Association of Maternal Dietary Patterns during Gestation and Offspring Neurodevelopment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Dietary Assessment
2.3. Neurodevelopment Evaluation
2.4. Potential Confounders
2.5. Statistical Analysis
3. Results
3.1. Basic Characteristics and Neurodevelopmental Assessment
3.2. Maternal Dietary Patterns across Gestation
3.3. Maternal Dietary Patterns and Neurodevelopment in Infants
3.4. Adherence to ‘Aquatic Products and Homonemeae’ Pattern and Infant Neurodevelopment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perou, R.; Bitsko, R.H.; Blumberg, S.J.; Pastor, P.; Ghandour, R.M.; Gfroerer, J.C.; Hedden, S.L.; Crosby, A.E.; Visser, S.N.; Schieve, L.A.; et al. Mental health surveillance among children—United States, 2005–2011. MMWR Suppl. 2013, 62, 1–35. [Google Scholar] [PubMed]
- Soni, A. Top Five Most Costly Conditions among Children, Ages 0–17, 2012: Estimates for the U.S. Civilian Noninstitutionalized Population. In Statistical Brief (Medical Expenditure Panel Survey (US)); Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2001. [Google Scholar]
- Thompson, R.A.; Nelson, C.A. Developmental science and the media. Early brain development. Am. Psychol. 2001, 56, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Prado, E.L.; Dewey, K.G. Nutrition and brain development in early life. Nutr. Rev. 2014, 72, 267–284. [Google Scholar] [CrossRef] [Green Version]
- Carlson, S.E. Docosahexaenoic acid supplementation in pregnancy and lactation. Am. J. Clin. Nutr. 2009, 89, 678s–684s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, C.L.; Voigt, R.G.; Prager, T.C.; Zou, Y.L.; Fraley, J.K.; Rozelle, J.C.; Turcich, M.R.; Llorente, A.M.; Anderson, R.E.; Heird, W.C. Effects of maternal docosahexaenoic acid intake on visual function and neurodevelopment in breastfed term infants. Am. J. Clin. Nutr. 2005, 82, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Zeisel, S.H. Is maternal diet supplementation beneficial? Optimal development of infant depends on mother’s diet. Am. J. Clin. Nutr. 2009, 89, 685s–687s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tofail, F.; Persson, L.A.; El Arifeen, S.; Hamadani, J.D.; Mehrin, F.; Ridout, D.; Ekström, E.C.; Huda, S.N.; Grantham-McGregor, S.M. Effects of prenatal food and micronutrient supplementation on infant development: A randomized trial from the Maternal and Infant Nutrition Interventions, Matlab (MINIMat) study. Am. J. Clin. Nutr. 2008, 87, 704–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christian, P.; Murray-Kolb, L.E.; Khatry, S.K.; Katz, J.; Schaefer, B.A.; Cole, P.M.; Leclerq, S.C.; Tielsch, J.M. Prenatal micronutrient supplementation and intellectual and motor function in early school-aged children in Nepal. JAMA 2010, 304, 2716–2723. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Yan, H.; Zeng, L.; Cheng, Y.; Liang, W.; Dang, S.; Wang, Q.; Tsuji, I. Effects of maternal multimicronutrient supplementation on the mental development of infants in rural western China: Follow-up evaluation of a double-blind, randomized, controlled trial. Pediatrics 2009, 123, e685–e692. [Google Scholar] [CrossRef]
- Markhus, M.W.; Hysing, M.; Midtbø, L.K.; Nerhus, I.; Næss, S.; Aakre, I.; Kvestad, I.; Dahl, L.; Kjellevold, M. Effects of Two Weekly Servings of Cod for 16 Weeks in Pregnancy on Maternal Iodine Status and Infant Neurodevelopment: Mommy’s Food, a Randomized-Controlled Trial. Thyroid Off. J. Am. Thyroid Assoc. 2021, 31, 288–298. [Google Scholar] [CrossRef]
- Valera-Gran, D.; García de la Hera, M.; Navarrete-Muñoz, E.M.; Fernandez-Somoano, A.; Tardón, A.; Julvez, J.; Forns, J.; Lertxundi, N.; Ibarluzea, J.M.; Murcia, M.; et al. Folic acid supplements during pregnancy and child psychomotor development after the first year of life. JAMA Pediatrics 2014, 168, e142611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterland, R.A.; Jirtle, R.L. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutr. Burbank Los Angeles Cty. Calif. 2004, 20, 63–68. [Google Scholar] [CrossRef] [PubMed]
- MacLennan, N.K.; James, S.J.; Melnyk, S.; Piroozi, A.; Jernigan, S.; Hsu, J.L.; Janke, S.M.; Pham, T.D.; Lane, R.H. Uteroplacental insufficiency alters DNA methylation, one-carbon metabolism, and histone acetylation in IUGR rats. Physiol. Genom. 2004, 18, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.; Ying, Z.; Gomez-Pinilla, F. The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. Eur. J. Neurosci. 2004, 19, 1699–1707. [Google Scholar] [CrossRef] [PubMed]
- Cespedes, E.M.; Hu, F.B. Dietary patterns: From nutritional epidemiologic analysis to national guidelines. Am. J. Clin. Nutr. 2015, 101, 899–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Freitas-Vilela, A.A.; Pearson, R.M.; Emmett, P.; Heron, J.; Smith, A.; Emond, A.; Hibbeln, J.R.; Castro, M.B.T.; Kac, G. Maternal dietary patterns during pregnancy and intelligence quotients in the offspring at 8 years of age: Findings from the ALSPAC cohort. Matern. Child Nutr. 2018, 14, e12431. [Google Scholar] [CrossRef] [PubMed]
- Steenweg-de Graaff, J.; Tiemeier, H.; Steegers-Theunissen, R.P.; Hofman, A.; Jaddoe, V.W.; Verhulst, F.C.; Roza, S.J. Maternal dietary patterns during pregnancy and child internalising and externalising problems. The Generation R Study. Clin. Nutr. Edinb. Scotl. 2014, 33, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Lv, H.; Diao, F.; Du, J.; Chen, T.; Meng, Q.; Ling, X.; Li, H.; Song, C.; Xi, Q.; Jiang, Y.; et al. Assisted reproductive technology and birth defects in a Chinese birth cohort study. Lancet Reg. Health. West. Pac. 2021, 7, 100090. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, Y.; Li, F.; Shao, Y.; Sun, Z.; Zhong, C.; Fan, P.; Li, Z.; Zhang, M.; Li, X.; et al. Development and validation of a photographic atlas of food portions for accurate quantification of dietary intakes in China. J. Hum. Nutr. Diet. 2021, 34, 604–615. [Google Scholar] [CrossRef]
- Yang, Y. China food composition tables. 6th edition. Beijing China Peking Univ. Med. Press 2018, 11, 1452. [Google Scholar]
- Sugiura, H.; Uchiyama, M.; Omoto, M.; Sasaki, K.; Uehara, M. Prevalence of infantile and early childhood eczema in a Japanese population: Comparison with the disease frequency examined 20 years ago. Acta Derm.-Venereol. 1997, 77, 52–53. [Google Scholar] [PubMed]
- Yang, Q.; Shu-Zhen, L.I.; Liu, L.L.; Lin, S.R.; Hua, J.J. Predictive Validity of Bayley Scale of Infant Development-3rd Edition-Screening Test in Early Term Children. Chin. J. Child Health Care 2018, 26, 729–732. [Google Scholar]
- Bayley, N. Bayley Scales of Infant and Toddler Development, 3rd ed.; Harcourt Assessment: San Antonio, TX, USA, 2006. [Google Scholar]
- Cattell, R.B. The Scree Test For The Number Of Factors. Multivar. Behav. Res. 1966, 1, 245–276. [Google Scholar] [CrossRef]
- Polańska, K.; Muszyński, P.; Sobala, W.; Dziewirska, E.; Merecz-Kot, D.; Hanke, W. Maternal lifestyle during pregnancy and child psychomotor development—Polish Mother and Child Cohort study. Early Hum. Dev. 2015, 91, 317–325. [Google Scholar] [CrossRef]
- Dórea, J.G. Environmental exposure to low-level lead (Pb) co-occurring with other neurotoxicants in early life and neurodevelopment of children. Environ. Res. 2019, 177, 108641. [Google Scholar] [CrossRef] [PubMed]
- Gil, A.; Gil, F. Fish, a Mediterranean source of n-3 PUFA: Benefits do not justify limiting consumption. Br. J. Nutr. 2015, 113 (Suppl. 2), S58–S67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Álvarez-Bueno, C.; Cavero-Redondo, I.; Sánchez-López, M.; Garrido-Miguel, M.; Martínez-Hortelano, J.A.; Martínez-Vizcaíno, V. Pregnancy leisure physical activity and children’s neurodevelopment: A narrative review. BJOG Int. J. Obstet. Gynaecol. 2018, 125, 1235–1242. [Google Scholar] [CrossRef]
- Bouwland-Both, M.I.; Steegers-Theunissen, R.P.; Vujkovic, M.; Lesaffre, E.M.; Mook-Kanamori, D.O.; Hofman, A.; Lindemans, J.; Russcher, H.; Jaddoe, V.W.; Steegers, E.A. A periconceptional energy-rich dietary pattern is associated with early fetal growth: The Generation R study. BJOG Int. J. Obstet. Gynaecol. 2013, 120, 435–445. [Google Scholar] [CrossRef] [Green Version]
- Polanska, K.; Kaluzny, P.; Aubert, A.M.; Bernard, J.Y.; Duijts, L.; El Marroun, H.; Hanke, W.; Hébert, J.R.; Heude, B.; Jankowska, A.; et al. Dietary Quality and Dietary Inflammatory Potential During Pregnancy and Offspring Emotional and Behavioral Symptoms in Childhood: An Individual Participant Data Meta-analysis of Four European Cohorts. Biol. Psychiatry 2021, 89, 550–559. [Google Scholar] [CrossRef]
- Englund-Ögge, L.; Brantsæter, A.L.; Sengpiel, V.; Haugen, M.; Birgisdottir, B.E.; Myhre, R.; Meltzer, H.M.; Jacobsson, B. Maternal dietary patterns and preterm delivery: Results from large prospective cohort study. BMJ 2014, 348, g1446. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.S.; He, J.R.; Chen, Q.; Lu, J.; Wei, X.; Zhou, Q.; Chan, F.; Zhang, L.; Chen, N.; Qiu, L.; et al. Maternal dietary patterns during pregnancy and preterm delivery: A large prospective cohort study in China. Nutr. J. 2018, 17, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hibbeln, J.R.; Davis, J.M.; Steer, C.; Emmett, P.; Rogers, I.; Williams, C.; Golding, J. Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): An observational cohort study. Lancet 2007, 369, 578–585. [Google Scholar] [CrossRef]
- Hawkey, E.; Nigg, J.T. Omega-3 fatty acid and ADHD: Blood level analysis and meta-analytic extension of supplementation trials. Clin. Psychol. Rev. 2014, 34, 496–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tesei, A.; Crippa, A.; Ceccarelli, S.B.; Mauri, M.; Molteni, M.; Agostoni, C.; Nobile, M. The potential relevance of docosahexaenoic acid and eicosapentaenoic acid to the etiopathogenesis of childhood neuropsychiatric disorders. Eur. Child Adolesc. Psychiatry 2017, 26, 1011–1030. [Google Scholar] [CrossRef] [PubMed]
- Schlögelhofer, M.; Amminger, G.P.; Schaefer, M.R.; Fusar-Poli, P.; Smesny, S.; McGorry, P.; Berger, G.; Mossaheb, N. Polyunsaturated fatty acids in emerging psychosis: A safer alternative? Early Interv. Psychiatry 2014, 8, 199–208. [Google Scholar] [CrossRef] [PubMed]
- de Mello, A.H.; Schraiber, R.B.; Goldim, M.P.S.; Garcez, M.L.; Gomes, M.L.; de Bem Silveira, G.; Zaccaron, R.P.; Schuck, P.F.; Budni, J.; Silveira, P.C.L.; et al. Omega-3 Fatty Acids Attenuate Brain Alterations in High-Fat Diet-Induced Obesity Model. Mol. Neurobiol. 2019, 56, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.M.; Crozier, S.R.; Miles, E.A.; Gale, C.R.; Calder, P.C.; Cooper, C.; Inskip, H.M.; Godfrey, K.M. Preconception Maternal Iodine Status Is Positively Associated with IQ but Not with Measures of Executive Function in Childhood. J. Nutr. 2018, 148, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, M.B. The effects of iodine deficiency in pregnancy and infancy. Paediatr. Perinat. Epidemiol. 2012, 26 (Suppl. 1), 108–117. [Google Scholar] [CrossRef]
- Williams, G.R. Neurodevelopmental and neurophysiological actions of thyroid hormone. J. Neuroendocrinol. 2008, 20, 784–794. [Google Scholar] [CrossRef]
- Wei, W.; Wang, Y.; Wang, Y.; Dong, J.; Min, H.; Song, B.; Teng, W.; Xi, Q.; Chen, J. Developmental hypothyroxinaemia induced by maternal mild iodine deficiency delays hippocampal axonal growth in the rat offspring. J. Neuroendocrinol. 2013, 25, 852–862. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, M.B. The Importance of Adequate Iodine during Pregnancy and Infancy. World Rev. Nutr. Diet. 2016, 115, 118–124. [Google Scholar] [PubMed]
- Wichmann, H.; Brinkhoff, T.; Simon, M.; Richter-Landsberg, C. Dimethylsulfoniopropionate Promotes Process Outgrowth in Neural Cells and Exerts Protective Effects against Tropodithietic Acid. Mar. Drugs 2016, 14, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas-Vilela, A.A.; Smith, A.D.; Kac, G.; Pearson, R.M.; Heron, J.; Emond, A.; Hibbeln, J.R.; Castro, M.B.; Emmett, P.M. Dietary patterns by cluster analysis in pregnant women: Relationship with nutrient intakes and dietary patterns in 7-year-old offspring. Matern. Child Nutr. 2017, 13, e12353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, K.; Schulze, M.B.; Schienkiewitz, A.; Nöthlings, U.; Boeing, H. Application of a new statistical method to derive dietary patterns in nutritional epidemiology. Am. J. Epidemiol. 2004, 159, 935–944. [Google Scholar] [CrossRef] [PubMed]
Overall | |
---|---|
Maternal age at delivery (years) | 31.01 (3.92) |
Maternal pre-pregnancy BMI (kg/m2) | 21.68 (2.98) |
<18.5 | 127 (10.8) |
18.5–23.9 | 807 (68.5) |
24–27.9 | 189 (16.0) |
≥28 | 46 (3.9) |
Diabetes a | 339 (28.8) |
Hypertension b | 60 (5.1) |
Mode of conception | |
SP | 707 (60.0) |
ARTP | 471 (40.0) |
Primipara | 915 (77.7) |
Tobacco use during pregnancy | 1 (0.1) |
Alcohol intake during pregnancy | 5 (0.4) |
Preterm birth | 45 (3.8) |
Infant sex | |
Male | 612 (52.0) |
Female | 566 (48.0) |
LBW (<2500 g) c | 27 (2.3) |
Duration of breastfeeding, months | |
<6 | 406 (34.5) |
6–12 | 754 (64.0) |
Bayley-Ⅲ screening test scale | |
Non-competent in cognition | 142 (12.1) |
Non-competent in receptive communication | 206 (17.5) |
Non-competent in expressive communication | 62 (5.3) |
Non-competent in fine motor skills | 48 (4.1) |
Non-competent in gross motor skills | 131 (11.1) |
Cognition | Receptive Communication | Expressive Communication | Fine Motor | Gross Motor | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RR (95% CI) | p | RR (95% CI) | p | RR (95% CI) | p | RR (95% CI) | p | RR (95% CI) | p | ||
Model 1 | |||||||||||
Lowest tertile in both trimesters | n = 196 | Ref | Ref | Ref | Ref | Ref | |||||
Highest tertile in both trimesters | n = 180 | 0.40 (0.21, 0.78) | 0.007 | 0.75 (0.47, 1.20) | 0.232 | 0.84 (0.37, 1.93) | 0.682 | 0.45 (0.16, 1.31) | 0.142 | 0.37 (0.18, 0.76) | 0.007 |
Model 2 | |||||||||||
Lowest tertile in both trimesters | n = 196 | Ref | Ref | Ref | Ref | Ref | |||||
Highest tertile in both trimesters | n = 180 | 0.41 (0.21, 0.79) | 0.008 | 0.77 (0.48, 1.23) | 0.266 | 0.86 (0.38, 1.98) | 0.724 | 0.46 (0.16, 1.33) | 0.150 | 0.37 (0.18, 0.77) | 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, S.; Qin, R.; Jiang, Y.; Lv, H.; Lu, Q.; Tao, S.; Huang, L.; Liu, C.; Xu, X.; Wang, Q.; et al. Association of Maternal Dietary Patterns during Gestation and Offspring Neurodevelopment. Nutrients 2022, 14, 730. https://doi.org/10.3390/nu14040730
Lv S, Qin R, Jiang Y, Lv H, Lu Q, Tao S, Huang L, Liu C, Xu X, Wang Q, et al. Association of Maternal Dietary Patterns during Gestation and Offspring Neurodevelopment. Nutrients. 2022; 14(4):730. https://doi.org/10.3390/nu14040730
Chicago/Turabian StyleLv, Siyuan, Rui Qin, Yangqian Jiang, Hong Lv, Qun Lu, Shiyao Tao, Lei Huang, Cong Liu, Xin Xu, Qingru Wang, and et al. 2022. "Association of Maternal Dietary Patterns during Gestation and Offspring Neurodevelopment" Nutrients 14, no. 4: 730. https://doi.org/10.3390/nu14040730
APA StyleLv, S., Qin, R., Jiang, Y., Lv, H., Lu, Q., Tao, S., Huang, L., Liu, C., Xu, X., Wang, Q., Li, M., Li, Z., Ding, Y., Song, C., Jiang, T., Ma, H., Jin, G., Xia, Y., Wang, Z., ... Hu, Z. (2022). Association of Maternal Dietary Patterns during Gestation and Offspring Neurodevelopment. Nutrients, 14(4), 730. https://doi.org/10.3390/nu14040730