Exploring the Associations between Single-Child Status and Childhood High Blood Pressure and the Mediation Effect of Lifestyle Behaviors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Anthropometric Measurements
2.3. Questionnaires Data Collection
2.4. Definitions
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Chen, Z.; Zhang, L.; Wang, X.; Hao, G.; Zhang, Z.; Shao, L.; Tian, Y.; Dong, Y.; Zheng, C.; et al. Status of Hypertension in China: Results from the China Hypertension Survey, 2012–2015. Circulation 2018, 137, 2344–2356. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Y. Tracking of blood pressure from childhood to adulthood: A systematic review and meta-regression analysis. Circulation 2008, 117, 3171–3180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Magnussen, C.G.; Yang, L.; Bovet, P.; Xi, B. Elevated Blood Pressure in Childhood or Adolescence and Cardiovascular Outcomes in Adulthood. Hypertension 2020, 75, 948–955. [Google Scholar] [CrossRef]
- Wang, L.; Song, L.; Liu, B.; Zhang, L.; Wu, M.; Cao, Z.; Wang, Y. Trends and Status of the Prevalence of Elevated Blood Pressure in Children and Adolescents in China: A Systematic Review and Meta-analysis. Curr. Hypertens. Rep. 2019, 21, 88. [Google Scholar] [CrossRef]
- Parsons, A.J.Q.; Gilmour, S. An evaluation of fertility- and migration-based policy responses to Japan’s ageing population. PLoS ONE 2018, 13, e0209285. [Google Scholar] [CrossRef]
- Zeng, Y.; Hesketh, T. The effects of China’s universal two-child policy. Lancet 2016, 388, 1930–1938. [Google Scholar] [CrossRef] [Green Version]
- Haugaard, L.K.; Ajslev, T.A.; Zimmermann, E.; Ängquist, L.; Sørensen, T.I.A. Being an Only or Last-Born Child Increases Later Risk of Obesity. PLoS ONE 2013, 8, e56357. [Google Scholar] [CrossRef] [Green Version]
- Min, J.; Xue, H.; Wang, V.H.C.; Li, M.; Wang, Y. Are single children more likely to be overweight or obese than those with siblings? The influence of China’s one-child policy on childhood obesity. Prev. Med. 2017, 103, 8–13. [Google Scholar] [CrossRef]
- Mosli, R.H.; Miller, A.L.; Peterson, K.E.; Kaciroti, N.; Rosenblum, K.; Baylin, A.; Lumeng, J.C. Birth order and sibship composition as predictors of overweight or obesity among low-income 4- to 8-year-old children. Pediatr. Obes. 2016, 11, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Zhou, M. Do only children have poor vision? Evidence from China’s One-Child Policy. Health Econ. 2018, 27, 1131–1146. [Google Scholar] [CrossRef]
- Cao, Y.; Huang, L.; Si, T.; Wang, N.Q.; Qu, M.; Zhang, X.Y. The role of only-child status in the psychological impact of COVID-19 on mental health of Chinese adolescents. J. Affect. Disord. 2021, 282, 316–321. [Google Scholar] [CrossRef]
- Tian, X.; von Cramon-Taubadel, S. Are only children in China more likely to be obese/overweight than their counterparts with siblings? Econ. Hum. Biol. 2020, 37, 100847. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, L.; Ma, Y.; Wang, H.; Luo, J.; Zhang, X.; Luo, C.; Wang, H.; Zhao, H.; Pan, D.; et al. A national school-based health lifestyles interventions among Chinese children and adolescents against obesity: Rationale, design and methodology of a randomized controlled trial in China. BMC Public Health 2015, 15, 210. [Google Scholar] [CrossRef] [Green Version]
- De Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Flynn, J.T.; Kaelber, D.C.; Baker-Smith, C.M.; Blowey, D.; Carroll, A.E.; Daniels, S.R.; de Ferranti, S.D.; Dionne, J.M.; Falkner, B.; Flinn, S.K.; et al. Clinical Practice Guideline for Screening and Management of High Blood Pressure in Children and Adolescents. Pediatrics 2017, 140, e20171904. [Google Scholar] [CrossRef] [Green Version]
- Fan, M.; Lyu, J.; He, P. Chinese guidelines for data processing and analysis concerning the International Physical Activity Questionnaire. Zhonghua Liu Xing Bing Xue Za Zhi 2014, 35, 961–964. (In Chinese) [Google Scholar]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Adams Hillard, P.J.; Katz, E.S.; et al. National Sleep Foundation’s updated sleep duration recommendations: Final report. Sleep Health 2015, 1, 233–243. [Google Scholar] [CrossRef]
- Kohler, U.; Karlson, K.B.; Holm, A. Comparing Coefficients of Nested Nonlinear Probability Models. Stata J. 2011, 11, 420–438. [Google Scholar] [CrossRef] [Green Version]
- Kelishadi, R.; Qorbani, M.; Rezaei, F.; Motlagh, M.E.; Djalalinia, S.; Ziaodini, H.; Taheri, M.; Ochi, F.; Shafiee, G.; Aminaei, T.; et al. Is single-child family associated with cardio-metabolic risk factors: The CASPIAN-V study. BMC Cardiovasc. Disord. 2018, 18, 109. [Google Scholar] [CrossRef] [Green Version]
- Ayyavoo, A.; Savage, T.; Derraik, J.G.; Hofman, P.L.; Cutfield, W.S. First-born children have reduced insulin sensitivity and higher daytime blood pressure compared to later-born children. J. Clin. Endocrinol. Metab. 2013, 98, 1248–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wells, J.C.K.; Hallal, P.C.; Reichert, F.F.; Dumith, S.C.; Menezes, A.M.; Victora, C.G. Associations of Birth Order with Early Growth and Adolescent Height, Body Composition, and Blood Pressure: Prospective Birth Cohort from Brazil. Am. J. Epidemiol. 2011, 174, 1028–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datar, A. The more the heavier? Family size and childhood obesity in the U.S. Soc. Sci. Med. 2017, 180, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xue, H.; Wang, W.; Wen, M.; Wang, Y. Increased obesity risks for being an only child in China: Findings from a nationally representative study of 19,487 children. Public Health 2017, 153, 44–51. [Google Scholar] [CrossRef]
- Hesketh, T. Health effects of family size: Cross sectional survey in Chinese adolescents. Arch. Dis. Child. 2003, 88, 467–471. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Smith, M.; Du, H.; Guo, Y.; Clarke, R.; Bian, Z.; Collins, R.; Chen, J.; Qian, Y.; Wang, X.; et al. Blood pressure in relation to general and central adiposity among 500,000 adult Chinese men and women. Int. J. Epidemiol. 2015, 44, 1305–1319. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Ma, J.; Song, Y.; Ma, Y.; Dong, B.; Zou, Z.; Prochaska, J.J. Secular Trends in Blood Pressure and Overweight and Obesity in Chinese Boys and Girls Aged 7 to 17 Years from 1995 to 2014. Hypertension 2018, 72, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Gao, D.; Li, Y.; Yang, Z.; Ma, Y.; Chen, M.; Dong, Y.; Zou, Z.; Ma, J. The Association Between Single-Child Status and Risk of Abdominal Obesity: Result from a Cross-Sectional Study of China. Front. Pediatr. 2021, 9, 697047. [Google Scholar] [CrossRef]
- Hunsberger, M.; Formisano, A.; Reisch, L.A.; Bammann, K.; Moreno, L.; De Henauw, S.; Molnar, D.; Tornaritis, M.; Veidebaum, T.; Siani, A.; et al. Overweight in singletons compared to children with siblings: The IDEFICS study. Nutr. Diabetes 2012, 2, e35. [Google Scholar] [CrossRef] [Green Version]
- Ragelienė, T.; Grønhøj, A. The influence of peers’ and siblings’ on children’s and adolescents’ healthy eating behavior. A systematic literature review. Appetite 2020, 148, 104592. [Google Scholar] [CrossRef]
- Povey, R.; Cowap, L.; Gratton, L. “They said I’m a square for eating them” Children’s beliefs about fruit and vegetables in England. Brit Food J. 2016, 118, 2949–2962. [Google Scholar] [CrossRef]
- Farajian, P.; Panagiotakos, D.B.; Risvas, G.; Micha, R.; Tsioufis, C.; Zampelas, A. Dietary and lifestyle patterns in relation to high blood pressure in children: The GRECO study. J. Hypertens. 2015, 33, 1174–1181. [Google Scholar] [CrossRef]
- Oude Griep, L.M.; Seferidi, P.; Stamler, J.; Van Horn, L.; Chan, Q.; Tzoulaki, I.; Steffen, L.M.; Miura, K.; Ueshima, H.; Okuda, N.; et al. Relation of unprocessed, processed red meat and poultry consumption to blood pressure in East Asian and Western adults. J. Hypertens. 2016, 34, 1721–1729. [Google Scholar] [CrossRef]
- Lajous, M.; Bijon, A.; Fagherazzi, G.; Rossignol, E.; Boutron-Ruault, M.C.; Clavel-Chapelon, F. Processed and unprocessed red meat consumption and hypertension in women. Am. J. Clin. Nutr. 2014, 100, 948–952. [Google Scholar] [CrossRef] [Green Version]
- Quist, J.S.; Sjödin, A.; Chaput, J.-P.; Hjorth, M.F. Sleep and cardiometabolic risk in children and adolescents. Sleep Med. Rev. 2016, 29, 76–100. [Google Scholar] [CrossRef]
- Makarem, N.; Shechter, A.; Carnethon, M.R.; Mullington, J.M.; Hall, M.H.; Abdalla, M. Sleep Duration and Blood Pressure: Recent Advances and Future Directions. Curr. Hypertens. Rep. 2019, 21, 33. [Google Scholar] [CrossRef]
- Howe, L.D.; Hallal, P.C.; Matijasevich, A.; Wells, J.C.; Santos, I.S.; Barros, A.J.D.; Lawlor, D.A.; Victora, C.G.; Smith, G.D. The association of birth order with later body mass index and blood pressure: A comparison between prospective cohort studies from the United Kingdom and Brazil. Int. J. Obes. 2014, 38, 973–979. [Google Scholar] [CrossRef] [Green Version]
- Jelenkovic, A.; Silventoinen, K.; Tynelius, P.; Myrskylä, M.; Rasmussen, F. Association of birth order with cardiovascular disease risk factors in young adulthood: A study of one million Swedish men. PLoS ONE 2013, 8, e63361. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Wang, X.L.; Zhou, X.D.; Hesketh, T. Son preference and sex-selective abortion in China: Informing policy options. Int. J. Public Health 2012, 57, 459–465. [Google Scholar] [CrossRef]
- Zhai, L.; Dong, Y.; Bai, Y.; Wei, W.; Jia, L. Trends in obesity, overweight, and malnutrition among children and adolescents in Shenyang, China in 2010 and 2014: A multiple cross-sectional study. BMC Public Health 2017, 17, 151. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, H.; Wang, Z.; Du, W.; Su, C.; Zhang, J.; Jiang, H.; Jia, X.; Huang, F.; Ouyang, Y.; et al. Prevalence and stabilizing trends in overweight and obesity among children and adolescents in China, 2011–2015. BMC Public Health 2018, 18, 571. [Google Scholar] [CrossRef] [Green Version]
Boys | Girls | |||||
---|---|---|---|---|---|---|
Single Children | Non-Single Children | p Value | Single Children | Non-Single Children | p Value | |
Number of children | 18,397 (71.7) | 7264 (28.3) | 15,691 (62.7) | 9339 (37.3) | ||
Age, years | 10.59 ± 3.2 | 10.62 ± 3.2 | <0.001 *** | 10.65 ± 3.27 | 11.22 ± 3.32 | <0.001 *** |
Height, cm | 146.7 ± 18.3 | 145.3 ± 18.1 | <0.001 *** | 144.1 ± 15.5 | 144.9 ± 15.1 | <0.001 *** |
Weight, kg | 42.7 ± 17.3 | 40.4 ± 15.7 | <0.001 *** | 39.2 ± 14.1 | 39.7 ± 13.5 | <0.001 *** |
BMI z score | 0.48 ± 1.4 | 0.25 ± 1.3 | <0.001 *** | 0.07 ± 1.2 | −0.04 ± 1.1 | <0.001 *** |
SBP z score | 0.07 ± 1.0 | 0.11 ± 1.0 | 0.002 ** | −0.10 ± 1.0 | 0.05 ± 1.0 | <0.001 *** |
DBP z score | 0.04 ± 1.0 | 0.09 ± 1.0 | <0.001 *** | −0.11 ± 1.0 | 0.01 ± 1.0 | <0.001 *** |
HBP | 5647 (30.7) | 2237 (30.8) | 0.887 | 3247 (20.7) | 2223 (23.8) | <0.001 *** |
Breastfeeding | 15,138 (83.5) | 6273 (87.7) | <0.001 *** | 12,878 (82.9) | 8187 (89.1) | <0.001 *** |
Birth weight, g | 3359.9 ± 497.8 | 3406.7 ± 533.1 | <0.001 *** | 3273.7 ± 472.8 | 3306.3 ± 499.8 | <0.001 *** |
Caesarean section | 8814 (48.6) | 2104 (29.5) | <0.001 *** | 7410 (47.8) | 2416 (26.4) | <0.001 *** |
Gestational age, week | 39.7 ± 1.2 | 39.9 ± 1.1 | <0.001 *** | 39.8 ± 1.21 | 39.9 ± 1.06 | <0.001 *** |
Meat consumption per week | <0.001 *** | <0.001 *** | ||||
0~1 day(s) | 1127 (6.4) | 630 (9.0) | 1105 (7.3) | 1019 (11.3) | ||
2~3 days | 3164 (17.9) | 1608 (23.1) | 3151 (20.9) | 2648 (29.4) | ||
4~5 days | 3013 (17.1) | 1340 (19.2) | 2692 (17.8) | 1749 (19.4) | ||
6~7 days | 10,358 (58.6) | 3387 (48.6) | 8157 (54.0) | 3598 (39.9) | ||
Fruits consumption per week | <0.001 *** | <0.001 *** | ||||
0~1 days | 1362 (7.7) | 633 (9.1) | 703 (4.7) | 532 (5.9) | ||
2~3 days | 3674 (20.8) | 1753 (25.3) | 2612 (17.3) | 1927 (21.4) | ||
4~5 days | 4232 (24.0) | 1830 (26.4) | 3658 (24.2) | 2417 (26.9) | ||
6~7 days | 8373 (47.5) | 2725 (39.3) | 8119 (53.8) | 4124 (45.8) | ||
Vegetable consumption per week | <0.001 *** | <0.001 *** | ||||
0~1 day(s) | 775 (4.4) | 360 (5.2) | 563 (3.7) | 391 (4.3) | ||
2~3 days | 1408 (8.0) | 648 (9.3) | 1029 (6.8) | 857 (9.5) | ||
4~5 days | 1989 (11.3) | 938 (13.5) | 1522 (10.1) | 1132 (12.6) | ||
6~7 days | 13,496 (76.4) | 5021 (72.1) | 11,990 (79.4) | 6632 (73.6) | ||
Beverage consumption per week | 0.502 | 0.071 | ||||
0 day | 5237 (29.8) | 2035 (29.3) | 5477 (36.4) | 3148 (35.0) | ||
1~2 days | 7796 (44.4) | 3137 (45.2) | 6724 (22.8) | 4111 (45.7) | ||
3 days and more | 4530 (25.8) | 1766 (25.5) | 2835 (18.9) | 1745 (19.4) | ||
Physical activity | 0.051 | <0.001 *** | ||||
Low intensity | 2533 (15.9) | 932 (15.2) | 2457 (18.0) | 1477 (18.6) | ||
Median intensity | 4970 (31.1) | 1847 (30.0) | 5354 (39.1) | 2874 (36.2) | ||
High intensity | 8454 (53.0) | 3369 (54.8) | 5870 (42.9) | 3580 (45.1) | ||
Sedentary behavior, h | 5.54 ± 3.6 | 5.25 ± 3.7 | <0.001 *** | 5.90 ± 3.7 | 5.64 ± 3.7 | <0.001 *** |
Sleeping duration | 0.020 * | <0.001 *** | ||||
Adequate sleep | 5908 (35.6) | 2391 (36.7) | 4931 (34.2) | 3006 (35.2) | ||
Insufficient sleep | 10,275 (61.9) | 3938 (60.4) | 9264 (64.2) | 5324 (62.4) | ||
Hypersomnia | 403 (2.4) | 191 (2.9) | 242 (1.7) | 203 (2.4) | ||
Having a family history of hypertension | 1157 (6.6) | 495 (7.2) | 0.091 | 1063 (7.0) | 662 (7.4) | 0.278 |
Parental highest education degree | <0.001 *** | <0.001 *** | ||||
Illiteracy or elementary school | 342 (1.9) | 496 (7.1) | 246 (1.6) | 573 (6.2) | ||
Junior high school | 4639 (26.0) | 3542 (51.0) | 3108 (20.4) | 4662 (51.9) | ||
Senior high school | 5248 (29.4) | 1928 (27.8) | 4454 (29.2) | 2466 (27.4) | ||
Technical secondary school/ Junior college | 3596 (20.1) | 586 (8.4) | 3492 (22.9) | 771 (8.6) | ||
Undergraduate or above | 4033 (22.6) | 394 (5.7) | 3930 (25.8) | 516 (5.7) |
Model 1 | Model 2 | |||
---|---|---|---|---|
β/OR (95% CI) | p Value | β/OR (95% CI) | p Value | |
SBP z score | ||||
Total | ||||
Single children | 0 (ref) | 0 (ref) | ||
Non-single children | 0.123 (0.084~0.121) | <0.001 *** | 0.037 (0.016~0.058) | <0.001 *** |
Boys | ||||
Single children | 0 (ref) | 0 (ref) | ||
Non-single children | 0.043 (0.016~0.070) | 0.002 ** | 0.005 (−0.025~0.035) | 0.735 |
Girls | ||||
Single children | 0 (ref) | 0 (ref) | ||
Non-single children | 0.161 (0.135~0.186) | <0.001 *** | 0.073 (0.043~0.102) | <0.001 *** |
DBP z score | ||||
Total | ||||
Single children | 0 (ref) | 0 (ref) | ||
Non-single children | 0.095 (0.076~0.113) | <0.001 *** | 0.035 (0.014~0.056) | 0.001 ** |
Boys | ||||
Single children | 0 (ref) | 0 (ref) | ||
Non-single children | 0.055 (0.029~0.082) | <0.001 *** | 0.013 (−0.017~0.043) | 0.404 |
Girls | ||||
Single children | 0 (ref) | 0 (ref) | ||
Non-single children | 0.137 (0.111~0.163) | <0.001 *** | 0.062 (0.032~0.091) | <0.001 *** |
HBP | ||||
Total | ||||
Single children | 1 (ref) | 1 (ref) | ||
Non-single children | 1.08 (1.03~1.12) | 0.001 ** | 1.00 (0.95~1.05) | 0.884 |
Boys | ||||
Single children | 1 (ref) | 1 (ref) | ||
Non-single children | 1.00 (0.94~1.06) | 0.956 | 1.00 (0.93~1.07) | 0.991 |
Girls | ||||
Single children | 1 (ref) | 1 (ref) | ||
Non-single children | 1.20 (1.13~1.27) | <0.001 *** | 1.11 (1.03~1.19) | 0.008 ** |
Mediator | n | Outcome | Total Association | Direct Association | Indirect Association | Mediation Proportion | |||
---|---|---|---|---|---|---|---|---|---|
β (95% CI) | p | β (95% CI) | p | β (95% CI) | p | ||||
Meat consumption per week | 20,053 | SBP z score | 0.059 (0.025~0.087) | <0.001 *** | 0.039 (0.008~0.070) | 0.014 ** | 0.017 (0.013~0.021) | <0.001 *** | 30.31% |
20,054 | DBP z score | 0.050 (0.003~0.065) | 0.002 ** | 0.034 (0.003~0.065) | 0.032 * | 0.016 (0.012~0.020) | <0.001 *** | 31.40% | |
29,957 | HBP | 0.046 (−0.030~0.121) | 0.234 | 0.024 (−0.051~0.100) | 0.529 | 0.022 (0.015~0.028) | <0.001 *** | 46.98% | |
Fruits consumption per week | 20,049 | SBP z score | 0.056 (0.024~0.087) | <0.001 *** | 0.058 (0.027~0.089) | <0.001 *** | — | — | — |
20,050 | DBP z score | 0.050 (0.019~0.081) | 0.002 ** | 0.053 (0.021~0.083) | 0.001 ** | — | — | — | |
20,053 | HBP | 0.045 (−0.031~0.120) | 0.247 | 0.050 (−0.026~0.125) | 0.195 | — | — | — | |
Vegetable consumption per week | 20,053 | SBP z score | 0.057 (0.026~0.088) | <0.001 *** | 0.057 (0.026~0.088) | <0.001 *** | — | — | — |
20,054 | DBP z score | 0.051 (0.020~0.082) | 0.001 ** | 0.052 (0.021~0.083) | 0.001 ** | — | — | — | |
20,057 | HBP | 0.049 (−0.030~0.125) | 0.200 | 0.052 (−0.023~0.127) | 0.176 | — | — | — | |
Beverage consumption per week | 19,980 | SBP z score | 0.056 (0.024~0.087) | <0.001 *** | 0.055 (0.024~0.087) | 0.001 ** | 0.000 (−0.000~0.001) | 0.304 | — |
19,981 | DBP z score | 0.049 (0.018~0.080) | 0.002 ** | 0.049 (0.017~0.080) | 0.002 ** | 0.000 (−0.001~0.001) | 0.364 | — | |
19,984 | HBP | 0.046 (−0.029~0.122) | 0.231 | 0.045 (−0.030~0.121) | 0.239 | 0.001 (−0.001~0.002) | 0.411 | — | |
Physical activity | 18,181 | SBP z score | 0.065 (0.032~0.098) | <0.001 *** | 0.065 (0.032~0.098) | <0.001 *** | — | — | — |
18,182 | DBP z score | 0.059 (0.026~0.092) | <0.001 *** | 0.059 (0.026~0.092) | <0.001 *** | 0.000 (−0.000~0.000) | 0.895 | — | |
18,185 | HBP | 0.055 (−0.024~0.134) | 0.173 | 0.055 (−0.024~0.134) | 0.174 | 0.000 (−0.002~0.002) | 0.962 | — | |
Sedentary behavior | 18,256 | SBP z score | 0.052 (0.020~0.085) | 0.002 ** | 0.050 (0.017~0.083) | 0.003 ** | 0.002 (0.001~0.004) | 0.004 ** | 4.02% |
18,257 | DBP z score | 0.044 (0.011~0.076) | 0.009 ** | 0.042 (0.009~0.075) | 0.012 * | 0.002 (0.001~0.003) | 0.007 ** | 4.18% | |
18,260 | HBP | 0.036 (−0.043~0.115) | 0.373 | 0.032 (−0.047~0.110) | 0.432 | 0.004 (0.001~0.007) | 0.008 ** | 11.87% | |
Sleeping duration | 19,211 | SBP z score | 0.054 (0.220~0.086) | 0.001 ** | 0.054 (0.022~0.086) | 0.001 ** | — | — | — |
19,212 | DBP z score | 0.048 (0.016~0.080) | 0.003 ** | 0.048 (0.016~0.080) | 0.003 ** | 0.000 (−0.000~0.000) | 0.902 | — | |
19,215 | HBP | 0.046 (−0.031~0.123) | 0.243 | 0.046 (−0.031~0.123) | 0.243 | 0.000 (−0.000~0.000) | 0.978 | — |
Sleeping Duration | SBP z Score | DBP z Score | HBP | |||
---|---|---|---|---|---|---|
β (95% CI) | p Value | β (95% CI) | p Value | OR (95% CI) | p Value | |
Girls | ||||||
Adequate sleep | ||||||
Single children | 0 (ref) | 0 (ref) | 1 (ref) | |||
Non-single children | −0.007 (−0.060~0.046) | 0.794 | −0.003 (−0.057~0.052) | 0.927 | 0.99 (0.86~1.13) | 0.860 |
Insufficient sleep | ||||||
Single children | 0 (ref) | 0 (ref) | 1 (ref) | |||
Non-single children | 0.110 (0.072~0.151) | <0.001 *** | 0.098 (0.058~0.137) | <0.001 *** | 1.15 (1.04~1.27) | 0.006 ** |
Hypersomnia | ||||||
Single children | 0 (ref) | 0 (ref) | 1 (ref) | |||
Non-single children | 0.220 (0.019~0.420) | 0.032 * | 0.149 (−0.071~0.369) | 0.184 | 1.88 (1.08~3.32) | 0.026 * |
Boys | ||||||
Adequate sleep | ||||||
Single children | 0 (ref) | 0 (ref) | 1 (ref) | |||
Non-single children | −0.025 (−0.078~0.028) | 0.351 | −0.049 (−0.103~0.005) | 0.074 | 0.88 (0.78~1.00) | 0.058 |
Insufficient sleep | ||||||
Single children | 0 (ref) | 0 (ref) | 1 (ref) | |||
Non-single children | 0.020 (−0.021~0.061) | 0.336 | 0.056 (0.015~0.098) | 0.008 ** | 1.06 (0.96~1.17) | 0.236 |
Hypersomnia | ||||||
Single children | 0 (ref) | 0 (ref) | 1 (ref) | |||
Non-single children | 0.031 (−0.163~0.225) | 0.755 | −0.070 (−0.278~0.137) | 0.505 | 1.12 (0.70~1.76) | 0.639 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, R.; Lou, K.; Zhou, S.; Li, X.; Zou, Z.; Ma, J.; Dong, B.; Hu, J. Exploring the Associations between Single-Child Status and Childhood High Blood Pressure and the Mediation Effect of Lifestyle Behaviors. Nutrients 2022, 14, 500. https://doi.org/10.3390/nu14030500
Deng R, Lou K, Zhou S, Li X, Zou Z, Ma J, Dong B, Hu J. Exploring the Associations between Single-Child Status and Childhood High Blood Pressure and the Mediation Effect of Lifestyle Behaviors. Nutrients. 2022; 14(3):500. https://doi.org/10.3390/nu14030500
Chicago/Turabian StyleDeng, Rui, Ke Lou, Siliang Zhou, Xingxiu Li, Zhiyong Zou, Jun Ma, Bin Dong, and Jie Hu. 2022. "Exploring the Associations between Single-Child Status and Childhood High Blood Pressure and the Mediation Effect of Lifestyle Behaviors" Nutrients 14, no. 3: 500. https://doi.org/10.3390/nu14030500
APA StyleDeng, R., Lou, K., Zhou, S., Li, X., Zou, Z., Ma, J., Dong, B., & Hu, J. (2022). Exploring the Associations between Single-Child Status and Childhood High Blood Pressure and the Mediation Effect of Lifestyle Behaviors. Nutrients, 14(3), 500. https://doi.org/10.3390/nu14030500