Selenoproteins in the Human Placenta: How Essential Is Selenium to a Healthy Start to Life?
Abstract
:1. Selenium and Pregnancy
1.1. Selenium and Pre-Eclampsia
1.2. Selenium and Fetal Development
1.3. Selenium and Preterm Birth
1.4. Selenium and Gestational Diabetes
2. Placental Selenoproteins
2.1. Glutathione Peroxidases (GPx 1–4,6)
2.2. Thioredoxin Reductases (TrxR 1–3)
2.3. Iodothyronine Deiodinases (DIO2 and DIO3)
2.4. Selenoprotein P
2.5. Selenoprotein H
3. Selenoproteins at the Mitochondrial/ Endoplasmic Reticulum Interface
4. Oxidative Stress in Pregnancy
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, P.J.; Yao, A.; Ma, L.; Chen, X.Y.; Yu, S.L.; Liu, Y.; Hou, Y.X. Associations of Serum Selenium Levels in the First Trimester of Pregnancy with the Risk of Gestational Diabetes Mellitus and Preterm Birth: A Preliminary Cohort Study. Biol. Trace Elem. Res. 2021, 199, 527–534. [Google Scholar] [CrossRef]
- Rayman, M.P.; Bath, S.C.; Westaway, J.; Williams, P.; Mao, J.; Vanderlelie, J.J.; Perkins, A.V.; Redman, C.W.G. Selenium status in U.K. pregnant women and its relationship with hypertensive conditions of pregnancy. Br. J. Nutr. 2015, 113, 249–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkins, A.V.; Vanderlelie, J.J. Multiple micronutrient supplementation and birth outcomes: The potential importance of selenium. Placenta 2016, 48, S61–S65. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Food-chain selenium and human health: Emphasis on intake. Br. J. Nutr. 2008, 100, 254–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fairweather-Tait, S.J.; Bao, Y.; Broadley, M.R.; Collings, R.; Ford, D.; Hesketh, J.E.; Hurst, R. Selenium in human health and disease. Antioxid. Redox. Signal. 2011, 14, 1337–1383. [Google Scholar] [CrossRef] [PubMed]
- Steegers, E.A.; von Dadelszen, P.; Duvekot, J.J.; Pijnenborg, R. Pre-eclampsia. Lancet 2010, 376, 631–644. [Google Scholar] [CrossRef]
- Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia: Pathophysiology, Challenges, and Perspectives. Circ. Res. 2019, 124, 1094–1112. [Google Scholar] [CrossRef]
- Eze, S.C.; Ododo, N.A.; Ugwu, E.O.; Enebe, J.T.; Onyegbule, O.A.; Eze, I.O.; Ezem, B.U. Serum selenium levels of pre-eclamptic and normal pregnant women in Nigeria: A comparative study. PLoS ONE 2020, 15, e0238263. [Google Scholar] [CrossRef]
- Pieczyńska, J.; Grajeta, H. The role of selenium in human conception and pregnancy. J. Trace Elem. Med. Biol. 2015, 29, 31–38. [Google Scholar] [CrossRef]
- Ghaemi, S.Z.; Forouhari, S.; Dabbaghmanesh, M.H.; Sayadi, M.; Bakhshayeshkaram, M.; Vaziri, F.; Tavana, Z. A prospective study of selenium concentration and risk of preeclampsia in pregnant Iranian women: A nested case-control study. Biol. Trace Elem. Res. 2013, 152, 174–179. [Google Scholar] [CrossRef]
- Rayman, M.P.; Bode, P.; Redman, C.W. Low selenium status is associated with the occurrence of the pregnancy disease preeclampsia in women from the United Kingdom. Am. J. Obstet. Gynecol. 2003, 189, 1343–1349. [Google Scholar] [CrossRef] [Green Version]
- Mistry, H.D.; Wilson, V.; Ramsay, M.M.; Symonds, M.E.; Broughton Pipkin, F. Reduced selenium concentrations and glutathione peroxidase activity in preeclamptic pregnancies. Hypertension 2008, 52, 881–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanderlelie, J.; Perkins, A.V. Selenium and preeclampsia: A global perspective. Pregnancy Hypertens 2011, 1, 213–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duntas, L.H. Selenium and at-risk pregnancy: Challenges and controversies. Thyroid. Res. 2020, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P.; Searle, E.; Kelly, L.; Johnsen, S.; Bodman-Smith, K.; Bath, S.C.; Mao, J.; Redman, C.W. Effect of selenium on markers of risk of pre-eclampsia in UK pregnant women: A randomised, controlled pilot trial. Br. J. Nutr. 2014, 112, 99–111. [Google Scholar] [CrossRef]
- Zachara, B.A. Selenium in Complicated Pregnancy. A Review. Adv. Clin. Chem. 2018, 86, 157–178. [Google Scholar]
- Farzin, L.; Sajadi, F. Comparison of serum trace element levels in patients with or without pre-eclampsia. J. Res. Med. Sci. 2012, 17, 938–941. [Google Scholar]
- Schoots, M.H.; Gordijn, S.J.; Scherjon, S.A.; van Goor, H.; Hillebrands, J.L. Oxidative stress in placental pathology. Placenta 2018, 69, 153–161. [Google Scholar] [CrossRef]
- Suhag, A.; Berghella, V. Intrauterine Growth Restriction (IUGR): Etiology and Diagnosis. Curr. Obstet. Gynecol. Rep. 2013, 2, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Cuffe, J.S.M.; Holland, O.; Salomon, C.; Rice, G.E.; Perkins, A.V. Review: Placental derived biomarkers of pregnancy disorders. Placenta 2017, 54, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Mistry, H.D.; Kurlak, L.O.; Young, S.D.; Briley, A.L.; Pipkin, F.B.; Baker, P.N.; Poston, L. Maternal selenium, copper and zinc concentrations in pregnancy associated with small-for-gestational-age infants. Matern. Child. Nutr. 2014, 10, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, M.; Więckowska, B.; Sajdak, S.; Lubiński, J. First Trimester Microelements and their Relationships with Pregnancy Outcomes and Complications. Nutrients 2020, 12, 1108. [Google Scholar] [CrossRef] [PubMed]
- Everson, T.M.; Kappil, M.; Hao, K.; Jackson, B.P.; Punshon, T.; Karagas, M.R.; Chen, J.; Marst, C.J. Maternal exposure to selenium and cadmium, fetal growth, and placental expression of steroidogenic and apoptotic genes. Environ. Res. 2017, 158, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Lewandowska, M.; Sajdak, S.; Lubiński, J. The Role of Early Pregnancy Maternal Selenium Levels on the Risk for Small-for-Gestational Age Newborns. Nutrients 2019, 11, 2298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pre-Term Birth Fact Sheet: World Health Organisation. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/preterm-birth (accessed on 20 October 2021).
- Saigal, S.; Doyle, L.W. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 2008, 371, 261–269. [Google Scholar] [CrossRef]
- Rayman, M.P.; Wijnen, H.; Vader, H.; Kooistra, L.; Pop, V. Maternal selenium status during early gestation and risk for preterm birth. CMAJ 2011, 183, 549–555. [Google Scholar] [CrossRef] [Green Version]
- Okunade, K.S.; John-Olabode, S.; Akinsola, O.J.; Akinajo, O.; Akanmu, S.A.; Kanki, P.J. Effects of selenium supplementation on pregnancy outcome and disease progression in HIV-infected pregnant women in Lagos, Nigeria: Study protocol for a randomised, double-blind, placebo-controlled trial. Medicine 2019, 98, e12735. [Google Scholar] [CrossRef]
- Kong, F.J.; Ma, L.L.; Chen, S.P.; Li, G.; Zhou, J.Q. Serum selenium level and gestational diabetes mellitus: A systematic review and meta-analysis. Nutr. J. 2016, 15, 94. [Google Scholar] [CrossRef] [Green Version]
- Joo, E.H.; Kim, Y.R.; Kim, N.; Jung, J.E.; Han, S.H.; Cho, H.Y. Effect of Endogenic and Exogenic Oxidative Stress Triggers on Adverse Pregnancy Outcomes: Preeclampsia, Fetal Growth Restriction, Gestational Diabetes Mellitus and Preterm Birth. Int. J. Mol. Sci. 2021, 22, 10122. [Google Scholar] [CrossRef]
- Chatzakis, C.; Sotiriadis, A.; Tsakmaki, E.; Papagianni, M.; Paltoglou, G.; Dinas, K.; Mastorakos, G. The Effect of Dietary Supplements on Oxidative Stress in Pregnant Women with Gestational Diabetes Mellitus: A Network Meta-Analysis. Nutrients 2021, 13, 2284. [Google Scholar] [CrossRef]
- Tan, M.; Sheng, L.; Qian, Y.; Ge, Y.; Wang, Y.; Zhang, H.; Jiang, M.; Zhang, G. Changes of serum selenium in pregnant women with gestational diabetes mellitus. Biol. Trace Elem. Res. 2001, 83, 231–237. [Google Scholar] [CrossRef]
- Asemi, Z.; Jamilian, M.; Mesdaghinia, E.; Esmaillzadeh, A. Effects of selenium supplementation on glucose homeostasis, inflammation, and oxidative stress in gestational diabetes: Randomized, double-blind, placebo-controlled trial. Nutrition 2015, 31, 1235–1242. [Google Scholar] [CrossRef] [PubMed]
- Sadat Najib, F.; Poordast, T.; Rezvan Nia, M.; Hossein Dabbaghmanesh, M. Effects of selenium supplementation on glucose homeostasis in women with gestational diabetes mellitus: A randomized, controlled trial. Int. J. Reprod. Biomed. 2019, 18, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Lubos, E.; Loscalzo, J.; Handy, D.E. Glutathione peroxidase-1 in health and disease: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox. Signal. 2011, 15, 1957–1997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ojeda, M.L.; Nogales, F.; Romero-Herrera, I.; Carreras, O. Fetal Programming Is Deeply Related to Maternal Selenium Status and Oxidative Balance; Experimental Offspring Health Repercussions. Nutrients 2021, 13, 2085. [Google Scholar] [CrossRef]
- Touat-Hamici, Z.; Legrain, Y.; Bulteau, A.L.; Chavatte, L. Selective up-regulation of human selenoproteins in response to oxidative stress. J. Biol. Chem. 2014, 289, 14750–14761. [Google Scholar] [CrossRef] [Green Version]
- Brigelius-Flohé, R.; Maiorino, M. Glutathione peroxidases. Biochim. Biophys. Acta. 2013, 1830, 3289–3303. [Google Scholar] [CrossRef]
- Khera, A.; Vanderlelie, J.J.; Holland, O.; Perkins, A.V. Overexpression of Endogenous Anti-Oxidants with Selenium Supplementation Protects Trophoblast Cells from Reactive Oxygen Species-Induced Apoptosis in a Bcl-2-Dependent Manner. Biol. Trace Elem. Res. 2017, 177, 394–403. [Google Scholar] [CrossRef]
- Davey, J.C.; Becker, K.B.; Schneider, M.J.; St Germain, D.L.; Galton, V.A. Cloning of a cDNA for the type II iodothyronine deiodinase. J. Biol. Chem. 1995, 270, 26786–26789. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.; Kachilele, S.; Hobbs, E.; Bulmer, J.N.; Boelaert, K.; McCabe, C.J.; Driver, P.M.; Bradwell, A.R.; Kester, M.; Visser, T.J.; et al. Placental iodothyronine deiodinase expression in normal and growth-restricted human pregnancies. J. Clin. Endocrinol. Metab. 2003, 88, 4488–4495. [Google Scholar] [CrossRef] [Green Version]
- Eerdekens, A.; Verhaeghe, J.; Darras, V.; Naulaers, G.; Van den Berghe, G.; Langouche, L.; Vanhole, C. The placenta in fetal thyroid hormone delivery: From normal physiology to adaptive mechanisms in complicated pregnancies. J. Matern. Fetal. Neonatal. Med. 2020, 33, 3857–3866. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.C.; Lee, S.G.; Choo, M.K.; Kim, J.H.; Lee, H.M.; Kim, S.; Park, J.M.; Gladyshev, V.N. Selenoprotein MsrB1 promotes anti-inflammatory cytokine gene expression in macrophages and controls immune response in vivo. Sci. Rep. 2017, 7, 5119. [Google Scholar] [CrossRef] [PubMed]
- Nunziata, C.; Polo, A.; Sorice, A.; Capone, F.; Accardo, M.; Guerriero, E.; Marino, F.Z.; Orditura, M.; Budillon, A.; Costantini, S. Structural analysis of human SEPHS2 protein, a selenocysteine machinery component, over-expressed in triple negative breast cancer. Sci. Rep. 2019, 9, 16131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, B.; Liu, M.; Ni, J.; Tian, J. Role of Selenoprotein F in Protein Folding and Secretion: Potential Involvement in Human Disease. Nutrients 2018, 10, 1619. [Google Scholar] [CrossRef] [Green Version]
- Reeves, M.A.; Hoffmann, P.R. The human selenoproteome: Recent insights into functions and regulation. Cell. Mol. Life Sci. 2009, 66, 2457–2478. [Google Scholar] [CrossRef] [Green Version]
- Rayman, M.P. Selenoproteins and human health: Insights from epidemiological data. Biochim. Biophys. Acta 2009, 1790, 1533–1540. [Google Scholar] [CrossRef] [Green Version]
- Avery, J.C.; Yamazaki, Y.; Hoffmann, F.W.; Folgelgren, B.; Hoffmann, P.R. Selenoprotein I is essential for murine embryogenesis. Arch. Biochem. Biophys. 2020, 689, 108444. [Google Scholar] [CrossRef]
- Ma, C.; Martinez-Rodriguez, V.; Hoffmann, P.R. Roles for Selenoprotein I and Ethanolamine Phospholipid Synthesis in T Cell Activation. Int. J. Mol. Sci. 2021, 22, 11174. [Google Scholar] [CrossRef]
- Jia, S.Z.; Xu, X.W.; Zhang, Z.H.; Chen, C.; Chen, Y.B.; Huang, S.L.; Liu, Q.; Hoffmann, P.R.; Song, G.L. Selenoprotein K deficiency-induced apoptosis: A role for calpain and the ERS pathway. Redox Biol. 2021, 47, 102154. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Zheng, Y.; Wu, Z.H.; Zhang, X.A.; Li, Q.P.; He, X.Y.; Wang, C.Z.; Feng, Z.C. The SEPS1 G-105A polymorphism is associated with risk of spontaneous preterm birth in a Chinese population. PLoS ONE 2013, 8, e65657. [Google Scholar] [CrossRef] [Green Version]
- Addinsall, A.B.; Wright, C.R.; Andrikopoulos, S.; van der Poel, C.; Stupka, N. Emerging roles of endoplasmic reticulum-resident selenoproteins in the regulation of cellular stress responses and the implications for metabolic disease. Biochem. J. 2018, 475, 1037–1057. [Google Scholar] [CrossRef] [PubMed]
- Boukhzar, L.; Hamieh, A.; Cartier, D.; Tanguy, Y.; Alsharif, I.; Castex, M.; Arabo, A.; El Hajji, S.; Bonnet, J.J.; Errami, M.; et al. Selenoprotein T Exerts an Essential Oxidoreductase Activity That Protects Dopaminergic Neurons in Mouse Models of Parkinson’s Disease. Antioxid. Redox. Signal. 2016, 24, 557–574. [Google Scholar] [CrossRef] [PubMed]
- Prevost, G.; Arabo, A.; Jian, L.; Quelennec, E.; Cartier, D.; Hassan, S.; Falluel-Morel, A.; Tanguy, Y.; Gargani, S.; Lihrmann, I.; et al. The PACAP-regulated gene selenoprotein T is abundantly expressed in mouse and human beta-cells and its targeted inactivation impairs glucose tolerance. Endocrinology 2013, 154, 3796–3806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.L.; Huang, J.Q.; Xiao, Y.; Wu, Y.Y.; Ren, F.Z.; Lei, X.G. Knockout of Selenoprotein V Affects Regulation of Selenoprotein Expression by Dietary Selenium and Fat Intakes in Mice. J. Nutr. 2020, 150, 483–491. [Google Scholar] [CrossRef]
- Loflin, J.; Lopez, N.; Whanger, P.D.; Kioussi, C. Selenoprotein W during development and oxidative stress. J. Inorg. Biochem. 2006, 100, 1679–1684. [Google Scholar] [CrossRef]
- Whanger, P.D. Selenoprotein expression and function-selenoprotein W. Biochim. Biophys. Acta 2009, 1790, 1448–1452. [Google Scholar] [CrossRef]
- Mistry, H.D.; Kurlak, L.O.; Williams, P.J.; Ramsay, M.M.; Symonds, M.E.; Broughton Pipkin, F. Differential expression and distribution of placental glutathione peroxidases 1, 3 and 4 in normal and preeclamptic pregnancy. Placenta 2010, 31, 401–408. [Google Scholar] [CrossRef]
- Roland-Zejly, L.; Moisan, V.; St-Pierre, I.; Bilodeau, J.F. Altered placental glutathione peroxidase mRNA expression in preeclampsia according to the presence or absence of labor. Placenta 2011, 32, 161–167. [Google Scholar] [CrossRef]
- Baek, I.J.; Yon, J.M.; Lee, S.R.; Kim, M.R.; Hong, J.T.; Lee, B.J.; Yun, Y.W.; Nam, S.Y. Differential expression of gastrointestinal glutathione peroxidase (GI-GPx) gene during mouse organogenesis. Anat. Histol. Embryol. 2011, 40, 210–218. [Google Scholar] [CrossRef]
- Vaishnav, R.A.; Getchell, M.L.; Huang, L.; Hersh, M.A.; Stromberg, A.J.; Getchell, T.V. Cellular and molecular characterization of oxidative stress in olfactory epithelium of Harlequin mutant mouse. J. Neurosci. Res. 2008, 86, 165–182. [Google Scholar] [CrossRef]
- Qazi, I.H.; Angel, C.; Yang, H.; Pan, B.; Zoidis, E.; Zeng, C.J.; Han, H.; Zhou, G.B. Selenium, Selenoproteins, and Female Reproduction: A Review. Molecules 2018, 23, 3053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avissar, N.; Eisenmann, C.; Breen, J.G.; Horowitz, S.; Miller, R.K.; Cohen, H.J. Human placenta makes extracellular glutathione peroxidase and secretes it into maternal circulation. Am. J. Physiol. 1994, 267, E68–E76. [Google Scholar] [CrossRef] [PubMed]
- Mihailović, M.; Cvetković, M.; Ljubić, A.; Kosanović, M.; Nedeljković, S.; Jovanović, I.; Pesut, O. Selenium and malondialdehyde content and glutathione peroxidase activity in maternal and umbilical cord blood and amniotic fluid. Biol. Trace Elem. Res. 2000, 73, 47–54. [Google Scholar] [CrossRef]
- Walsh, S.W.; Wang, Y. Deficient glutathione peroxidase activity in preeclampsia is associated with increased placental production of thromboxane and lipid peroxides. Am. J. Obstet. Gynecol. 1993, 169, 1456–1461. [Google Scholar] [CrossRef]
- D’Souza, V.; Rani, A.; Patil, V.; Pisal, H.; Randhir, K.; Mehendale, S.; Wagh, G.; Gupte, S.; Joshi, S. Increased oxidative stress from early pregnancy in women who develop preeclampsia. Clin. Exp. Hypertens. 2016, 38, 225–232. [Google Scholar] [CrossRef]
- Jin, X.; Xu, Z.; Cao, J.; Shao, P.; Zhou, M.; Qin, Z.; Liu, Y.; Yu, F.; Zhou, X.; Ji, W.; et al. Proteomics analysis of human placenta reveals glutathione metabolism dysfunction as the underlying pathogenesis for preeclampsia. Biochim. Biophys. Acta Proteins Proteom. 2017, 1865, 1207–1214. [Google Scholar] [CrossRef]
- Scaife, P.J.; Simpson, A.; Kurlak, L.O.; Briggs, L.V.; Gardner, D.S.; Broughton Pipkin, F.; Jones, C.J.P.; Mistry, H.D. Increased Placental Cell Senescence and Oxidative Stress in Women with Pre-Eclampsia and Normotensive Post-Term Pregnancies. Int. J. Mol. Sci. 2021, 22, 7295. [Google Scholar] [CrossRef]
- Khera, A.; Vanderlelie, J.J.; Perkins, A.V. Selenium supplementation protects trophoblast cells from mitochondrial oxidative stress. Placenta 2013, 34, 594–598. [Google Scholar] [CrossRef] [Green Version]
- Burk, R.F.; Olson, G.E.; Hill, K.E.; Winfrey, V.P.; Motley, A.K.; Kurokawa, S. Maternal-fetal transfer of selenium in the mouse. FASEB J. 2013, 27, 3249–3256. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Leng, J.Y.; Gao, F.; Zhao, Z.A.; Deng, W.B.; Liang, X.H.; Zhang, Y.J.; Zhang, Z.R.; Li, M.; Sha, A.G.; et al. Differential expression and anti-oxidant function of glutathione peroxidase 3 in mouse uterus during decidualization. FEBS Lett. 2014, 588, 1580–1589. [Google Scholar] [CrossRef] [Green Version]
- Beharier, O.; Tyurin, V.A.; Goff, J.P.; Guerrero-Santoro, J.; Kajiwara, K.; Chu, T.; Tyurina, Y.Y.; St Croix, C.M.; Wallace, C.T.; Parry, S.; et al. PLA2G6 guards placental trophoblasts against ferroptotic injury. Proc. Natl. Acad. Sci. USA 2020, 117, 27319–27328. [Google Scholar] [CrossRef] [PubMed]
- Kajiwara, K.; Beharier, O.; Chng, C.P.; Goff, J.P.; Ouyang, Y.; St Croix, C.M.; Huang, C.; Kagan, V.E.; Hsia, K.J.; Sadovsky, Y. Ferroptosis induces membrane blebbing in placental trophoblasts. J. Cell. Sci. 2022, 135, jcs255737. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free. Radic. Biol. Med. 2014, 66, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Arnér, E.S.; Holmgren, A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 2000, 267, 6102–6109. [Google Scholar] [CrossRef]
- Gromer, S.; Eubel, J.K.; Lee, B.L.; Jacob, J. Human selenoproteins at a glance. Cell Mol. Life Sci. 2005, 62, 2414–2437. [Google Scholar] [CrossRef]
- Matsui, M.; Oshima, M.; Oshima, H.; Takaku, K.; Maruyama, T.; Yodoi, J.; Taketo, M.M. Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev. Biol. 1996, 178, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Ejima, K.; Nanri, H.; Toki, N.; Kashimura, M.; Ikeda, M. Localization of thioredoxin reductase and thioredoxin in normal human placenta and their protective effect against oxidative stress. Placenta 1999, 20, 95–101. [Google Scholar] [CrossRef]
- Vanderlelie, J.; Venardos, K.; Clifton, V.L.; Gude, N.M.; Clarke, F.M.; Perkins, A.V. Increased biological oxidation and reduced anti-oxidant enzyme activity in pre-eclamptic placentae. Placenta 2005, 26, 53–58. [Google Scholar] [CrossRef]
- Peng, S.; Li, C.; Xie, X.; Zhang, X.; Wang, D.; Lu, X.; Sun, M.; Meng, T.; Wang, S.; Jiang, Y.; et al. Divergence of Iodine and Thyroid Hormones in the Fetal and Maternal Parts of Human-Term Placenta. Biol. Trace Elem. Res. 2020, 195, 27–38. [Google Scholar] [CrossRef]
- Koopdonk-Kool, J.M.; de Vijlder, J.J.; Veenboer, G.J.; Ris-Stalpers, C.; Kok, J.H.; Vulsma, T.; Boer, K.; Visser, T.J. Type II and type III deiodinase activity in human placenta as a function of gestational age. J. Clin. Endocrinol. Metab. 1996, 81, 2154–2158. [Google Scholar]
- Schomburg, L.; Köhrle, J. On the importance of selenium and iodine metabolism for thyroid hormone biosynthesis and human health. Mol. Nutr. Food Res. 2008, 52, 1235–1246. [Google Scholar] [CrossRef] [PubMed]
- Hofstee, P.; Bartho, L.A.; McKeating, D.R.; Radenkovic, F.; McEnroe, G.; Fisher, J.J.; Holland, O.J.; Vanderlelie, J.J.; Perkins, A.V.; Cuffe, J.S.M. Maternal selenium deficiency during pregnancy in mice increases thyroid hormone concentrations, alters placental function and reduces fetal growth. J. Physiol. 2019, 597, 5597–5617. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Vega, S.; Armella, A.; Mennickent, D.; Loyola, M.; Covarrubias, A.; Ortega-Contreras, B.; Escudero, C.; Gonzalez, M.; Alcalá, M.; Ramos, M.D.P.; et al. High levels of maternal total tri-iodothyronine, and low levels of fetal free L-thyroxine and total tri-iodothyronine, are associated with altered deiodinase expression and activity in placenta with gestational diabetes mellitus. PLoS ONE 2020, 15, e0242743. [Google Scholar] [CrossRef] [PubMed]
- Kasik, J.W.; Rice, E.J. Selenoprotein P expression in liver, uterus and placenta during late pregnancy. Placenta 1995, 16, 67–74. [Google Scholar] [CrossRef]
- Bayliss, P.A.; Buchanan, B.E.; Hancock, R.G.; Zlotkin, S.H. Tissue selenium accretion in premature and full-term human infants and children. Biol. Trace Elem. Res. 1985, 7, 55–61. [Google Scholar] [CrossRef]
- Peirovifar, A.; Gharehbaghi, M.M.; Abdulmohammad-Zadeh, H.; Sadegi, G.H.; Jouyban, A. Serum selenium levels of the very low birth weight premature newborn infants with bronchopulmonary dysplasia. J. Trace Elem. Med. Biol. 2013, 27, 317–321. [Google Scholar] [CrossRef]
- Altinova, A.E.; Iyidir, O.T.; Ozkan, C.; Ors, D.; Ozturk, M.; Gulbahar, O.; Bozkurt, N.; Toruner, F.B.; Akturk, M.; Cakir, N.; et al. Selenoprotein P is not elevated in gestational diabetes mellitus. Gynecol. Endocrinol. 2015, 31, 874–876. [Google Scholar] [CrossRef]
- Myers, J.E.; Tuytten, R.; Thomas, G.; Laroy, W.; Kas, K.; Vanpoucke, G.; Roberts, C.T.; Kenny, L.C.; Simpson, N.A.; Baker, P.N.; et al. Integrated proteomics pipeline yields novel biomarkers for predicting preeclampsia. Hypertension 2013, 61, 1281–1288. [Google Scholar] [CrossRef] [Green Version]
- Khera, A.; Dong, L.F.; Holland, O.; Vanderlelie, J.; Pasdar, E.A.; Neuzil, J.; Perkins, A.V. Selenium supplementation induces mitochondrial biogenesis in trophoblasts. Placenta 2015, 36, 863–869. [Google Scholar] [CrossRef]
- Mendelev, N.; Mehta, S.L.; Witherspoon, S.; He, Q.; Sexton, J.Z.; Li, P.A. Upregulation of human selenoprotein H in murine hippocampal neuronal cells promotes mitochondrial biogenesis and functional performance. Mitochondrion 2011, 11, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Mehta, S.L.; Mendelev, N.; Kumari, S.; Andy Li, P. Overexpression of human selenoprotein H in neuronal cells enhances mitochondrial biogenesis and function through activation of protein kinase A, protein kinase B, and cyclic adenosine monophosphate response element-binding protein pathway. Int. J. Biochem. Cell Biol. 2013, 45, 604–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sevier, C.S.; Kaiser, C.A. Ero1 and redox homeostasis in the endoplasmic reticulum. Biochim. Biophys. Acta 2008, 1783, 549–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, P.; Ron, D. The unfolded protein response: From stress pathway to homeostatic regulation. Science 2011, 334, 1081–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lilley, B.N.; Ploegh, H.L. Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. Proc. Natl. Acad. Sci. USA 2005, 102, 14296–14301. [Google Scholar] [CrossRef] [Green Version]
- Hetz, C.; Chevet, E.; Oakes, S.A. Proteostasis control by the unfolded protein response. Nat. Cell Biol. 2015, 17, 829–838. [Google Scholar] [CrossRef] [Green Version]
- Moses, E.K.; Johnson, M.P.; Tømmerdal, L.; Forsmo, S.; Curran, J.E.; Abraham, L.J.; Charlesworth, J.C.; Brennecke, S.P.; Blangero, J.; Austgulen, R. Genetic association of preeclampsia to the inflammatory response gene SEPS1. Am. J. Obstet. Gynecol. 2008, 198, 336.e1–336.e5. [Google Scholar] [CrossRef]
- Hofstee, P.; Cuffe, J.S.M.; Perkins, A.V. Analysis of Selenoprotein Expression in Response to Dietary Selenium Deficiency During Pregnancy Indicates Tissue Specific Differential Expression in Mothers and Sex Specific Changes in the Fetus and Offspring. Int. J. Mol. Sci. 2020, 21, 2210. [Google Scholar] [CrossRef] [Green Version]
- Gilman, C.L.; Soon, R.; Sauvage, L.; Ralston, N.V.; Berry, M.J. Umbilical cord blood and placental mercury, selenium and selenoprotein expression in relation to maternal fish consumption. J. Trace Elem. Med. Biol. 2015, 30, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Cheng, W.; Nie, T.; Lai, H.; Hu, X.; Luo, J.; Li, F.; Li, H. Selenoprotein K Mediates the Proliferation, Migration, and Invasion of Human Choriocarcinoma Cells by Negatively Regulating Human Chorionic Gonadotropin Expression via ERK, p38 MAPK, and Akt Signaling Pathway. Biol. Trace Elem. Res. 2018, 184, 47–59. [Google Scholar] [CrossRef]
- Hofstee, P.; McKeating, D.R.; Perkins, A.V.; Cuffe, J.S. Placental adaptations to micronutrient dysregulation in the programming of chronic disease. Clin. Exp. Pharmacol. Physiol. 2018, 45, 871–884. [Google Scholar] [CrossRef]
- Wu, F.; Tian, F.J.; Lin, Y. Oxidative Stress in Placenta: Health and Diseases. Biomed. Res. Int. 2015, 2015, 293271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, A.M. Unique Aspects of Human Placentation. Int. J. Mol. Sci. 2021, 22, 8099. [Google Scholar] [CrossRef] [PubMed]
Selenoprotein | Abbreviation | Function | Subcellular Localisation |
---|---|---|---|
Glutathione Peroxidase1 | GPx1 | Antioxidant protection by preventing the accumulation of hydrogen peroxides. It is the most abundant GPx enzyme. Important roles in female reproductive function, cancer, cardiovascular disease and pre-eclampsia [16,35]. | Cytosol, mitochondria |
Glutathione Peroxidase 2 | GPx2 | Antioxidant protection. Main antioxidant enzyme in the GIT [7]. Implicated in the protection of embryos and extraembryonic tissues and expressed in the placenta [16,36]. | Cytosol |
Glutathione Peroxidase 3 | GPx3 | Maintenance of cellular redox status, main antioxidant in extracellular fluids/plasma. It is implicated in the implantation in the endometrium, maternal–foetal transfer mechanisms, in common pregnancy and birth, in pre-eclampsia, in preventing oxidative stress induced cell apoptosis during growth of large healthy follicles [16,37]. | Extracellular Plasma |
Glutathione Peroxidase 4 | GPx4 | Roles include detoxification of lipid hydroperoxides, antioxidant role in membranes, serves as structural protein in sperm, apoptosis. Present in high concentrations in sperm [16]. Vital for embryonic development and found to be expressed in the placenta [38]. Gpx4 depletion in mice leads to cell death in embryos, testis, brain, heart and photoreceptor cells by lipid peroxidation and oxidative stress Related to activation of NF-kB expression [38]. | Cytosol, mitochondria, Nucleus |
Glutathione Peroxidase 6 | GPx6 | Located in the olfactory epithelium and embryonic tissues, but function not known [38]. Only found in humans. | Unknown |
Thioredoxin Reductase 1 | TrxR1 | It is a part of the thioredoxin system and is an antioxidant involved in redox regulation and cell signalling, controls activity of transcription factors, cell proliferation and apoptosis [16]. Has been found to have important roles in embryogenesis [36] and found to be expressed in placental tissue [39]. | Cytosol, Nucleus |
Thioredoxin Reductase 2 | TrxR2 | It is a part of the thioredoxin system and is an antioxidant involved in redox regulation and cell signalling [16]. Has been found to have important roles in embryogenesis [36] and found to be expressed in placental tissue [39] | Cytosol |
Thioredoxin Reductase 3 | TrxR3 | It is a part of the thioredoxin system and is an antioxidant involved in redox regulation, cell signalling, disulphide bond formation and sperm maturation [16]. Has been found to have important roles in embryogenesis [36] and found to be expressed in placental tissue [39]. | Mitochondria (Testis Specific) |
Iodothyronine deiodinase 1 | DIO1 | Provides a source of plasma T3 by deiodination of T4 in peripheral tissues such as the liver and kidney [40]. | Plasma membrane |
Iodothyronine deiodinase 2 | DIO2 | Responsible for the majority of intracellular T3 in tissues such as the brain, pituitary, and brown fat by mediating local deiodination of T4 [40]. Enzymatic activity has been reported in the human placenta in villous cytotrophoblasts in the first trimester [41]. | ER membrane |
Iodothyronine deiodinase 3 | DIO3 | Metabolises thyroxine and converts T4 into its. Inactivate thyroid hormone by catalysing the inner-ring deiodination of T4 to rT3 and of T3 to T2 [42]. Found in syncytiotrophoblasts in the first and third trimester of gestation [41]. | Plasma membrane |
Methionine sulfoxide reductase B1 | MSRB1 | A repair enzyme that protects proteins from oxidative stress by catalysing the reduction of methionine-R-sulfoxides to methionines. Highly expressed in immune-activated macrophages and contributes to shaping cellular and organismal immune responses [43]. | Cytosol |
Selenophosphate synthetase 2 | SPS2 | Catalyses the production of monoselenophosphate (MSP) from selenide and ATP [44]. | Cytosol |
Selenoprotein F | SELENOF, 15kDA Selenoprotein, Sep15, SelF | Regulates cell stress by enhancing the enzymatic activity of UGGT, and may be involved in glycoprotein folding quality control by rearranging or reducing the disulphide bonds of UGGT-recognised misfolded proteins [45,46]. Sequence homology to protein disulphide isomerases (PDI) [46]. May be involved in apoptosis [47]. | ER |
Selenoprotein H | SELENOH, SelH, C11orf31 | Has a conserved CXXU thioredoxin like motif and has been shown to have oxidoreductase activity. Role in redox status, antioxidant activity and oxidative stress. Expressed in transformed placental cells [16]. | Nucleus and Golgi Apparatus |
Selenoprotein I | SELENOI, SEPI, SelI, Ethanol-amine-phosphotransferease1, KIAA1724 | Catalyses the transfer of phosphoethanolamine from CDP-ethanolamine to diacylglycerol to produce phosphatidylethanolamine which is involved in the formation and maintenance of vesicular membranes, regulation of lipid metabolism and protein folding. Potential role in murine embryogenesis [48,49]. | Plasma Membrane and cytosol |
Selenoprotein K | SELENOK, SelK | Roles in oxidation resistance, calcium flux regulation and ER-associated degradation (ERAD) [50]. | ER and Plasma membrane |
Selenoprotein M | SELENOM, SelM | Similar homology to Sep15, may function as a thiol-disulphide oxidoreductase, homologous to PDI’s and may be involved in protein folding [46]. | ER lumen |
Selenoprotein N | SELENON, SelN, SEPN1 | Regulation of RyR-mediated calcium mobilisation required for normal muscle development and differentiation, uncertain if plays a role in calcium mobilisation in other tissues [46]. | ER membrane |
Selenoprotein O | SELENOO, SelO | Unknown—thought to have redox activity. | Mitochondria |
Selenoprotein P | SELENOP, SEPP1, SeP, SelP | Implicated in selenium transport and antioxidant defence. It is a major contributor to plasma selenium and a good indicator of selenium status. Potential implication in pregnancy and pre-eclampsia [16]. | Secreted |
Selenoprotein S | SELENOS, SEPS1, Sel S, Tanis or VIMP (Valosin-containing protein-interacting membrane protein) | Participates in the processes and removal of misfolded proteins from the ER to the cytosol, protects cells from oxidative damage, regulates inflammation, ER stress induced apoptosis. Additionally, implicated in metabolic and cardiovascular disease, pre-eclampsia and spontaneous preterm birth [16,51,52]. | ER and plasma membrane |
Selenoprotein T | SELENOT, SelT | Shares sequence homology to thioredoxin-like fold and a conserved cys XX sec motif found in several redox active proteins [52]. Studies in mice indicate a crucial role for this gene in the protection of dopaminergic neurons against oxidative stress in Parkinson’s disease [53] and in the control of glucose homeostasis in pancreatic beta-cells [54]. | ER membrane |
Selenoprotein V | SELENOV, SelV | Sequence homology to thioredoxin-like fold. Possible role in redox regulation and Testis specific expression in rodents, in situ hybridisation experiments have shown high levels of SELENOV mRNA in seminiferous tubules in mice, but its exact role in spermatogenesis is unclear [55]. Potential in regulating body selenium metabolism in mice [55]. | Unknown |
Selenoprotein W | SELENOW, SelW, SEPW1 | Proposed antioxidant function. Highly expressed in skeletal muscle, heart, and brain, possesses a thioredoxin like fold and conserved CxxU motif, suggesting a redox function. Studies in mice show that this selenoprotein is involved in muscle growth and differentiation and in the protection of neurons from oxidative stress during neuronal development [56,57]. | Cytosol |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hogan, C.; Perkins, A.V. Selenoproteins in the Human Placenta: How Essential Is Selenium to a Healthy Start to Life? Nutrients 2022, 14, 628. https://doi.org/10.3390/nu14030628
Hogan C, Perkins AV. Selenoproteins in the Human Placenta: How Essential Is Selenium to a Healthy Start to Life? Nutrients. 2022; 14(3):628. https://doi.org/10.3390/nu14030628
Chicago/Turabian StyleHogan, Claire, and Anthony V. Perkins. 2022. "Selenoproteins in the Human Placenta: How Essential Is Selenium to a Healthy Start to Life?" Nutrients 14, no. 3: 628. https://doi.org/10.3390/nu14030628
APA StyleHogan, C., & Perkins, A. V. (2022). Selenoproteins in the Human Placenta: How Essential Is Selenium to a Healthy Start to Life? Nutrients, 14(3), 628. https://doi.org/10.3390/nu14030628