Oxidized Dietary Oil, High in Omega-3 and Omega-6 Polyunsaturated Fatty Acids, Induces Antioxidant Responses in a Human Intestinal HT29 Cell Line
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dietary Oil with Different Degrees of Oxidation
2.2. Culturing of HT29 Cells
2.3. Preparation of Substrates for The In Vitro Studies in HT29 Cells
2.4. Cell Trials
2.5. Hydroxyalkenals in Cells and Growth Medium
2.6. Gene Expression
2.7. Viability of Cells
2.8. Enzyme Activity
2.8.1. Superoxide Dismutase
2.8.2. Catalase
2.9. Statistical Analysis
3. Results
3.1. Hydroxyalkenals in Cells and Cellular Responses to Oxidized Camelina Oil (Oxidized oil Study; Trial 1)
3.1.1. Hydroxyalkenals in Cells
3.1.2. Gene Expression
3.1.3. Antioxidant Enzymes
3.2. Cellular Responses to Two Different Concentrations of HHE and HNE (Concentration Study; Trial 2)
3.2.1. Gene Expression
3.2.2. Activity of Antioxidant Enzymes
3.3. Cellular Responses to HHE over Time (Time Response Study of HHE; Trial 3)
3.3.1. Uptake of Hydroxyalkenals
3.3.2. Gene Expression
3.3.3. Activity of Antioxidant Enzymes
3.4. Verification of HHE uptake into HT29 cells (Verification study; Trial 4)
Cellular Content of HHE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Healthy Diet Fact Sheet N°394. 2015. Available online: www.who.int/publications/m/item/healthy-diet-factsheet394 (accessed on 13 November 2022).
- Das, U. Biological significance of essential fatty acids. J. Assoc. Physicians India 2006, 54, 309. [Google Scholar]
- Calder, P.C. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 2006, 83, 1505S–1519S. [Google Scholar] [CrossRef] [Green Version]
- Serhan, C.N.; Petasis, N.A. Resolvins and protectins in inflammation resolution. Chem. Rev. 2011, 111, 5922–5943. [Google Scholar] [CrossRef] [Green Version]
- Niki, E.; Yoshida, Y.; Saito, Y.; Noguchi, N. Lipid peroxidation: Mechanisms, inhibition, and biological effects. Biochem. Biophys. Res. Commun. 2005, 338, 668–676. [Google Scholar] [CrossRef]
- Bochkov, V.N.; Oskolkova, O.V.; Birukov, K.G.; Levonen, A.-L.; Binder, C.J.; Stöckl, J. Generation and biological activities of oxidized phospholipids. Antioxid. Redox Signal. 2010, 12, 1009–1059. [Google Scholar] [CrossRef] [Green Version]
- Esterbauer, H.; Schaur, R.J.; Zollner, H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 1991, 11, 81–128. [Google Scholar] [CrossRef]
- Binder, C.J.; Papac-Milicevic, N.; Witztum, J.L. Innate sensing of oxidation-specific epitopes in health and disease. Nat. Rev. Immunol. 2016, 16, 485–497. [Google Scholar] [CrossRef]
- Frankel, E.N. Lipid Oxidation, 2nd ed.; Woodhead Publishing Limited: Philadelphia, PA, USA, 2014. [Google Scholar]
- Guichardant, M.; Bacot, S.; Moliere, P.; Lagarde, M. Hydroxy-alkenals from the peroxidation of n-3 and n-6 fatty acids and urinary metabolites. Prostaglandins Leukot. Essent. Fat. Acids 2006, 75, 179–182. [Google Scholar] [CrossRef]
- Grootveld, M.; Percival, B.C.; Leenders, J.; Wilson, P.B. Potential adverse public health effects afforded by the ingestion of dietary lipid oxidation product toxins: Significance of fried food sources. Nutrients 2020, 12, 974. [Google Scholar] [CrossRef] [Green Version]
- Awada, M.; Soulage, C.O.; Meynier, A.; Debard, C.; Plaisancié, P.; Benoit, B.; Picard, G.; Loizon, E.; Chauvin, M.-A.; Estienne, M. Dietary oxidized n-3 PUFA induce oxidative stress and inflammation: Role of intestinal absorption of 4-HHE and reactivity in intestinal cells. J. Lipid Res. 2012, 53, 2069–2080. [Google Scholar] [CrossRef] [Green Version]
- Ottestad, I.; Vogt, G.; Retterstøl, K.; Myhrstad, M.C.; Haugen, J.-E.; Nilsson, A.; Ravn-Haren, G.; Nordvi, B.; Brønner, K.W.; Andersen, L.F. Oxidised fish oil does not influence established markers of oxidative stress in healthy human subjects: A randomised controlled trial. Br. J. Nutr. 2012, 108, 315–326. [Google Scholar] [CrossRef]
- Hartz, J.; Funakoshi, S.; Deutsch, H. The levels of superoxide dismutase and catalase in human tissues as determined immunochemically. Clin. Chim. Acta 1973, 46, 125–132. [Google Scholar] [CrossRef]
- Marklund, S.L.; Westman, N.G.; Lundgren, E.; Roos, G. Copper-and zinc-containing superoxide dismutase, manganese-containing superoxide dismutase, catalase, and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissues. Cancer Res. 1982, 42, 1955–1961. [Google Scholar]
- Ogasawara, T.; Hoensch, H.; Ohnhaus, E. Distribution of glutathione and its related enzymes in small intestinal mucosa of rats. In Receptors and Other Targets for Toxic Substances; Springer: Berlin/Heidelberg, Germany, 1985; pp. 110–113. [Google Scholar]
- Read, A.; Schröder, M. The unfolded protein response: An overview. Biology 2021, 10, 384. [Google Scholar] [CrossRef]
- Simopoulos, A.P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [Green Version]
- Peiretti, P.; Meineri, G. Fatty acids, chemical composition and organic matter digestibility of seeds and vegetative parts of false flax (Camelina sativa L.) after different lengths of growth. Anim. Feed Sci. Technol. 2007, 133, 341–350. [Google Scholar] [CrossRef]
- Putnam, D.; Budin, J.; Field, L.; Breene, W. Camelina: A promising low-input oilseed. New Crops 1993, 314, 322. [Google Scholar]
- Nilsson, A.; Wetterhus, E.-M.; Østbye, T.-K.K.; Haugen, J.-E.; Vogt, G. Rest Plant Materials with Natural Antioxidants Increase the Oxidative Stability of Omega-3-Rich Norwegian Cold Pressed Camelina sativa Oil. ACS Food Sci. Technol. 2021, 1, 529–537. [Google Scholar] [CrossRef]
- Gargiulo, S.; Testa, G.; Gamba, P.; Staurenghi, E.; Poli, G.; Leonarduzzi, G. Oxysterols and 4-hydroxy-2-nonenal contribute to atherosclerotic plaque destabilization. Free Radic. Biol. Med. 2017, 111, 140–150. [Google Scholar] [CrossRef]
- Kirkhus, B.; Lundon, A.R.; Haugen, J.-E.; Vogt, G.; Borge, G.I.A.; Henriksen, B.I. Effects of environmental factors on edible oil quality of organically grown Camelina sativa. J. Agric. Food Chem. 2013, 61, 3179–3185. [Google Scholar] [CrossRef]
- Esterbauer, H.; Zollner, H.; Lang, J. Metabolism of the lipid peroxidation product 4-hydroxynonenal by isolated hepatocytes and by liver cytosolic fractions. Biochem. J. 1985, 228, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Siems, W.; Zollner, H.; Grune, T.; Esterbauer, H. Metabolic fate of 4-hydroxynonenal in hepatocytes: 1,4-dihydroxynonene is not the main product. J. Lipid Res. 1997, 38, 612–622. [Google Scholar] [CrossRef]
- Srivastava, S.; Liu, S.-Q.; Conklin, D.J.; Zacarias, A.; Srivastava, S.K.; Bhatnagar, A. Involvement of aldose reductase in the metabolism of atherogenic aldehydes. Chem. Biol. Interact. 2001, 130, 563–571. [Google Scholar] [CrossRef]
- Whitsett, J.; Picklo Sr, M.J.; Vasquez-Vivar, J. 4-Hydroxy-2-nonenal increases superoxide anion radical in endothelial cells via stimulated GTP cyclohydrolase proteasomal degradation. Atertio. Thromb. Vasc. Biol. 2007, 27, 2340–2347. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Yazdanpanah, M.; Bhooi, N.; Lehotay, D. Determination of aldehydes and other lipid peroxidation products in biological samples by gas chromatography-mass spectrometry. Anal. Biochem. 1995, 228, 294–298. [Google Scholar] [CrossRef]
- Xie, F.; Xiao, P.; Chen, D.; Xu, L.; Zhang, B. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 2012, 80, 75–84. [Google Scholar] [CrossRef]
- Pfaffl, M.W. Quantification strategies in real-time PCR. In A–Z of Quantitative PCR; Bustin, S.A., Ed.; International University Line: La Jolla, CA, USA, 2004; pp. 87–120. [Google Scholar]
- Kjær, M.; Todorčević, M.; Torstensen, B.; Vegusdal, A.; Ruyter, B. Dietary n-3 HUFA affects mitochondrial fatty acid β-oxidation capacity and susceptibility to oxidative stress in Atlantic salmon. Lipids 2008, 43, 813–827. [Google Scholar] [CrossRef]
- Vieira, S.A.; Zhang, G.; Decker, E.A. Biological implications of lipid oxidation products. J. Am. Oil Chem. Soc. 2017, 94, 339–351. [Google Scholar] [CrossRef]
- Matés, J.M.; Pérez-Gómez, C.; De Castro, I.N. Antioxidant enzymes and human diseases. Clin. Biochem. 1999, 32, 595–603. [Google Scholar] [CrossRef]
- Li, R.; Jia, Z.; Zhu, H. Regulation of Nrf2 signaling. React. Oxyg. Species 2019, 8, 312. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, S.; Mao, L.; Leak, R.K.; Shi, Y.; Zhang, W.; Hu, X.; Sun, B.; Cao, G.; Gao, Y. Omega-3 fatty acids protect the brain against ischemic injury by activating Nrf2 and upregulating heme oxygenase 1. J. Neurosci. 2014, 34, 1903–1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shull, S.; Heintz, N.H.; Periasamy, M.; Manohar, M.; Janssen, Y.; Marsh, J.P.; Mossman, B.T. Differential regulation of antioxidant enzymes in response to oxidants. J. Biol. Chem. 1991, 266, 24398–24403. [Google Scholar] [CrossRef] [PubMed]
- Viswakarma, N.; Jia, Y.; Bai, L.; Vluggens, A.; Borensztajn, J.; Xu, J.; Reddy, J.K. Coactivators in PPAR-regulated gene expression. PPAR Res. 2010, 2010, 250126. [Google Scholar] [CrossRef] [PubMed]
- GOED. GOED Voluntary Monograph Version 5: Global Organisation for EPA and DHA Omega-3. Available online: www.goedomega3.com/index.php/files/download/350 (accessed on 10 March 2017).
- Tullberg, C.; Vegarud, G.; Undeland, I.; Scheers, N. Effects of marine oils, digested with human fluids, on cellular viability and stress protein expression in human intestinal Caco-2 cells. Nutrients 2017, 9, 1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soulage, C.O.; Pelletier, C.C.; Florens, N.; Lemoine, S.; Dubourg, L.; Juillard, L.; Guebre-Egziabher, F. Two toxic lipid aldehydes, 4-hydroxy-2-hexenal (4-HHE) and 4-hydroxy-2-nonenal (4-HNE), accumulate in patients with chronic kidney disease. Toxins 2020, 12, 567. [Google Scholar] [CrossRef] [PubMed]
- Pillon, N.J.; Soulère, L.; Vella, R.E.; Croze, M.; Caré, B.R.; Soula, H.A.; Doutheau, A.; Lagarde, M.; Soulage, C.O. Quantitative structure–activity relationship for 4-hydroxy-2-alkenal induced cytotoxicity in L6 muscle cells. Chem. Biol. Interact. 2010, 188, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Schaur, R.J.; Siems, W.; Bresgen, N.; Eckl, P.M. 4-hydroxy-nonenal—A bioactive lipid peroxidation product. Biomolecules 2015, 5, 2247–2337. [Google Scholar] [CrossRef] [Green Version]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef] [Green Version]
- Sottero, B.; Leonarduzzi, G.; Testa, G.; Gargiulo, S.; Poli, G.; Biasi, F. Lipid Oxidation Derived Aldehydes and Oxysterols between Health and Disease. Eur. J. Lipid Sci. Technol. 2018, 121, 1700047. [Google Scholar] [CrossRef]
Fatty Acid % (w/w) | Camelina Oil |
---|---|
C14:0 | ≤0.5 |
C14:0 | ≤0.5 |
C16:0 | 5 |
C18:0 | 3 |
C20:0 | 2 |
C22:0 | ≤0.5 |
Sum SFA | 10 |
C16:1 | ≤0.5 |
C18:1 n-9 | 13 |
C20:1 n-9 | 16 |
C22:1 | 3 |
C24:1 | ≤0.5 |
Sum MUFA | 32 |
C18:2 n-6 | 16 |
C20:2 | 2 |
Sum n-6 | 18 |
C18:3 n-3 | 37 |
C20:3 | 2 |
Sum n-3 | 39 |
Sample | Time point (w) | AV | PV (meq/kg) | TOTOX | HHE (ug/g) | HNE (ug/g) |
---|---|---|---|---|---|---|
CO-0w | 0 | 1.0 ± 0.0 | 5.9 ± 0.1 | 12.7 ± 0.1 | 0.03 ± 0.00 | 0.02 ± 0.00 |
CO-1w | 1 | 1.0 ± 0.0 | 6.7 ± 0.1 | 14.3 ± 0.1 | 0.05 ± 0.00 | 0.03 ± 0.00 |
CO-2w | 2 | 1.3 ± 0.0 | 11.0 ± 0.7 | 23.3 ± 1.4 | 0.13 ± 0.00 | 0.06 ± 0.00 |
CO-3w | 3 | 2.5 ± 0.2 | 18.0 ± 0.9 | 38.4 ± 2.1 | 0.28 ± 0.04 | 0.11 ± 0.01 |
CO-4w | 4 | 2.7 ± 0.2 | 15.3 ± 1.4 | 33.3 ± 3.0 | 0.35 ± 0.01 | 0.12 ± 0.00 |
CO-6w | 6 | 8.0 ± 0.0 | 32.9 ± 0.5 | 73.7 ± 1.0 | 1.28 ± 0.11 | 0.48 ± 0.03 |
CO-9w | 9 | 11.4 ± 0.1 | 40.3 ± 0.5 | 91.9 ± 1.1 | 2.31 ± 0.04 | 0.83 ± 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Østbye, T.-K.K.; Haugen, J.-E.; Wetterhus, E.M.; Bergum, S.K.; Nilsson, A. Oxidized Dietary Oil, High in Omega-3 and Omega-6 Polyunsaturated Fatty Acids, Induces Antioxidant Responses in a Human Intestinal HT29 Cell Line. Nutrients 2022, 14, 5341. https://doi.org/10.3390/nu14245341
Østbye T-KK, Haugen J-E, Wetterhus EM, Bergum SK, Nilsson A. Oxidized Dietary Oil, High in Omega-3 and Omega-6 Polyunsaturated Fatty Acids, Induces Antioxidant Responses in a Human Intestinal HT29 Cell Line. Nutrients. 2022; 14(24):5341. https://doi.org/10.3390/nu14245341
Chicago/Turabian StyleØstbye, Tone-Kari Knutsdatter, John-Erik Haugen, Elin Merete Wetterhus, Silje Kristine Bergum, and Astrid Nilsson. 2022. "Oxidized Dietary Oil, High in Omega-3 and Omega-6 Polyunsaturated Fatty Acids, Induces Antioxidant Responses in a Human Intestinal HT29 Cell Line" Nutrients 14, no. 24: 5341. https://doi.org/10.3390/nu14245341
APA StyleØstbye, T. -K. K., Haugen, J. -E., Wetterhus, E. M., Bergum, S. K., & Nilsson, A. (2022). Oxidized Dietary Oil, High in Omega-3 and Omega-6 Polyunsaturated Fatty Acids, Induces Antioxidant Responses in a Human Intestinal HT29 Cell Line. Nutrients, 14(24), 5341. https://doi.org/10.3390/nu14245341