Vitamin E, Alpha-Tocopherol, and Its Effects on Depression and Anxiety: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methodology
3. Study Selection
4. Data Extraction
5. Quality Assessment
6. Data Analysis
7. Results
8. Drug Constituents
8.1. Anxiety
8.2. Measures of Effect
8.3. Synthesis of Results
8.3.1. Depression
8.3.2. Anxiety
8.3.3. Risk of Bias
9. Discussion
10. Limitations of Review
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vigo, D.; Thornicroft, G.; Atun, R. Estimating the true global burden of mental illness. Lancet Psychiatry 2016, 3, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Rehm, J.; Shield, K.D. Global Burden of Disease and the Impact of Mental and Addictive Disorders. Curr. Psychiatry Rep. 2019, 21, 10. [Google Scholar] [CrossRef] [PubMed]
- Maurer, D.M.; Raymond, T.J.; Davis, B.N. Depression: Screening and Diagnosis. Am. Fam. Physician 2018, 98, 508–515. [Google Scholar] [PubMed]
- Thom, R.; Silbersweig, D.A.; Boland, R.J. Major Depressive Disorder in Medical Illness: A Review of Assessment, Prevalence, and Treatment Options. Psychosom. Med. 2019, 81, 246–255. [Google Scholar] [CrossRef]
- Ströhle, A.; Gensichen, J.; Domschke, K. The Diagnosis and Treatment of Anxiety Disorders. Dtsch. Ärzteblatt Int. 2018, 155, 611–620. [Google Scholar] [CrossRef]
- Chand, S.P.; Marwaha, R. Anxiety. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470361/ (accessed on 26 July 2021).
- Gilman, S.E.; Sucha, E.; Kingsbury, M.; Horton, N.J.; Murphy, J.M.; Colman, I. Depression and mortality in a longitudinal study: 1952–2011. Can. Med Assoc. J. 2017, 189, E1304–E1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pratt, L.A.; Druss, B.G.; Manderscheid, R.W.; Walker, E.R. Excess mortality due to depression and anxiety in the United States: Results from a nationally representative survey. Gen. Hosp. Psychiatry 2016, 39, 39–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenes, G.A. Anxiety, Depression, and Quality of Life in Primary Care Patients. Prim. Care Companion J. Clin. Psychiatry 2007, 9, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.S.; Simon, G.; Kessler, R.C. The economic burden of depression and the cost-effectiveness of treatment. Int. J. Methods Psychiatr. Res. 2003, 12, 22–33. [Google Scholar] [CrossRef]
- Altesman, R.I.; Cole, J.O. Psychopharmacologic treatment of anxiety. J. Clin. Psychiatry 1983, 44, 12–18. [Google Scholar]
- Cipriani, A.; Furukawa, T.A.; Salanti, G.; Chaimani, A.; Atkinson, L.Z.; Ogawa, Y.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Higgins, J.P.T.; et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: A systematic review and network meta-analysis. Lancet 2018, 391, 1357–1366. [Google Scholar] [CrossRef] [Green Version]
- Garakani, A.; Murrough, J.W.; Freire, R.C.; Thom, R.P.; Larkin, K.; Buono, F.D.; Iosifescu, D.V. Pharmacotherapy of Anxiety Disorders: Current and Emerging Treatment Options. Front. Psychiatry 2020, 11, 595584. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Z.; Wang, Y.-X.; Jiang, C.-L. Inflammation: The Common Pathway of Stress-Related Diseases. Front. Hum. Neurosci. 2017, 11, 316. [Google Scholar] [CrossRef] [PubMed]
- Maydych, V. The Interplay Between Stress, Inflammation, and Emotional Attention: Relevance for Depression. Front. Neurosci. 2019, 13, 384. [Google Scholar] [CrossRef] [PubMed]
- Welcome, M.O. Cellular mechanisms and molecular signaling pathways in stress-induced anxiety, depression, and blood–brain barrier inflammation and leakage. Inflammopharmacology 2020, 28, 643–665. [Google Scholar] [CrossRef] [PubMed]
- Lobato, K.R.; Cardoso, C.C.; Binfaré, R.W.; Budni, J.; Wagner, C.L.; Brocardo, P.S.; de Souza, L.F.; Brocardo, C.; Flesch, S.; Freitas, A.E.; et al. α-Tocopherol administration produces an antidepressant-like effect in predictive animal models of depression. Behav. Brain Res. 2010, 209, 249–259. [Google Scholar] [CrossRef]
- Manosso, L.M.; Neis, V.B.; Moretti, M.; Daufenbach, J.F.; Freitas, A.E.; Colla, A.R.; Rodrigues, A.L.S. Antidepressant-like effect of α-tocopherol in a mouse model of depressive-like behavior induced by TNF-α. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 46, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Wu, H.; Jiang, R.; Sun, G.; Shen, J.; Ma, M.; Ma, C.; Zhang, S.; Huang, Z.; Wu, Q.; et al. The antidepressant effects of ɑ-tocopherol are related to activation of autophagy via the AMPK/mTOR pathway. Eur. J. Pharmacol. 2018, 833, 1–7. [Google Scholar] [CrossRef]
- Maes, M.; De Vos, N.; Pioli, R.; Demedts, P.; Wauters, A.; Neels, H.; Christophe, A. Lower serum vitamin E concentrations in major depression: Another marker of lowered antioxidant defenses in that illness. J. Affect. Disord. 2000, 58, 241–246. [Google Scholar] [CrossRef]
- Rizvi, S.; Raza, S.T.; Ahmed, F.; Ahmad, A.; Abbas, S.; Mahdi, F. The Role of Vitamin E in Human Health and Some Diseases. Sultan Qaboos Univ. Med. J. 2014, 14, e157–e165. [Google Scholar]
- Gautam, M.; Agrawal, M.; Gautam, M.; Sharma, P.; Gautam, A.S.; Gautam, S. Role of antioxidants in generalised anxiety disorder and depression. Indian J. Psychiatry 2012, 54, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, C.; Klabnik, J.J.; O’Donnell, J.M. Novel Therapeutic Targets in Depression and Anxiety: Antioxidants as a Candidate Treatment. Curr. Neuropharmacol. 2014, 12, 108–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brigelius-Flohé, R. Adverse effects of vitamin E by induction of drug metabolism. Genes Nutr. 2007, 2, 249–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [Green Version]
- The Cochrane Collaboration. Review Manager (RevMan), Version 5.4.; Cochrane: London, UK, 2020.
- Cumpston, M.; Li, T.; Page, M.J.; Chandler, J.; Welch, V.A.; Higgins, J.P.; Thomas, J. Updated guidance for trusted systematic reviews: A new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst. Rev. 2019, 10, Ed000142. [Google Scholar] [CrossRef] [Green Version]
- Rees, A.-M.; Austin, M.-P.; Parker, G. Omega-3 Fatty Acids as a Treatment for Perinatal Depression: Randomized Double-Blind Placebo-Controlled Trial. Aust. N. Z. J. Psychiatry 2008, 42, 199–205. [Google Scholar] [CrossRef]
- Radzinskii, V.E.; Kuznetsova, I.V.; Uspenskaya, Y.B.; Repina, N.B.; Gusak, Y.K.; Zubova, O.M.; Burchakov, D.I.; Osmakova, A.A. Treatment of climacteric symptoms with an ammonium succinate-based dietary supplement: A randomized, double-blind, placebo-controlled trial. Gynecol. Endocrinol. 2016, 32 (Suppl. 2), 64–68. [Google Scholar] [CrossRef] [Green Version]
- Jamilian, M.; Shojaei, A.; Samimi, M.; Ebrahimi, F.A.; Aghadavod, E.; Karamali, M.; Taghizadeh, M.; Jamilian, H.; Alaeinasab, S.; Jafarnejad, S.; et al. The effects of omega-3 and vitamin E co-supplementation on parameters of mental health and gene expression related to insulin and inflammation in subjects with polycystic ovary syndrome. J. Affect. Disord. 2018, 229, 41–47. [Google Scholar] [CrossRef]
- Ataei-Almanghadim, K.; Farshbaf-Khalili, A.; Ostadrahimi, A.R.; Shaseb, E.; Mirghafourvand, M. The effect of oral capsule of curcumin and vitamin E on the hot flashes and anxiety in postmenopausal women: A triple blind randomised controlled trial. Complement. Ther. Med. 2020, 48, 102267. [Google Scholar] [CrossRef]
- Tolonen, M.; Halme, M.; Sarna, S. Vitamin E and selenium supplementation in geriatric patients: A double-blind preliminary clinical trial. Biol. Trace Elem. Res. 1985, 7, 161–168. [Google Scholar] [CrossRef]
- Carlsson, C.M.; Papcke-Benson, K.; Carnes, M.; McBride, P.E.; Stein, J.H. Health-Related Quality of Life and Long-Term Therapy with Pravastatin and Tocopherol (Vitamin E) in Older Adults. Drugs Aging 2002, 19, 793–805. [Google Scholar] [CrossRef] [PubMed]
- Lohr, J.B.; Wyatt, R.J.; Cadet, J.L.; Lohr, M.A.; Larson, L.; Wasli, E.; Wade, L.; Hylton, R.; Vidoni, C.; Jeste, D.V. Vitamin E in the Treatment of Tardive Dyskinesia: The Possible Involvement of Free Radical Mechanisms. Schizophr. Bull. 1988, 14, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Mazloom, Z.; Ekramzadeh, M.; Hejazi, N. Efficacy of Supplementary Vitamins C and E on Anxiety, Depression and Stress in Type 2 Diabetic Patients: A Randomized, Single-blind, Placebo-controlled Trial. Pak. J. Biol. Sci. 2013, 16, 1597–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malaguarnera, G.; Bertino, G.; Chisari, G.; Motta, M.; Vecchio, M.; Vacante, M.; Caraci, F.; Greco, C.; Drago, F.; Nunnari, G.; et al. Silybin supplementation during HCV therapy with pegylated interferon-α plus ribavirin reduces depression and anxiety and increases work ability. BMC Psychiatry 2016, 16, 398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, P.H.; Edland, S.D.; Teng, E.; Tingus, K.; Petersen, R.C.; Cummings, J.L.; On behalf of The Alzheimer’s Disease Cooperative Study Group. Donepezil delays progression to AD in MCI subjects with depressive symptoms. Neurology 2009, 72, 2115–2121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adler, L.A.; Rotrosen, J.; Edson, R.; Lavori, P.; Lohr, J.; Hitzemann, R.; Raisch, D.; Caligiuri, M.; Tracy, K.; Veterans Affairs Cooperative Study# 394 Study Group. Vitamin E treatment for tardive dyskinesia. Arch. Gen. Psychiatry 1999, 56, 836–841. [Google Scholar] [CrossRef] [Green Version]
- Meyer, B.J.; Grenyer, B.F.S.; Crowe, T.; Owen, A.J.; Grigonis-Deane, E.M.; Howe, P. Improvement of Major Depression is Associated with Increased Erythrocyte DHA. Lipids 2013, 48, 863–868. [Google Scholar] [CrossRef] [Green Version]
- Moosavian, S.P.; Arab, A.; Mehrabani, S.; Moradi, S.; Nasirian, M. The effect of omega-3 and vitamin E on oxidative stress and inflammation: Systematic review and meta-analysis of randomized controlled trials. Int. J. Vitam. Nutr. Res. 2020, 90, 553–563. [Google Scholar] [CrossRef]
- Blampied, M.; Bell, C.; Gilbert, C.; Rucklidge, J.J. Broad spectrum micronutrient formulas for the treatment of symptoms of depression, stress, and/or anxiety: A systematic review. Expert Rev. Neurother. 2020, 20, 351–371. [Google Scholar] [CrossRef]
Search Engine | Search Term | No. of Results |
---|---|---|
EMBASE | (‘depress*’:ti,ab OR ‘anxie*’:ti,ab OR ‘low mood’:ti,ab OR ‘mood disorders’:ti,ab OR ‘psych*’:ti,ab) AND (‘vitamin e’ OR ‘alpha tocopherol’ OR ‘d alpha tocopherol’ OR ‘α tocopherol’) | 2074 |
PubMed | (“depress*”[title/abstract] OR “anxie*”[title/abstract] OR “low mood”[title/abstract] OR “mood disorder”[title/abstract] OR “psych*”[title/abstract]) AND (vitamin e OR alpha-tocopherol OR alpha-tocopherol OR d-alpha-tocopherol OR α-tocopherol) | 907 |
PsycINFO | ((depress or depression or depressive or anxiety or low mood or mood disorder or psychiatric or psychiatry or psychology or psychological).ab. or (depress or depression or depressive or anxiety or low mood or mood disorder or psychiatric or psychiatry or psychology or psychological).ti.) and (vitamin e or alpha-tocopherol or alpha-tocopherol or d-alpha-tocopherol).af. | 1003 |
Cochrane (CENTRAL) | (“depress*” OR “anxie*” OR “low mood” OR “mood disorder” OR “psych*”) in Title Abstract Keyword AND (vitamin e OR alpha-tocopherol OR alpha-tocopherol OR d-alpha-tocopherol OR α-tocopherol) in All Text | 398 |
CINAHL | (TI (“depress*” OR “anxie*” OR “low mood” OR “mood disorder” OR “psych*”) OR AB (“depress*” OR “anxie*” OR “low mood” OR “mood disorder” OR “psych*”)) AND TX (vitamin e OR alpha-tocopherol OR alpha-tocopherol OR d-alpha-tocopherol OR α-tocopherol) | 420 |
Inclusion | Exclusion | |
---|---|---|
Population |
|
|
Intervention |
|
|
Comparator |
| |
Outcomes |
|
|
Study design |
|
|
Language |
|
|
Source | Study design | Participants | Population | Intervention | Comparison (If Any) | Measures of Effect | Duration of Follow-Up | Findings * |
---|---|---|---|---|---|---|---|---|
Rees et al. (2008) [29] | RCT | 26 | Tx: 31.2 ± 4.4 years old Pb: 34.5 ± 3.8 years old Women in the antenatal and postnatal period | 6 g containing 27.3% DHA, 6.9% EPA, 3.3% omega-6 fatty acids, 80 mg vitamin E Once per day in divided doses for 6 weeks | Sunola Oil | Edinburgh Postnatal Depression Scale, HDRS, MADRS | 6 weeks Data at 6 weeks used for meta-analysis. | Significant improvement in depression with Vitamin E HDRS improved from 19.7 ± 4.8 to 7.9 ± 5.1 in the intervention group versus improvement from 9.0 ± 3.5 to 0.7 ± 5.1 in the placebo group (SMD: –1.08, 95%CI: –1.92, –0.25)† |
Radzinskii et al. (2016) [30] | RCT | 125 | Tx: 52.4 ± 5.02 Pb: 51.97 ± 4.25 42–60-year-old women with vasomotor and psycho-somatic menopausal symptoms | 2 pills (200 mg each) of Amberen daily Amberen contains tocopheryl acetate (vitamin E), ammonium succinate, calcium disuccinate, monosodium l-glutamate, glycine, magnesium disuccinate, zinc difumarate and | Placebo (High purity corn starch) | Greene climacteric test and Spielberger–Hanin test | Data collection every 30 days, followed up for 90 days Data at 3 months used for meta-analysis. | Amberen showed a statistically significant improvement in anxiety, stress resistance and adaptability Spielberger-Hanin test for situational anxiety showed improvement in the Amberen group from 0.52 ± 9.72 to –10.02 ± 7.78 at 90 days versus deprovement from –4.16 ± 10.08 to –0.14 ± 10.05 in the placebo group (SMD: –2.37, 95%CI: –2.83, –1.91)‡ |
Jamilian et al. (2018) [31] | RCT | 40 | Tx: 22.3 ± 4.7 Px: 24.4 ± 4.7 | 1000 mg omega-3 fatty acids, 400 IU Vit E per day for 12 weeks | Placebo | BDI, general health questionnaire scores, DASS | 12 weeks Data at 12 weeks used for meta-analysis. | Co-administration of omega-3 and vitamin E had favourable effects on parameters of mental health After 12 weeks, greater reduction in BDI was noted with Vitamin E –2.2 ± 2.0 versus –0.2 ± 1.3 with placebo (SMD: –1.16, 95%CI: –1.84, –0.49)† |
Ataei-Almanghadim et al. (2020) [32] | RCT | 93 | 51.6 ± 5.4 Women with normal menopause | 500 mg oral capsule of curcumin Twice a day for 8 weeks | Oral tablets of vitamin E (200 IU/day) Placebo | Hot flashes and anxiety (primary objectives), sexual function, menopausal symptoms and adverse effects (secondary objectives) | 4 weeks and 8 weeks after the intervention Data at 8 weeks used for meta-analysis. | Vitamin E had no significant effect on anxiety, sexual function and menopausal symptoms versus placebo After 8 weeks, state anxiety improved from 44.4 ± 13.2 to 39.1 ± 9.9 in the Vitamin E, and 44.9 ± 10.2 to 38.4 ± 9.1 in the placebo group (SMD: 0.17, 95%CI: –0.33, 0.67)‡ |
Tolonen et al. (1985) [33] | RCT | 30 | Tx: 76.8 (58–90) years old; 26.7% male Pb: 76.2 (50–92) years old; 20.0% male Geriatric patients Medications that participants were on were not specified | 8 mg of sodium selenate, one 45 μg capsule of ‘Vita-hiven’ (Se yeast in birch ash) and 400 mg of d-alpha-tocopherol (Ido-E) Twice a day for 1 year | Placebo | Sandoz Clinical Assessment Geriatric-scale | Data collection every 2 months Intervention over 1 year | Statistically significant improvements observed in the therapy group compared with the placebo group in both depression (p < 0.001) and anxiety (p < 0.01) Quantitative results were not available for meta-analysis |
Carlsson et al. (2002) [34] | RCT | 41 | Tx: 76.2 ± 4.4 Px: 76.4 ± 4.3 | 400 IU tocopherol every night for 6 months | 20 mg pravastatin each night for 6 months | Global Health Perception Question, GDS, Assessment of Living Skills and Resources questionnaire< Wechsler Adult Intelligence Scale-R, Sleep Dysfunction Scale | 12 months Data at 6 months used for meta-analysis. | No significant changes in health perception, depression, physical function, cognition or sleep dysfunction occurred After 6 months, GDS showed improvement from 2.00 ± 2.27 to 1.17 ± 1.20 in the tocopherol group versus deprovement from 1.20 ± 2.31 to 1.35 ± 2.37 in placebo (SMD: –0.64, 95%CI: –1.33, 0.04)† |
Lohr et al. (1988) [35] | RCT | 15 | Mean age of 44 ± 18 (range 19–71) Participants have chronic schizophrenia (n = 9) or schizoaffective disorder (n = 6) and persistent tardive dyskinesia for at least 1 year Participants were kept on constant doses of neuroleptic and anticholinergic medications throughout the study | Alpha-tocopherol 400 IU 1st week: once in the morning 2nd week: twice a day 3rd and 4th week: thrice a day | Placebo | BPRS, a modified version of the Abnormal In- voluntary Movement Scale (AIMS) with a score range of 0 to 36, a modified version of the Simpson-Angus Scale for Extra- pyramidal Side Effects (SAS) with a score range of 0 to 24 | 10 weeks Data at 4 weeks used for meta-analysis. | Improvement in depression and anxiety with alpha-tocopherol versus placebo, both of which were not statistically significant After 4 weeks, BRPS depression subscale showed better results in the alpha-tocopherol group of 1.4 ± 2.4 versus 3.1 ± 3.2 in placebo (SMD: –0.58, 95%CI: –1.32, 0.15)† Anxiety subscale similarly showed better scores of 1.1 ± 1.9 in the alpha-tocopherol group versus 2.4 ± 2.5 in placebo (SMD: –0.57, 95%CI: –1.30, 0.16)‡ |
Mazloom et al. (2013) [36] | RCT | 41 | Vitamin C: 47 ± 8.93 Vitamin E: 48 ± 6.28 Placebo: 46.61 ± 7.58 Type 2 diabetic patients receiving standard oral hypoglycemic agents | Vitamin E capsule, 400 IU One capsule per day for 6 weeks | Vitamin C capsule, 1000 mg Placebo capsule (acetate cellulose), 1000 mg | DASS | 6 weeks Data at 6 weeks used for meta-analysis. | No significant difference in depression or anxiety with Vitamin E versus placebo After 6 weeks, depression deproved from 21.92 ± 6.54 to 23.78 ± 6.11 in Vitamin E group versus 20.23 ± 5.65 to 21.15 ± 8.09 with placebo (SMD: 0.20, 95%CI: –0.55, 0.96)† Anxiety worsened from 31.07 ± 6.24 to 34.28 ± 7.54 with Vitamin E versus improvement from 28.69 ± 9.40 to 27.92 ± 8.73 with placebo (SMD: 0.75, 95%CI: –0.04, 1.53)‡ |
Malaguarnera et al. (2016) [37] | RCT | 62 | Tx: 47.2 ± 3.7 yo Pb: 45.8 ± 3.9 yo 58% male Patients with chronic Hepatitis C, who are treated with Peg-IFN-alpha and RBV | 94 mg silybin, 30 mg vitamin E, 194 mg phospholipids Three times a day for 12 months | Placebo | BDI, BPRS, Work Ability Index | 12 months Data at 6 months used for meta-analysis. | Significant reduction in depression and anxiety were observed in the intervention group versus placebo group After 6 months, BDI deproved from 30.7 ± 7.1 to 34.6 ± 7.1 with vitamin E versus 30.8 ± 6.9 versus 46.7 ± 6.8 with placebo (SMD: –2.69, 95%CI: –3.38, –1.99)† STAI improved from 50.8 ± 7.9 to 50.4 ± 7.2 with Vitamin E but deproved from 50.1 ± 7.6 to 60.4 ± 7.7 with placebo (SMD: –2.19, 95%CI: –2.82, –1.55)‡ |
Lu et al. (2009) [38] | RCT | 756 | 55–91 54.3% male patients with Amnestic Mild Cognitive Impairment (aMCI) | Donepezil, 10 mg Duration of intervention: 3 years | Vitamin E, 2000 IU Placebo | BDI and time to diagnosis of possible or probable AD according to NINCDS-ADRDA criteria | Every 6 months, up to 36 months Data at 6 months used for meta-analysis. | No significant improvement of depression with Vitamin E versus placebo After 6 months, BDI improved from 14.1 ± 4.3 to 11.3 ± 6.0 with Vitamin E versus 13.4 ± 3.8 to 11.4 ± 5.2 with placebo (SMD: –0.24, 95%CI: –0.58, 0.10)† |
Adler et al. (1999) [39] | RCT | 107 | Patients with tardive dyskinesia | 1600 IU per day of d-vitamin E | Placebo | BPRS | 2 years Data at 12 months used for meta-analysis. | No significant effects on BPRS (SMD: 0.32, 95%CI: –0.06, 0.71) BPRS subscale scores for depression and axiety not reported No significant adverse events noted |
Meyer et al. (2013) [40] | RCT | 95 | 18–75 years Major Depression | Eight 1 g capsules yielding 250 mg DHA, 70 mg EPA, 10 mg vitamin E per day for 16 weeks | Placebo | HDRS, BDI | 16 weeks | Trial did not show beneficial effects of DHA Quantitative results were not available for meta-analysis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, A.R.Y.B.; Tariq, A.; Lau, G.; Tok, N.W.K.; Tam, W.W.S.; Ho, C.S.H. Vitamin E, Alpha-Tocopherol, and Its Effects on Depression and Anxiety: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 656. https://doi.org/10.3390/nu14030656
Lee ARYB, Tariq A, Lau G, Tok NWK, Tam WWS, Ho CSH. Vitamin E, Alpha-Tocopherol, and Its Effects on Depression and Anxiety: A Systematic Review and Meta-Analysis. Nutrients. 2022; 14(3):656. https://doi.org/10.3390/nu14030656
Chicago/Turabian StyleLee, Ainsley Ryan Yan Bin, Areeba Tariq, Grace Lau, Nicholas Wee Kiat Tok, Wilson Wai San Tam, and Cyrus Su Hui Ho. 2022. "Vitamin E, Alpha-Tocopherol, and Its Effects on Depression and Anxiety: A Systematic Review and Meta-Analysis" Nutrients 14, no. 3: 656. https://doi.org/10.3390/nu14030656
APA StyleLee, A. R. Y. B., Tariq, A., Lau, G., Tok, N. W. K., Tam, W. W. S., & Ho, C. S. H. (2022). Vitamin E, Alpha-Tocopherol, and Its Effects on Depression and Anxiety: A Systematic Review and Meta-Analysis. Nutrients, 14(3), 656. https://doi.org/10.3390/nu14030656