; Chang, D.C.; Hollstein, T.; Krakoff, J.; Piaggi, P.; Votruba, S. Reduced albumin concentration predicts weight gain and higher ad libitum energy intake in humans. Front. Endocrinol. 2021, 12, 642568. [Google Scholar] [CrossRef]
- Matsuura, S.; Shirai, Y.; Kubo, M.; Nayama, C.; Okitsu, M.; Oiwa, Y.; Yasui, S.; Suzuki, Y.; Murata, T.; Ishikawa, E.; et al. Body fat mass is correlated with serum transthyretin levels in maintenance hemodialysis patients. J. Med. Investig. 2017, 64, 222–227. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.A.; Park, Y.G.; Cho, K.H.; Hong, M.H.; Han, H.C.; Choi, Y.S.; Yoon, D. Heart rate variability and obesity indices: Emphasis on the response to noise and standing. J. Am. Board Fam. Pract. 2005, 18, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Shenkin, A.; Cederblad, G.; Elia, M.; Isaksson, B. Laboratory assessment of protein-energy status. Clin. Chim. Acta 1996, 253, S5–S59. [Google Scholar] [CrossRef]
- Unger, R.H. Longevity, lipotoxicity and leptin: The adipocyte defense against feasting and famine. Biochimie 2005, 87, 57–64. [Google Scholar] [CrossRef]
- Kuo, G.; Chen, S.W.; Huang, J.Y.; Wu, C.Y.; Fu, C.M.; Chang, C.H.; Liu, S.H.; Chan, Y.H.; Wu, I.W.; Yang, H.Y. Short-term heart rate variability as a predictor of long-term survival in patients with chronic hemodialysis: A prospective cohort study. J. Formos. Med. Assoc. 2018, 117, 1058–1064. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Value |
---|---|
Age (years) | 67.03 ± 13.03 |
Sex | |
Male | 197 (46.20) |
Female | 229 (53.80) |
Type of stroke | |
Ischemic | 278 (65.30) |
Hemorrhagic | 148 (34.70) |
Comorbidities | |
Hypertension | 260 (61.00) |
Arrhythmia | 74 (17.40) |
Diabetes mellitus | 158 (37.10) |
Dyslipidemia | 325 (76.30) |
Coronary artery disease | 22 (5.20) |
Heart failure | 70 (16.40) |
Medication | |
Beta blocker | 87 (20.40) |
Calcium channel blocker | 193 (45.30) |
ACE-i/ARB | 199 (46.70) |
Diuretics | 228 (53.50) |
MMSE | 14.08 ± 8.25 |
MBI | 39.35 ± 17.62 |
BMI (kg/m2) | 21.66 ± 2.06 |
Nutritional biomarkers | |
Albumin (g/dL) | 2.99 ± 0.58 |
Prealbumin (mg/dL) | 19.36 ± 3.72 |
Transferrin (mg/dL) | 246.77 ± 99.62 |
HRV parameter (Frequency domain) | |
VLF (ms2) | 619.06 ± 223.28 |
LF (ms2) | 421.44 ± 154.90 |
HF (ms2) | 179.04 ± 71.17 |
LF/HF ratio | 5.55 ± 2.66 |
HRV parameter (Time domain) | |
SDNN (ms) | 100.51 ± 28.52 |
SDANN (ms) | 101.87 ± 29.10 |
ASDNN (ms) | 50.03 ± 11.74 |
rMSSD (ms) | 26.34 ± 6.23 |
pNN50 (%) | 49.41 ± 23.60 |
Albumin-Deficient Group (n = 321) | Normal Group (n = 105) | p-Value | |
---|---|---|---|
Frequency domain | |||
VLF (ms2) | 543.89 ± 264.70 | 602.81 ± 230.75 | 0.029 * |
LF(ms2) | 376.53 ± 180.21 | 424.84 ± 163.12 | 0.011 * |
HF(ms2) | 147.72 ± 82.09 | 183.20 ± 71.82 | 0.003 * |
LF/HF ratio | 4.13 ± 2.90 | 5.70 ± 2.58 | 0.003 * |
Time domain | |||
SDNN (ms) | 90.53 ± 31.02 | 99.32 ± 30.41 | 0.01 * |
SDANN (ms) | 92.61 ± 34.12 | 99.32 ± 30.41 | 0.58 |
ASDNN (ms) | 47.44 ± 13.27 | 50.29 ± 11.48 | 0.03 * |
rMSSD (ms) | 24.90 ± 7.43 | 26.70 ± 6.69 | 0.02 * |
pNN50 (%) | 45.75 ± 27.47 | 49.85 ± 23.00 | 0.13 |
Prealbumin-Deficient Group (n = 237) | Normal Group (n = 189) | p-Value | |
---|---|---|---|
Frequency domain | |||
VLF (ms2) | 585.99 ± 250.44 | 664.85 ± 260.34 | 0.002 * |
LF(ms2) | 391.12 ± 175.31 | 430.32 ± 161.25 | 0.017 * |
HF(ms2) | 159.54 ± 79.64 | 186.34 ± 70.81 | 0.003 * |
LF/HF ratio | 4.98 ± 2.87 | 5.58 ± 2.62 | 0.026 * |
Time domain | |||
SDNN (ms) | 93.46 ± 30.39 | 99.85 ± 29.03 | 0.028 * |
SDANN (ms) | 95.34 ± 32.05 | 99.51 ± 30.91 | 0.174 |
ASDNN (ms) | 48.01 ± 12.56 | 50.85 ± 11.39 | 0.015 * |
rMSSD (ms) | 25.85 ± 6.96 | 26.57 ± 6.87 | 0.286 |
pNN50 (%) | 48.75 ± 25.97 | 48.91 ± 22.75 | 0.946 |
Transferrin-Deficient Group (n = 161) | Normal Group (n = 265) | p-Value | |
---|---|---|---|
Frequency domain | |||
VLF (ms2) | 583.48 ± 244.77 | 706.20 ± 263.56 | 0.002 * |
LF (ms2) | 405.84 ± 173.17 | 448.89 ± 171.33 | 0.013 * |
HF (ms2) | 167.63 ± 77.57 | 185.69 ± 72.03 | 0.017 * |
LF/HF ratio | 5.18 ± 2.83 | 5.85 ± 2.79 | 0.018 * |
Time domain | |||
SDNN (ms) | 96.26 ± 30.66 | 98.25 ± 28.31 | 0.504 |
SDANN (ms) | 96.79 ± 31.62 | 99.79 ± 31.17 | 0.278 |
ASDNN (ms) | 49.18 ± 12.48 | 50.26 ± 11.16 | 0.366 |
rMSSD (ms) | 25.89 ± 6.95 | 26.85 ± 6.83 | 0.164 |
pNN50 (%) | 48.51 ± 24.97 | 49.38 ± 22.96 | 0.719 |
Albumin | Prealbumin | Transferrin | |
---|---|---|---|
Frequency domain | |||
VLF (ms2) | r = 0.314 | r = 0.313 | r = 0.307 |
p = 0.003 * | p = 0.004 * | p = 0.009 * | |
LF (ms2) | r = 0.223 | r = 0.226 | r = 0.219 |
p = 0.003 * | p = 0.002 * | p = 0.003 * | |
HF (ms2) | r = 0.218 | r = 0.257 | r = 0.254 |
p = 0.005 * | p = 0.004 * | p = 0.005 * | |
LF/HF ratio | r = 0.256 | r = 0.257 | r = 0.254 |
p = 0.008 * | p = 0.007 * | p = 0.001 * | |
Time domain | |||
SDNN (ms) | r = 0.124 | r = 0.127 | r = 0.126 |
p = 0.011 * | p = 0.009 * | p = 0.009 * | |
SDANN (ms) | r = 0.099 | r = 0.116 | r = 0.122 |
p = 0.041 * | p = 0.030 * | p = 0.034 * | |
ASDNN (ms) | r = 0.116 | r = 0.122 | r = 0.121 |
p = 0.017 * | p = 0.012 * | p = 0.012 * | |
rMSSD (ms) | r = 0.122 | r = 0.127 | r = 0.121 |
p = 0.011 * | p = 0.009 * | p = 0.012 * | |
pNN50 (%) | r = 0.075 | r = 0.079 | r = 0.076 |
p = 0.122 | p = 0.104 | p = 0.118 |
Standardized β | B | p-Value | Adjusted R2 | ||
---|---|---|---|---|---|
Albumin | Constant | 0.284 | 0.174 | ||
VLF | 0.237 | 0.005 | <0.001 ** | ||
LF/HF ratio | 0.157 | 0.032 | 0.001 * | ||
LF | 0.139 | 0.005 | 0.002 * | ||
HF | 0.128 | 0.010 | 0.005 * | ||
Prealbumin | Constant | 11.040 | 0.176 | ||
VLF | 0.236 | 0.003 | <0.001 ** | ||
LF/HF ratio | 0.157 | 0.207 | 0.001 * | ||
LF | 0.143 | 0.003 | 0.002 * | ||
HF | 0.130 | 0.006 | 0.005 * | ||
Transferrin | Constant | 40.408 | 0.170 | ||
VLF | 0.230 | 0.089 | <0.001 ** | ||
LF/HF ratio | 0.156 | 5.485 | 0.001 * | ||
LF | 0.140 | 0.081 | 0.002 * | ||
HF | 0.131 | 0.171 | 0.005 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, E.J.; Yoo, S.D. Nutritional Biomarkers and Heart Rate Variability in Patients with Subacute Stroke. Nutrients 2022, 14, 5320. https://doi.org/10.3390/nu14245320
Park EJ, Yoo SD. Nutritional Biomarkers and Heart Rate Variability in Patients with Subacute Stroke. Nutrients. 2022; 14(24):5320. https://doi.org/10.3390/nu14245320
Chicago/Turabian StylePark, Eo Jin, and Seung Don Yoo. 2022. "Nutritional Biomarkers and Heart Rate Variability in Patients with Subacute Stroke" Nutrients 14, no. 24: 5320. https://doi.org/10.3390/nu14245320
APA StylePark, E. J., & Yoo, S. D. (2022). Nutritional Biomarkers and Heart Rate Variability in Patients with Subacute Stroke. Nutrients, 14(24), 5320. https://doi.org/10.3390/nu14245320