Energy Requirements and Nutritional Strategies for Male Soccer Players: A Review and Suggestions for Practice
Abstract
:1. Introduction
2. Fatigue and Soccer
3. Energy Assessment Methods in Soccer
3.1. Assessment of Energy Expenditure (EE)
3.2. Assessment of Energy Intake (EI)
3.3. Energy Expenditure: Training and Match Day
4. Nutritional Intake and Soccer
4.1. Nutrition for Pre-Match Day (MD-1)
4.2. Nutrition and Match-Day: Pre-Match
4.3. Nutrition and Match-Day: During Match
4.4. Match-Day: Post-Match
4.5. Day after Match Day (MD + 1)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bangsbo, J. Energy demands in competitive soccer. J. Sports Sci. 1994, 12, S5–S12. [Google Scholar] [CrossRef]
- Bradley, P.S.; Sheldon, W.; Wooster, B.; Olsen, P.; Boanas, P.; Krustrup, P. High-intensity running in English FA Premier League soccer matches. J. Sports Sci. 2009, 27, 159–168. [Google Scholar] [CrossRef]
- Barnes, C.; Archer, D.T.; Hogg, B.; Bush, M.; Bradley, P.S. The evolution of physical and technical performance parameters in the English Premier League. Int. J. Sports Med. 2014, 35, 1095–1100. [Google Scholar] [CrossRef]
- Bloomfield, J.; Polman, R.; O’Donoghue, P. Physical demands of different positions in FA Premier League soccer. J. Sport Sci. Med. 2007, 6, 63–70. [Google Scholar]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Match performance of high-standard soccer players with special reference to development of fatigue. J. Sports Sci. 2003, 21, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Malone, J.J.; Di Michele, R.; Morgans, R.; Burgess, D.; Morton, J.P.; Drust, B. Seasonal training-load quantification in elite English Premier League soccer players. Int. J. Sports Physiol. Perform. 2015, 10, 489–497. [Google Scholar] [CrossRef] [Green Version]
- Anderson, L.; Orme, P.; Di Michele, R.; Close, G.L.; Milsom, J.; Morgans, R.; Drust, B.; Morton, J.P. Quantification of Seasonal-Long Physical Load in Soccer Players With Different Starting Status From the English Premier League: Implications for Maintaining Squad Physical Fitness. Int. J. Sports Physiol. Perform. 2016, 11, 1038–1046. [Google Scholar] [CrossRef] [Green Version]
- Stevens, T.G.A.; de Ruiter, C.J.; Twisk, J.W.R.; Savelsbergh, G.J.P.; Beek, P.J. Quantification of in-season training load relative to match load in professional Dutch Eredivisie football players. Sci. Med. Footb. 2017, 1, 117–125. [Google Scholar] [CrossRef]
- Clemente, F.; Owen, A.; Serra-Olivares, J.; Nikolaidis, P.; van der Linden, C.; Mendes, B. Characterization of the weekly external load profile of professional soccer teams from Portugal and the Netherlands. J. Hum. Kinet. 2019, 66, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Los Arcos, A.; Mendez-Villanueva, A.; Martínez-Santos, R. In-season training periodization of professional soccer players. Biol. Sport. 2017, 34, 149–155. [Google Scholar] [CrossRef]
- Iaia, F.M.; Rampinini, E.; Bangsbo, J. High-Intensity Training in Football. Int. J. Sports Physiol. Perform. 2009, 4, 291–306. [Google Scholar] [CrossRef] [Green Version]
- Bangsbo, J. The physiology of soccer-with special reference to intense intermittent exercise. Acta Physiol. Scand. Suppl. 1994, 619, 1–155. [Google Scholar]
- Krustrup, P.; Mohr, M.; Ellingsgaard, H.; Bangsbo, J. Physical demands during an elite female soccer game: Importance of training status. Med. Sci. Sports Exerc. 2005, 37, 1242–1248. [Google Scholar] [CrossRef]
- Bangsbo, J.; Mohr, M.; Krustrup, P. Physical and metabolic demands of training and match-play in the elite football player. J. Sports Sci. 2006, 24, 665–674. [Google Scholar] [CrossRef]
- Bangsbo, J. Physiological Demands of Football. Sport Sci Exch. 2014, 27, 1–6. [Google Scholar]
- Faude, O.; Koch, T.; Meyer, T. Straight sprinting is the most frequent action in goal situations in professional football. J. Sports Sci. 2012, 30, 625–631. [Google Scholar] [CrossRef]
- Krustrup, P.; Mohr, M.; Steensberg, A.; Bencke, J.; Klær, M.; Bangsbo, J. Muscle and blood metabolites during a soccer game: Implications for sprint performance. Med. Sci. Sports Exerc. 2006, 38, 1165–1174. [Google Scholar] [CrossRef]
- Krustrup, P.; Ortenblad, N.; Nielsen, J.; Nybo, L.; Gunnarsson, T.P.; Iaia, F.M.; Madsen, K.; Stephens, F.; Greenhaff, P.; Bangsbo, J. Maximal voluntary contraction force, SR function and glycogen resynthesis during the first 72 h after a high-level competitive soccer game. Eur. J. Appl. Physiol. 2011, 111, 2987–2995. [Google Scholar] [CrossRef]
- Reilly, T. Energetics of high-intensity exercise (soccer) with particular reference to fatigue. J. Sports Sci. 1997, 15, 257–263. [Google Scholar] [CrossRef]
- Malone, J.J.; Lovell, R.; Varley, M.C.; Coutts, A.J. Unpacking the Black Box: Applications and Considerations for Using GPS Devices in Sport. Int. J. Sports Physiol. Perform. 2017, 12, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Mujika, I.; Burke, L.M. Nutrition in team sports. Ann. Nutr. Metab. 2010, 57 (Suppl. 2), 26–35. [Google Scholar] [CrossRef]
- Saltin, B. Substrate metabolism of the skeletal musculature during exercise. 5. Muscle glycogen. Lakartidningen 1972, 69, 1637–1640. [Google Scholar]
- Mohr, M.; Krustrup, P.; Bangsbo, J. Fatigue in soccer: A brief review. J. Sports Sci. 2005, 23, 593–599. [Google Scholar] [CrossRef]
- Jacobs, I.; Westlin, N.; Karlsson, J.; Rasmusson, M.; Houghton, B. Muscle glycogen and diet in elite soccer players. Eur. J. Appl. Physiol. Occup. Physiol. 1982, 48, 297–302. [Google Scholar] [CrossRef]
- Nicholas, C.W.; Tsintzas, K.; Boobis, L.; Williams, C. Carbohydrate-electrolyte ingestion during intermittent high-intensity running. Med. Sci. Sports Exerc. 1999, 31, 1280–1286. [Google Scholar] [CrossRef]
- Foskett, A.; Williams, C.; Boobis, L.; Tsintzas, K. Carbohydrate availability and muscle energy metabolism during intermittent running. Med. Sci. Sports Exerc. 2008, 40, 96–103. [Google Scholar] [CrossRef]
- Christensen, E.H.; Hansen, O. Arbeitsfahigkeit und Ern arung. Skand. Arch. Physiolgie 1939, 81, 160–171. [Google Scholar] [CrossRef]
- Currell, K.; Conway, S.; Jeukendrup, A.E. Carbohydrate ingestion improves performance of a new reliable test of soccer performance. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 34–46. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Williams, C.; Nicholas, C.W.; Foskett, A. The influence of carbohydrate-electrolyte ingestion on soccer skill performance. Med. Sci. Sports Exerc. 2007, 39, 1969–1976. [Google Scholar] [CrossRef]
- Backhouse, S.H.; Ali, A.; Biddle, S.J.H.; Williams, C. Carbohydrate ingestion during prolonged high-intensity intermittent exercise: Impact on affect and perceived exertion. Scand. J. Med. Sci. Sports 2007, 17, 605–610. [Google Scholar] [CrossRef]
- Ekblom, B. Applied physiology of soccer. Sports Med. 1986, 3, 50–60. [Google Scholar] [CrossRef]
- Harper, L.D.; Briggs, M.A.; McNamee, G.; West, D.J.; Kilduff, L.P.; Stevenson, E.; Russell, M. Physiological and performance effects of carbohydrate gels consumed prior to the extra-time period of prolonged simulated soccer match-play. J. Sci. Med. Sport. 2016, 19, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Hannon, M.P.; Carney, D.J.; Floyd, S.; Parker, L.J.F.; McKeown, J.; Drust, B.; Unnithan, V.B.; Close, G.L.; Morton, J.P. Cross-sectional comparison of body composition and resting metabolic rate in Premier League academy soccer players: Implications for growth and maturation. J. Sports Sci. 2020, 38, 1326–1334. [Google Scholar] [CrossRef]
- Hannon, M.P.; Parker, L.J.F.; Carney, D.J.; McKeown, J.; Speakman, J.R.; Hambly, C.; Drust, B.; Unnithan, V.B.; Close, G.L.; Morton, J.P. Energy Requirements of Male Academy Soccer Players from the English Premier League. Med. Sci. Sport Exerc. 2021, 53, 200–210. [Google Scholar] [CrossRef]
- Burrows, T.L.; Ho, Y.Y.; Rollo, M.E.; Collins, C.E. Validity of Dietary Assessment Methods When Compared to the Method of Doubly Labeled Water: A Systematic Review in Adults. Front. Endocrinol. 2019, 10, 850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, S.; Milliron, B.J.; Woolf, K. Common prediction equations overestimate measured resting metabolic rate in young hispanic women. Top Clin. Nutr. 2013, 28, 120–135. [Google Scholar] [CrossRef]
- Schofield, K.L.; Thorpe, H.; Sims, S.T. Resting metabolic rate prediction equations and the validity to assess energy deficiency in the athlete population. Exp. Physiol. 2019, 104, 469–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagim, A.R.; Camic, C.L.; Kisiolek, J.; Luedke, J.; Erickson, J.; Jones, M.T.; Oliver, J.M. Accuracy of Resting Metabolic Rate Prediction Equations in Athletes. J. Strength Cond. Res. 2018, 32, 1875–1881. [Google Scholar] [CrossRef]
- Anderson, L.; Orme, P.; Naughton, R.J.; Close, G.L.; Milsom, J.; Rydings, D.; O’Boyle, A.; Di Michele, R.; Louis, J.; Hambly, C.; et al. Energy Intake and Expenditure of Professional Soccer Players of the English Premier League: Evidence of Carbohydrate Periodization. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 228–238. [Google Scholar] [CrossRef]
- Stølen, T.; Chamari, K.; Castagna, C.; Wisløff, U. Physiology of soccer: An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Castagna, C.; Belardinelli, R.; Abt, G. The VO2 and HR response to training with the ball in youth soccer players. In Science and Football; Reilly, T., Cabri, J., Araújo, D., Eds.; Routledge, Taylor & Francis Group: Oxfordshire, UK, 2005; Volume V, pp. 462–464. [Google Scholar]
- Hoff, J.; Wisløff, U.; Engen, L.C.; Kemi, O.J.; Helgerud, J. Soccer specific aerobic endurance training. Br. J. Sports Med. 2002, 36, 218–221. [Google Scholar] [CrossRef]
- Rodríguez, F.A.; Iglesias, X. The energy cost of soccer: Telemetric oxygen uptake measurements versus heart rate-VO2 estimations. J. Sports Sci. 1998, 16, 484–485. [Google Scholar]
- Stevens, T.G.; De Ruiter, C.J.; Van Maurik, D.; Van Lierop, C.J.; Savelsbergh, G.J.; Beek, P.J. Measured and estimated energy cost of constant and shuttle running in soccer players. Med. Sci. Sports Exerc. 2015, 47, 1219–1224. [Google Scholar] [CrossRef]
- Davidson, L.; McNeill, G.; Haggarty, P.; Smith, J.S.; Franklin, M.F. Free-living energy expenditure of adult men assessed by continuous heart-rate monitoring and doubly-labelled water. Br. J. Nutr. 1997, 78, 695–708. [Google Scholar] [CrossRef] [Green Version]
- Spurr, G.B.; Prentice, A.M.; Murgatroyd, P.R.; Goldberg, G.R.; Reina, J.C.; Christman, N.T. Energy expenditure from minute-by-minute heart-rate recording: Comparison with indirect calorimetry. Am. J. Clin. Nutr. 1988, 48, 552–559. [Google Scholar] [CrossRef]
- Luke, A.; Maki, K.; Barkey, N.; Cooper, R.; McGee, D. Simultaneous monitoring of heart rate and motion to assess energy expenditure. Med. Sci. Sport Exerc. 1997, 29, 144–148. [Google Scholar] [CrossRef]
- Li, R.; Deurenberg, P.; Hautvast, J.G.A.J. A critical evaluation of heart rate monitoring to assess energy expenditure in individuals. Am. J. Clin. Nutr. 1993, 58, 602–607. [Google Scholar] [CrossRef]
- Achten, J.; Jeukendrup, A. Heart rate monitoring. Sport Med. 2003, 33, 517–538. [Google Scholar] [CrossRef]
- Hendelman, D.; Miller, K.; Baggett, C.; Debold, E.; Freedson, P. Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Med. Sci. Sport Exerc. 2000, 32, S442–S449. [Google Scholar] [CrossRef] [Green Version]
- Tudor-Locke, C.; Myers, A. Challenges and opportunities for measuring physical activity in sedentary adults. Sport Med. 2001, 31, 91–100. [Google Scholar] [CrossRef]
- De Vries, S.; Bakker, I.; Hopman-Rock, M.; Hirasing, R.; van Mechelen, W. Clinimetric review of motion sensors in children and adolescents. J. Clin. Epidemiol. 2006, 59, 670–680. [Google Scholar] [CrossRef]
- Gastin, P.B.; Cayzer, C.; Dwyer, D.; Robertson, S. Validity of the ActiGraph GT3X+ and BodyMedia SenseWear Armband to estimate energy expenditure during physical activity and sport. J. Sci. Med. Sport Sports Med. Aust. 2018, 21, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.; Batterham, A.; Bock, S.; Robson, C.; Stokes, K. Assessment of low-to-moderate intensity physical activity thermogenesis in young adults using synchronized heart rate and accelerometry with branched-equation modeling. J. Nutr. 2006, 136, 1037–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brage, S.; Brage, N.; Franks, P.; Ekelund, U.; Wareham, N. Reliability and validity of the combined heart rate and movement sensor Actiheart. Eur. J. Clin. Nutr. 2005, 59, 561–570. [Google Scholar] [CrossRef] [Green Version]
- Crouter, S.; Churilla, J.; Bassett, D. Accuracy of the Actiheart for the assessment of energy expenditure in adults. Eur. J. Clin. Nutr. 2008, 62, 704–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell, N.; Prapavessis, H.; Gray, C.; McGowan, E.; Rush, E.; Maddison, R. The Actiheart in adolescents: A doubly labelled water validation. Pediatr. Exerc. Sci. 2012, 24, 589–602. [Google Scholar] [CrossRef]
- Akenhead, R.; Nassis, G.P. Training load and player monitoring in high-level football: Current practice and perceptions. Int. J. Sports Physiol. Perform. 2016, 11, 587–593. [Google Scholar] [CrossRef]
- Osgnach, C.; Poser, S.; Bernardini, R.; Rinaldo, R.; di Prampero, P. Energy Cost and Metabolic Power in Elite Soccer: A New Match Analysis Approach. Med. Sci. Sports Exerc. 2010, 42, 170–178. [Google Scholar] [CrossRef]
- Brown, D.M.; Dwyer, D.B.; Robertson, S.J.; Gastin, P.B. Metabolic Power Method: Underestimation of Energy Expenditure in Field-Sport Movements Using a Global Positioning System Tracking System. Int. J. Sports Physiol. Perform. 2016, 11, 1067–1073. [Google Scholar] [CrossRef] [Green Version]
- Oxendale, C.L.; Highton, J.; Twist, C. Energy expenditure, metabolic power and high speed activity during linear and multi-directional running. J. Sci. Med. Sport Sports Med. Aust. 2017, 20, 957–961. [Google Scholar] [CrossRef]
- Buchheit, M.; Manouvrier, C.; Cassiram, J.; Morin, J. Monitoring locomotor load in soccer: Is metabolic power, powerful? Int. J. Sports Med. 2015, 36, 1149–1155. [Google Scholar] [CrossRef] [Green Version]
- Polglaze, T.; Hoppe, M.W. Metabolic Power: A Step in the Right Direction for Team Sports. Int. J. Sports Physiol. Perform. 2019, 14, 407–411. [Google Scholar] [CrossRef]
- Leblanc, J.C.; Le Gall, F.; Grandjean, V.; Verger, P. Nutritional intake of French soccer players at the Clairefontaine Training Center. Int. J. Sport Nutr. Exerc. Metab. 2002, 12, 268–280. [Google Scholar] [CrossRef]
- Beaton, G.; Burema, J.; Ritenbaugh, C. Errors in the interpretation of dietary assessments. Am. J. Clin. Nutr. 1997, 65, 1100S–1107S. [Google Scholar] [CrossRef] [PubMed]
- Trabulsi, J.; Schoeller, D.A. Evaluation of dietary assessment instruments against doubly labeled water, a biomarker of habitual energy intake. Am. J. Physiol.—Endocrinol. Metab. 2001, 281, E891–E899. [Google Scholar] [CrossRef] [Green Version]
- Goris, A.; Westerterp-Plantenga, M.; Westerterp, K. Undereating and underrecording of habitual food intake in obese men: Selective underreporting of fat intake. Am. J. Clin. Nutr. 2000, 71, 130–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briggs, M.A.; Rumbold, P.L.S.; Cockburn, E.; Russell, M.; Stevenson, E.J. Agreement between two methods of dietary data collection in male adolescent academy-level soccer players. Nutrients 2015, 7, 5948–5960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira, V.; Voci, S.M.; Mendes-Netto, R.S.; da Silva, D.G. The relative validity of a food record using the smartphone application MyFitnessPal. Nutr. Diet. 2018, 75, 219–225. [Google Scholar] [CrossRef]
- Hutchesson, M.J.; Rollo, M.E.; Callister, R.; Collins, C.E. Self-Monitoring of Dietary Intake by Young Women: Online Food Records Completed on Computer or Smartphone Are as Accurate as Paper-Based Food Records but More Acceptable. J. Acad. Nutr. Diet. Elsevier Inc. 2015, 115, 87–94. [Google Scholar] [CrossRef]
- Stables, R.G.; Kaspers, A.M.; Sparks, S.A.; Morton, J.P.; Close, G.L. An assessment of the validity of the remote food photography method (Termed Snap-N-Send) in experience and inexperience sport nutritionists. Int. J. Sport Nutr. Exerc. Metab. 2020, 31, 125–134. [Google Scholar] [CrossRef]
- Jeong, T.; Reilly, T.; Morton, J.; Bae, S.; Drust, B. Quantification of the physiological loading of one week of “pre-season” and one week of “in-season” training in professional soccer players. J. Sports Sci. 2011, 29, 1161–1166. [Google Scholar] [CrossRef] [PubMed]
- Reilly, T.; Thomas, V. Estimated daily energy expenditures of professional association footballers. Ergonomics 1979, 22, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Coelho, D.; Coelho, L.; Mortimer, L.; Condessa, L.; Ferreira-Junior, J.; Borba, D.; Oliveira, B.; Bouzas-Marins, J.; Soares, D.; Silami-Garcia, E. Energy expenditure estimation during official soccer matches. Braz. J. Biomotricity 2010, 4, 246–255. [Google Scholar]
- Anderson, L.; Close, G.L.; Morgans, R.; Hambly, C.; Speakman, J.R.; Drust, B.; Morton, J.P. Assessment of Energy Expenditure of a Professional Goalkeeper from the English Premier League Using the Doubly Labeled Water Method. Int. J. Sports Physiol. Perform. 2019, 14, 681–684. [Google Scholar] [CrossRef] [PubMed]
- Brinkmans, N.Y.J.; Iedema, N.; Plasqui, G.; Wouters, L.; Saris, W.H.M.; van Loon, L.J.C.; van Dijk, J.W. Energy expenditure and dietary intake in professional football players in the Dutch Premier League: Implications for nutritional counselling. J. Sports Sci. 2019, 37, 2759–2767. [Google Scholar] [CrossRef]
- Ebine, N.; Rafamantanantsoa, H.H.; Nayuki, Y.; Yamanaka, K.; Tashima, K.; Ono, T.; Saitoh, S.; Jones, P.J. Measurement of total energy expenditure by the doubly labelled water method in professional soccer players. J. Sports Sci. 2002, 20, 391–397. [Google Scholar] [CrossRef]
- Briggs, M.A.; Cockburn, E.; Rumbold, P.L.S.; Rae, G.; Stevenson, E.J.; Russell, M. Assessment of energy intake and energy expenditure of male adolescent academy-level soccer players during a competitive week. Nutrients 2015, 7, 8392–8401. [Google Scholar] [CrossRef]
- Ersoy, N.; Kalkan, I.; Ersoy, G. Assessment of nutrition status of Turkish elite young male soccer players in the pre-competition period. Prog. Nutr. 2019, 21, 12–18. [Google Scholar]
- Iglesias-Gutiérrez, E.; García-Rovés, P.M.; Rodríguez, C.; Braga, S.; García-Zapico, P.; Patterson, Á.M. Food habits and nutritional status assessment of adolescent soccer players. A necessary and accurate approach. Can. J. Appl. Physiol. 2005, 30, 18–32. [Google Scholar] [CrossRef]
- Rico-Sanz, J.; Frontera, W.R.; Molé, P.A.; Rivera, M.A.; Rivera-Brown, A.; Meredith, C.N. Dietary and performance assessment of elite soccer players during a period of intense training. Int. J. Sport Nutr. Exerc. Metab. 1998, 8, 230–240. [Google Scholar] [CrossRef]
- Russell, M.; Pennock, A. Dietary analysis of young professional soccer players for 1 week during the competitive season. J. Strength Cond. Res. 2011, 25, 1816–1823. [Google Scholar] [CrossRef]
- Malone, J.J.; Jaspers, A.; Helsen, W.; Merks, B.; Frencken, W.G.P.; Brink, M.S. Seasonal training load and wellness monitoring in a professional soccer goalkeeper. Int. J. Sports Physiol. Perform. 2018, 13, 672–675. [Google Scholar] [CrossRef]
- Maughan, R.J. Energy and macronutrient intakes of professional football (soccer) players. Br. J. Sports Med. 1997, 31, 45–47. [Google Scholar] [CrossRef] [Green Version]
- Devlin, B.L.; Leveritt, M.D.; Kingsley, M.; Belski, R. Dietary intake, body composition, and nutrition knowledge of Australian football and soccer players: Implications for sports nutrition professionals in practice. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 130–138. [Google Scholar] [CrossRef]
- Bettonviel, A.; Brinkmans, N.; Russcher, K.; Wardenaar, F.; Witard, O. Nutritional Status and Daytime Pattern of Protein Intake on Match, Post-Match, Rest and Training Days in Senior Professional and Youth Elite Soccer Players. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 285–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Do Prado, W.; Botero, J.P.; Luiz, R.; Guerra, F.; Rodrigues, C.L.; Cuvello, L.C.; Dâmaso, A. Anthropometric profile and macronutrient intake in professional Brazilian soccer players according to their field positioning. Rev. Bras. Med. Do Esporte. 2006, 12, 52–55. [Google Scholar]
- Ono, M.; Kennedy, E.; Reeves, S.; Cronin, L. Nutrition and culture in professional football. A mixed method approach. Appetite 2012, 58, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Caccialanza, R.; Cameletti, B.; Cavallaro, G. Nutritional intake of young Italian high-level soccer players: Under-reporting is the essential outcome. J. Sport Sci. Med. 2007, 6, 538–542. [Google Scholar]
- Naughton, R.; Drust, B.; O’Boyle, A.; Morgans, R.; Abayomi, J.; Davies, I.; Morton, J.P.; Mahon, E. Daily distribution of carbohydrate, protein and fat intake in elite youth academy soccer players over a 7-day training period. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 473–480. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, F.; Irazusta, A.; Gil, S.; Irazusta, J.; Casis, L.; Gil, J. Nutritional intake is soccer players of different ages. J. Sports Sci. 2005, 23, 235–242. [Google Scholar] [CrossRef]
- Bangsbo, J.; Norregaard, L.; Thorsoe, F. The effect of carbohydrate diet on intermittent exercise performance. Int. J. Sports Med. 1992, 13, 152–157. [Google Scholar] [CrossRef]
- Maughan, R.J.; Shirreffs, S.M. Nutrition for soccer players. Curr. Sports Med. Rep. 2007, 6, 279–280. [Google Scholar]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018, 52, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.; Maughan, R.J.; Gleeson, M.; Bilsborough, J.; Jeukendrup, A.; Morton, J.P.; Phillips, S.M.; Armstrong, L.; Burke, L.M.; Close, G.L.; et al. UEFA expert group statement on nutrition in elite football. Current evidence to inform practical recommendations and guide future research. Br. J. Sports Med. 2021, 55, 416. [Google Scholar] [CrossRef] [PubMed]
- Morris, R.; Emmonds, S.; Jones, B.; Myers, T.D.; Clarke, N.D.; Lake, J.; Ellis, M.; Singleton, D.; Roe, G.; Till, K. Seasonal changes in physical qualities of elite youth soccer players according to maturity status: Comparisons with aged matched controls. Sci. Med. Footb. 2018, 2, 272–280. [Google Scholar] [CrossRef]
- Lloyd, R.; Radnor, J.; De Ste Croix, M.; Cronin, J.; Oliver, J. Change in sprint and jump performance after traditional, plyometric, and combined resistance training in male youth pre- and post-peak height velocity. J. Strength Cond. Res. 2016, 30, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Naughton, R.J.; Drust, B.; O’Boyle, A.; Abayomi, J.; Mahon, E.; Morton, J.P.; Davies, I.G. Free-sugar, total-sugar, fibre, and micronutrient intake within elite youth British soccer players: A nutritional transition from schoolboy to fulltime soccer player. Appl. Physiol. Nutr. Metab. 2017, 42, 517–522. [Google Scholar] [CrossRef] [Green Version]
- Steffl, M.; Kinkorova, I.; Kokstejn, J.; Petr, M. Macronutrient Intake in Soccer Players-A Meta-Analysis. Nutrients 2019, 11, 1305. [Google Scholar] [CrossRef] [Green Version]
- Balsom, P.D.; Wood, K.; Olsson, P.; Ekblom, B. Carbohydrate intake and multiple sprint sports: With special reference to football (soccer). Int. J. Sports Med. 1999, 20, 48–52. [Google Scholar] [CrossRef]
- Souglis, A.G.; Chryssanthopoulos, C.I.; Travlos, A.K.; Zorzou, A.E.; Gissis, I.T.; Papadopoulos, C.N.; Sotiropoulos, A.A. The effect of high vs. low carbohydrate diets on distances covered in soccer. J. Strength Cond. Res. 2013, 27, 2235–2247. [Google Scholar] [CrossRef]
- Bussau, V.A.; Fairchild, T.J.; Rao, A.; Steele, P.; Fournier, P.A. Carbohydrate loading in human muscle: An improved 1 day protocol. Eur. J. Appl Physiol. 2002, 87, 290–295. [Google Scholar] [CrossRef]
- Costill, D.L.; Pascoe, D.D.; Fink, W.J.; Robergs, R.A.; Barr, S.I.; Pearson, D. Impaired muscle glycogen resynthesis after eccentric exercise. J. Appl. Physiol. 1990, 69, 46–50. [Google Scholar] [CrossRef]
- Zehnder, M.; Muelli, M.; Buchli, R.; Kuehne, G.; Boutellier, U. Further glycogen decrease during early recovery after eccentric exercise despite a high carbohydrate intake. Eur. J. Nutr. 2004, 43, 148–159. [Google Scholar] [CrossRef]
- Burke, L.M.; Collier, G.R.; Hargreaves, M. Muscle glycogen storage after prolonged exercise: Effect of the glycemic index of carbohydrate feedings. J. Appl. Physiol. 1993, 75, 1019–1023. [Google Scholar] [CrossRef]
- Hson Nilsson, L. Liver Glycogen Content in Man in the Postabsorptive State. Scand. J. Clin. Lab. Inv. 1973, 32, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Wee, S.L.; Williams, C.; Tsintzas, K.; Boobis, L. Ingestion of a high-glycemic index meal increases muscle glycogen storage at rest but augments its utilization during subsequent exercise. J. Appl. Physiol. 2005, 99, 707–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casey, A.; Mann, R.; Banister, K.; Fox, J.; Morris, P.G.; Macdonald, I.A.; Greenhaff, P.L. Effect of carbohydrate ingestion on glycogen resynthesis in human liver and skeletal muscle, measured by (13)C MRS. Am. J. Physiol. Endocrinol. Metab. 2000, 278, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Malone, J.J.; Hulton, A.T.; MacLaren, D.P.M. Exogenous carbohydrate and regulation of muscle carbohydrate utilisation during exercise. Eur. J. Appl. Physiol. 2021, 121, 1255–1269. [Google Scholar] [CrossRef]
- Thomas, D.E.; Brotherhood, J.R.; Brand, J.C. Carbohydrate feeding before exercise: Effect of glycemic index. Int. J. Sports Med. 1991, 12, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.H.S.; Siu, P.M.; Lok, A.; Chen, Y.J.; Morris, J.; Lam, C.W. Effect of the glycaemic index of pre-exercise carbohydrate meals on running performance. Eur. J. Sport Sci. 2008, 8, 23–33. [Google Scholar] [CrossRef]
- DeMarco, H.M.; Sucher, K.P.; Cisar, C.J.; Butterfield, G.E. Pre-exercise carbohydrate meals: Application of glycemic index. Med. Sci. Sports Exerc. 1999, 31, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Little, J.P.; Chilibeck, P.D.; Ciona, D.; Vandenberg, A.; Zello, G.A. The effects of low- and high-glycemic index foods on high-intensity intermittent exercise. Int. J. Sports Physiol. Perform. 2009, 4, 367–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulton, A.T.; Gregson, W.; Maclaren, D.; Doran, D.A. Effects of GI meals on intermittent exercise. Int. J. Sports Med. 2012, 33, 756–762. [Google Scholar] [CrossRef]
- Little, J.P.; Chilibeck, P.D.; Ciona, D.; Forbes, S.; Rees, H.; Vandenberg, A.; Zello, G.A. Effect of low- and high-glycemic-index meals on metabolism and performance during high-intensity, intermittent exercise. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 447–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulton, A.T.; Edwards, J.P.; Gregson, W.; Maclaren, D.; Doran, D.A. Effect of fat and CHO meals on intermittent exercise in soccer players. Int. J. Sports Med. 2013, 34, 165–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American College of Sports Medicine; Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of Sports Medicine position stand. Exercise and fluid replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.M. A brief review of critical processes in exercise-induced muscular hypertrophy. Sports Med. 2014, 44 (Suppl. 1), 71–77. [Google Scholar] [CrossRef] [Green Version]
- Tipton, K.D.; Elliott, T.A.; Cree, M.G.; Aarsland, A.A.; Sanford, A.P.; Wolfe, R.R. Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E71–E76. [Google Scholar] [CrossRef]
- Clarke, N.D.; Drust, B.; MacLaren, D.P.; Reilly, T. Strategies for hydration and energy provision during soccer-specific exercise. Int. J. Sport Nutr. Exerc. Metab. 2005, 15, 625–640. [Google Scholar] [CrossRef]
- Gant, N.; Ali, A.; Foskett, A. The influence of caffeine and carbohydrate coingestion on simulated soccer performance. Int. J. Sport Nutr. Exerc. Metab. 2010, 20, 191–197. [Google Scholar] [CrossRef]
- Duvnjak-Zaknich, D.M.; Dawson, B.T.; Wallman, K.E.; Henry, G. Effect of caffeine on reactive agility time when fresh and fatigued. Med. Sci. Sports Exerc. 2011, 43, 1523–1530. [Google Scholar] [CrossRef] [PubMed]
- Ellis, M.; Noon, M.; Myers, T.; Clarke, N. Low Doses of Caffeine: Enhancement of Physical Performance in Elite Adolescent Male Soccer Players. Int. J. Sports Physiol. Perform. 2019, 14, 569–575. [Google Scholar] [CrossRef] [Green Version]
- Foskett, A.; Ali, A.; Gant, N. Caffeine enhances cognitive function and skill performance during simulated soccer activity. Int. J. Sport Nutr. Exerc. Metab. 2009, 19, 410–423. [Google Scholar] [CrossRef]
- Clarke, N.D.; Drust, B.; Maclaren, D.P.; Reilly, T. Fluid provision and metabolic responses to soccer-specific exercise. Eur. J. Appl. Physiol. 2008, 104, 1069–1077. [Google Scholar] [CrossRef]
- Burke, L.M.; Kiens, B.; Ivy, J.L. Carbohydrates and fat for training and recovery. J. Sports Sci. 2004, 22, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Shirreffs, S.M.; Maughan, R.J. Volume repletion after exercise-induced volume depletion in humans: Replacement of water and sodium losses. Am. J. Physiol. 1998, 274, F868–F875. [Google Scholar] [CrossRef] [PubMed]
- Leiper, J.B.; Nicholas, C.W.; Ali, A.; Williams, C.; Maughan, R.J. The effect of intermittent high-intensity running on gastric emptying of fluids in man. Med. Sci. Sports Exerc. 2005, 37, 240–247. [Google Scholar] [CrossRef]
- Owen, J.A.; Kehoe, S.J.; Oliver, S.J. Influence of fluid intake on soccer performance in a temperate environment. J. Sports Sci. 2013, 31, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, C.W.; Williams, C.; Lakomy, H.K.; Phillips, G.; Nowitz, A. Influence of ingesting a carbohydrate-electrolyte solution on endurance capacity during intermittent, high-intensity shuttle running. J. Sports Sci. 1995, 13, 283–290. [Google Scholar] [CrossRef]
- Leatt, P.B.; Jacobs, I. Effect of glucose polymer ingestion on glycogen depletion during a soccer match. Can. J. Sport Sci. 1989, 14, 112–116. [Google Scholar]
- Baker, L.B.; Rollo, I.; Stein, K.W.; Jeukendrup, A.E. Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance. Nutrients 2015, 14, 5733–5763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkendall, D.T.; Foster, C.; Dean, J.A.; Grogan, J.; Thompson, N.N. Effect of glucose polymer supplementation on performance of soccer players. In Science and Football: Proceedings of the First World Congress of Science and Football Liverpool; Reilly, T., Lees., A., Davids, K., Murphy, W.J., Eds.; E & FN SPON: New York, NY, USA, 1988. [Google Scholar]
- Zeederberg, C.; Leach, L.; Lambert, E.V.; Noakes, T.D.; Dennis, S.C.; Hawley, J.A. The effect of carbohydrate ingestion on the motor skill proficiency of soccer players. Int. J. Sport Nutr. 1996, 6, 348–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, C.C.; Ferreira, D.; Caetano, C.; Granja, D.; Pinto, R.; Mendes, B.; Sousa, M. Nutrition and Supplementation in Soccer. Sports 2017, 5, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.; Williams, C. Carbohydrate ingestion and soccer skill performance during prolonged intermittent exercise. J. Sports Sci. 2009, 27, 1499–1508. [Google Scholar] [CrossRef] [PubMed]
- Harper, L.D.; Stevenson, E.J.; Rollo, I.; Russell, M. The influence of a 12% carbohydrate-electrolyte beverage on self-paced soccer-specific exercise performance. J. Sci. Med. Sport. 2017, 20, 1123–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, M.; Benton, D.; Kingsley, M. Influence of carbohydrate supplementation on skill performance during a soccer match simulation. J. Sci. Med. Sport. 2012, 15, 348–354. [Google Scholar] [CrossRef]
- Hulton, A.T.; Vitzel, K.; Doran, D.A.; MacLaren, D.P.M. Addition of Caffeine to a Carbohydrate Feeding Strategy Prior to Intermittent Exercise. Int. J. Sports Med. 2020, 41, 603–609. [Google Scholar] [CrossRef]
- Ranchordas, M.K.; King, G.; Russell, M.; Lynn, A.; Russell, M. Effects of Caffeinated Gum on a Battery of Soccer-Specific Tests in Trained University-Standard Male Soccer Players. Int. J. Sport. Nutr. Exerc. Metab. 2018, 28, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rollo, I.; Homewood, G.; Williams, C.; Carter, J.; Goosey-Tolfrey, V.L. The Influence of Carbohydrate Mouth Rinse on Self-Selected Intermittent Running Performance. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 550–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivy, J.L.; Katz, A.L.; Cutler, C.L.; Sherman, W.M.; Coyle, E.F. Muscle glycogen synthesis after exercise: Effect of time of carbohydrate ingestion. J. Appl. Physiol. 1988, 64, 1480–1485. [Google Scholar] [CrossRef] [Green Version]
- Wojtaszewski, J.F.; Nielsen, P.; Kiens, B.; Richter, E.A. Regulation of glycogen synthase kinase-3 in human skeletal muscle: Effects of food intake and bicycle exercise. Diabetes 2001, 50, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Richter, E.A.; Mikines, K.J.; Galbo, H.; Kiens, B. Effect of exercise on insulin action in human skeletal muscle. J. Appl. Physiol. 1989, 66, 876–885. [Google Scholar] [CrossRef]
- Van Loon, L.J.; Kruijshoop, M.; Verhagen, H.; Saris, W.H.; Wagenmakers, A.J. Ingestion of protein hydrolysate and amino acid-carbohydrate mixtures increases postexercise plasma insulin responses in men. J. Nutr. 2000, 130, 2508–2513. [Google Scholar] [CrossRef] [PubMed]
- Witard, O.C.; Jackman, S.R.; Breen, L.; Smith, K.; Selby, A.; Tipton, K.D. Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. Am. J. Clin. Nutr. 2014, 99, 86–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morton, R.W.; McGlory, C.; Phillips, S.M. Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Front. Physiol. 2015, 6, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macnaughton, L.S.; Wardle, S.L.; Witard, O.C.; McGlory, C.; Hamilton, D.L.; Jeromson, S.; Lawrence, C.E.; Wallis, G.A.; Tipton, K.D. The response of muscle protein synthesis following whole-body resistance exercise is greater following 40 g than 20 g of ingested whey protein. Physiol. Rep. 2016, 4, e12893. [Google Scholar] [CrossRef]
- Tang, J.E.; Moore, D.R.; Kujbida, G.W.; Tarnopolsky, M.A.; Phillips, S.M. Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J. Appl. Physiol. 2009, 107, 987–992. [Google Scholar] [CrossRef]
- Halson, S.L. Nutrition, sleep and recovery. Eur. J. Sport Sci. 2008, 8, 119–126. [Google Scholar] [CrossRef]
- Roy, B.D. Milk: The new sports drink? A Review. J. Int. Soc. Sports Nutr. 2008, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Gunnarsson, T.P.; Bendiksen, M.; Bischoff, R.; Christensen, P.M.; Lesivig, B.; Madsen, K.; Stephens, F.; Greenhaff, P.; Krustrup, P.; Bangsbo, J. Effect of whey protein- and carbohydrate-enriched diet on glycogen resynthesis during the first 48 h after a soccer game. Scand. J. Med. Sci. Sports. 2013, 23, 508–515. [Google Scholar] [CrossRef]
- Asp, S.; Daugaard, J.R.; Richter, E.A. Eccentric exercise decreases glucose transporter GLUT4 protein in human skeletal muscle. J. Physiol. 1995, 482 Pt 3, 705–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asp, S.; Daugaard, J.R.; Kristiansen, S.; Kiens, B.; Richter, E.A. Eccentric exercise decreases maximal insulin action in humans: Muscle and systemic effects. J. Physiol. 1996, 494 Pt 3, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.M.; Noble, E.G.; Hayden, D.B.; Taylor, A.W. Simple and complex carbohydrate-rich diets and muscle glycogen content of marathon runners. Eur. J. Appl. Physiol. Occup. Physiol. 1988, 57, 70–74. [Google Scholar] [CrossRef] [PubMed]
Energy Intake | Energy Expenditure | |||||||
---|---|---|---|---|---|---|---|---|
Reference | Study Population | Age/BM | Period | Method | kcal·day | kcal·kg·day | kcal·day | kcal·kg·day |
Senior Soccer Players | ||||||||
Anderson et al. [39] | EPL Professional Players (n = 6) | 27 ± 3 years 80.5 ± 8.7 kg | 7-day In-Season | In—Food Diary Ex—DLW | T = 2956 ± 374 M = 3789 ± 532 | T = 36.7 M = 47.1 | 3566 ± 585 (overall T + M) | 44.2 (overall T + M) |
Anderson et al. [75] | EPL Goalkeeper (n = 1) | 27 years 85.6 kg | 7-day In-Season | In—Food Diary Ex—DLW | 3160 ± 381 (overall T + M) | 36.9 (overall T + M) | 2894 (overall T + M) | 33.8 (overall T + M) |
Bangsbo et al. [84] | Danish Professional Players (n = 7) | 20–28 years 62.7–85.9 kg | 3-day In-Season | In—Food Diary Ex—n/a | 3749 (overall T + M) | 49.2 (overall T + M) | - | - |
Bettonviel et al. [85] | Dutch Eredivsie Professional Players (n = 29) | 20 ± 4 years 73 ± 8 kg | 4-day In-Season | In—24 h Recall Ex—n/a | 2988 ± 583 (overall T + M) | 40.9 (overall T + M) | - | - |
Brinkmans et al. [75] | Dutch Eredivsie Professional Players (n = 41) | 23 ± 4 years 77.6 ± 8.0 kg | 14-day In-Season | In—24 h Recall Ex—DLW | T = 2637 ± 823 M = 3114 ± 978 R = 2510 ± 740 | T = 33.9 ± 10.6 M = 40.1 ± 12.6 R = 32.3 ± 9.5 | 3285 ± 354 (overall T + M) | 42.4 ± 3.5 (overall T + M) |
Devlin et al. [83] | Australian Professional Players (n = 18) | 27 ± 5 years 75.6 ± 5.6 kg | 1-day Pre-Season | In—24 h Recall Ex—n/a | T = 2247 ± 550 | T = 29.7 | - | - |
do Prado et al. [86] | Brazilian Professional Players (n = 118) | 23 ± 1 years GK (n = 12) 83.9 kg CD (n = 20) 83.9 kg WD (n = 21) 69.7 kg MID (n = 41) 70.8 kg ST (n = 24) 72.1 kg | Habitual Food Inquiry | In—Interviews Ex—n/a | GK: 3903 CD: 2961 WD: 3361 MID: 2989 ST: 3641 (overall T + M) | - | - | - |
Ebine et al. [76] | Japanese Professional Players (n = 7) | 22 ± 2 years 69.8 ± 4.7 kg | 7-day In-Season | In—Food Diary Ex—DLW | 3113 ± 581 (overall T + M) | 44.6 (overall T + M) | 3532 ± 408 (overall T + M) | 50.6 (overall T + M) |
Jacobs et al. [24] | Swedish Professional Players (n = 15) | 20–30 years 68–92 kg | 3-day In-Season | In—Food Diary Ex—n/a | 4947 ± 1126 (recovery post-M) | 67.3 (recovery post-M) | - | - |
Maughan [87] | Scottish Professional Players (n = 51) | Team A = 26 ± 4 years 80.1 ± 7.8 kg Team B = 23 ± 4 years 74.6 ± 6.5 kg | 7-day In-Season | In—Food Diary Ex—n/a | Team A = 2629 ± 621 Team B = 3059 ± 526 (overall T + M) | Team A = 32.8 Team B = 41.0 (overall T + M) | - | - |
Ono et al. [88] | EPL and League One Players (n = 24) | n/a | 4-day In-Season | In—Food Diary Ex—n/a | 2648–4606 (period n/a) | - | - | - |
Adolescent Soccer Players | ||||||||
Briggs et al. [78] | EPL Academy Players (n = 10) | 15 ± 0 years 57.8 ± 7.8 kg | 7-day In-Season | In—Food Diary Ex—ACC | 2245 ± 321 (overall T + M) | 38.8 (overall T + M) | 2552 ± 245 (overall T + M) | 44.2 (overall T + M) |
Caccialanza et al. [89] | Italian Serie A Academy Players (n = 43) | 16 ± 1 years 69.8 ± 7.4 kg | 4-day In-Season | In—Food Diary Ex—n/a | T = 2560 ± 636 | T = 37.2 | - | - |
Ersoy et al. [79] | Turkish Academy Players (n = 26) | 16 ± 1 years 67.3 ± 5.9 kg | 3-day Pre-Season | In—Food Diary Ex—EQ | T = 3225 ± 692 | T = 47.9 | T = 3322 ± 240 | T = 49.4 |
Hannon et al. [34] | EPL U12/13 Academy (n = 8) | 12 ± 0 years 43.0 ± 4.8 kg | 14-day In-Season | In—Photo Ex—DLW | 2659 ± 187 (overall T + M) | 63.0 ± 8.0 (overall T + M) | 2859 ± 265 (overall T + M) | 66.5 (overall T + M) |
Hannon et al. [34] | EPL U15 Academy (n = 8) | 15 ± 0 years 56.8 ± 6.2 kg | 14-day In-Season | In—Photo Ex—DLW | 2821 ± 338 (overall T + M) | 50.0 ± 7.0 (overall T + M) | 3029 ± 262 (overall T + M) | 53.3 (overall T + M) |
Hannon et al. [34] | EPL U18 Academy (n = 8) | 18 ± 0 years 73.1 ± 8.1 | 14-day In-Season | In—Photo Ex—DLW | 3180 ± 279 (overall T + M) | 44.0 ± 7.0 (overall T + M) | 3586 ± 487 (overall T + M) | 49.1 (overall T + M) |
Iglesias-Gutiérrez et al. [80] | Spanish Academy Players (n = 33) | 14–16 years 65.1 kg | 6-day In-Season | In—Food Diary Ex—EQ | T = 3003 | T = 46.5 | T = 2983 | T = 45.8 |
Naughton et al. [90] | EPL U13/14 Academy (n = 21) | 13 ± 1 years 44.7 ± 7.2 kg | 7-day In-Season | In—Food Diary Ex—n/a | T = 1903 ± 432 | T = 43.1 ± 10.3 | - | - |
Naughton et al. [90] | EPL U15/16 Academy (n = 25) | 14 ± 1 years 60.4 ± 8.1 kg | 7-day In-Season | In—Food Diary Ex—n/a | T = 1927 ± 317 | T = 32.6 ± 7.9 | - | - |
Naughton et al. [90] | EPL U18 Academy (n = 13) | 16 ± 1 years 70.6 ± 7.6 kg | 7-day In-Season | In—Food Diary Ex—n/a | T = 1958 ± 390 | T = 28.1 ± 6.8 | - | - |
Rico-Sanz et al. [81] | Puerto Rican Olympic Team (n = 8) | 17 ± 2 years 63.4 ± 3.1 kg | 12-day In-Season | In—Food Diary Ex—EQ | T = 3952 ± 1071 | T = 62 ± 12 | T = 3833 ± 571 | T = 60.5 |
Ruiz et al. [91] | Basque Club Players (n = 81) | Team A = 14 ± 0 years 62.8 ± 2.2 kg Team B = 15 ± 0 years 66.7 ± 2.3 kg Team C = 17 ± 0 years 73.6 ± 0.8 kg Team D = 21 ± 0 years 72.9 ± 1.2 kg | 3-day In-Season | In—Food Diary Ex—n/a | Team A = T = 3456 ± 309 Team B = T = 3418 ± 182 Team C = T = 3478 ± 223 Team D = T = 3030 ± 141 | Team A = T = 54.6 ± 5.5 Team B = T = 51.5 ± 2.5 Team C = T = 48.4 ± 2.4 Team D = T = 41.1 ± 2.1 | - | - |
Russell and Pennock [82] | English Championship Academy (n = 10) | 17 ± 1 yrs 67.5 ± 1.8 kg | 7-day In-Season | In—Food Diary Ex—EQ | 2831 ± 164 (overall T + M) | 41.9 (overall T + M) | 3618 ± 61 (overall T + M) | 53.6 (overall T + M) |
Meal | Food Source | Amount | Amount of CHO |
---|---|---|---|
Breakfast Total—88.1 g (1.2 g kg CHO) | Cereal—Weetabix (with milk) | 37 g (135 mL) | 31.6 g |
Toast—2 slices (with flora light) | 60 g (14 g) | 31.0 g | |
Fruit cocktail (in juice) | 100 g | 11.7 g | |
Fresh Orange (glass) | 160 mL | 14.1 g | |
Poached eggs × 2 | 100 g | 0 g | |
Lunch Total—156.6 g (2.1 g kg CHO) | Rice | 160 g | 50.4 g |
Sweet and sour chicken | 160 g | 9.4 g | |
Broccoli | 85 g | 3 g | |
Green beans | 60 g | 2.3 g | |
Apple crumble & Custard | 150 g 100 g | 68.4 g | |
Fresh Apple juice (tall tumbler) | 300 mL | 23.1 g | |
Dinner Total—152 g (2 g kg CHO) | Mashed potato | 300 g | 41.4 g |
Salmon (white wine sauce) | 210 g (121 g) | 6.4 g | |
Carrots | 90 g | 5.2 g | |
Broccoli | 85 g | 3 g | |
Peas | 80 g | 7.4 g | |
Strawberry (1 cup) & meringue (×2) | 160 g/32 g | 39.1 g | |
Ice cream | 35 g | 7.4 g | |
CHO-electrolyte drink | 500 mL | 31.5 g | |
Drinks/Snacks Total—72.3 g (0.96 g kg CHO) | Slice of fruit cake/loaf | 77 g | 40.8 g |
CHO-electrolyte drink | 500 mL | 31.5 g | |
Total CHO Intake | 459 g (6.1 g·kg−1 CHO) |
High Glycaemic Index Meal (GI = 80) [114] | CHO (g) | Protein (g) | Fat (g) | Energy (kcal) | ||||
Akash rice (63 g) | Chicken Breast (100 g) | Tomato based sauce (300 g) | Lucozade Original (380 mL) | Water (210 mL) | 138.8 | 35.7 | 23 | 870.3 |
Low Glycaemic Index Meal (GI = 44) [114] | CHO (g) | Protein (g) | Fat (g) | Energy (kcal) | ||||
Brown basmati rice (63 g) | Chicken Breast (100 g) | Tomato based sauce (300 g) | Apple Juice (590 mL) | 133.7 | 37.9 | 23.7 | 866.3 | |
High Fat Meal [116] | CHO (g) | Protein (g) | Fat (g) | Energy (kcal) | ||||
Egg fried rice (75 g) | Chicken breast (100 g) | Korma sauce (200 g) | Milkshake (200 mL) | Double cream (50 mL) | 59.4 | 35.3 | 70.2 | 995.6 |
CHANGING ROOM | POST-MATCH MEAL | |||
---|---|---|---|---|
Player | Substitute | Player | Substitute | |
FLUIDS | 1 L CHO-electrolyte OR 1 L CHO-protein shake | 300 mL protein shake (no CHO) Water | Fresh fruit juice | Water |
MAIN MEAL | Baked wedges Pizza slices Sushi Chicken goujons & dip Prawn goujons & dip Sliced frittata | Chicken goujons + dip Prawn goujons & dip Sliced omelette Chicken Kebab | Pasta meal Curry, rice & naan Sweet & sour meal Chicken kebab & rice Paella Cottage pie Salmon/cod/tuna steak, vegetables & mashed potato Frittata & fries Jerk chicken, rice & peas | Chicken or beef salad Prawn stir fry Chicken kebab with salad Bolognaise & Courgetti Omelette & beans Roast meat & vegetables Salmon/cod/tuna steak & roasted vegetables |
DESSERT | Meringue Fresh pineapple slices | Apple slices | Sticky toffee pudding Banoffee pie Fruit crumble Eton mess | No Dessert |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hulton, A.T.; Malone, J.J.; Clarke, N.D.; MacLaren, D.P.M. Energy Requirements and Nutritional Strategies for Male Soccer Players: A Review and Suggestions for Practice. Nutrients 2022, 14, 657. https://doi.org/10.3390/nu14030657
Hulton AT, Malone JJ, Clarke ND, MacLaren DPM. Energy Requirements and Nutritional Strategies for Male Soccer Players: A Review and Suggestions for Practice. Nutrients. 2022; 14(3):657. https://doi.org/10.3390/nu14030657
Chicago/Turabian StyleHulton, Andrew T., James J. Malone, Neil D. Clarke, and Don P. M. MacLaren. 2022. "Energy Requirements and Nutritional Strategies for Male Soccer Players: A Review and Suggestions for Practice" Nutrients 14, no. 3: 657. https://doi.org/10.3390/nu14030657
APA StyleHulton, A. T., Malone, J. J., Clarke, N. D., & MacLaren, D. P. M. (2022). Energy Requirements and Nutritional Strategies for Male Soccer Players: A Review and Suggestions for Practice. Nutrients, 14(3), 657. https://doi.org/10.3390/nu14030657