Effect of 12-Week Intake of Nicotinamide Mononucleotide on Sleep Quality, Fatigue, and Physical Performance in Older Japanese Adults: A Randomized, Double-Blind Placebo-Controlled Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval and Participants
2.2. Study Design
2.3. Characteristics of Participants
2.4. Sleep Quality
2.5. Fatigue
2.6. Physical Performance Tests
2.7. Statistical Analyses
3. Results
3.1. Characteristics of Participants
3.2. Sleep Quality
3.3. Fatigue
3.4. Physical Performances
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Childs, B.G.; Durik, M.; Baker, D.J.; Van Deursen, J.M. Cellular senescence in aging and age-related disease: From mechanisms to therapy. Nat. Med. 2015, 21, 1424–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sastre, J.; Pallardó, F.V.; Viña, J. The role of mitochondrial oxidative stress in aging. Free Radic. Biol. Med. 2003, 35, 1–8. [Google Scholar] [CrossRef]
- Wanagat, J.; Cao, Z.; Pathare, P.; Aiken, J.M. Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. FASEB J. 2001, 15, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Cooper, C.; Dere, W.; Evans, W.; Kanis, J.A.; Rizzoli, R.; Sayer, A.A.; Sieber, C.C.; Kaufman, J.-M.; Van Kan, G.A.; Boonen, S. Frailty and sarcopenia: Definitions and outcome parameters. Osteoporos. Int. 2012, 23, 1839–1848. [Google Scholar] [CrossRef] [PubMed]
- Wijeratne, C.; Hickie, I.; Brodaty, H. The characteristics of fatigue in an older primary care sample. J. Psychosom. Res. 2007, 62, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Doris, S.F.; Lee, D.T.F.; Man, N.W. Fatigue among older people: A review of the research literature. Int. J. Nurs. Stud. 2010, 47, 216–228. [Google Scholar] [CrossRef]
- Goldman, S.E.; Ancoli-Israel, S.; Boudreau, R.; Cauley, J.A.; Hall, M.; Stone, K.L.; Rubin, S.M.; Satterfield, S.; Simonsick, E.M.; Newman, A.B. Sleep problems and associated daytime fatigue in community-dwelling older individuals. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2008, 63, 1069–1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hishikawa, N.; Fukui, Y.; Sato, K.; Ohta, Y.; Yamashita, T.; Abe, K. Cognitive and affective functions associated with insomnia: A population-based study. Neurol. Res. 2017, 39, 331–336. [Google Scholar] [CrossRef]
- Mattis, J.; Sehgal, A. Circadian rhythms, sleep, and disorders of aging. Trends Endocrinol. Metab. 2016, 27, 192–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youngstedt, S.D.; Elliott, J.A.; Kripke, D.F. Human circadian phase–response curves for exercise. J. Physiol. 2019, 597, 2253–2268. [Google Scholar] [CrossRef] [Green Version]
- Seol, J.; Lee, J.; Nagata, K.; Fujii, Y.; Joho, K.; Tateoka, K.; Inoue, T.; Liu, J.; Okura, T. Combined effect of daily physical activity and social relationships on sleep disorder among older adults: A cross-sectional study based on data from the kasama study. BMC Geriatr. 2021, 21, 623. [Google Scholar] [CrossRef] [PubMed]
- Ray, W.A.; Thapa, P.B.; Gideon, P. Benzodiazepines and the risk of falls in nursing home residents. J. Am. Geriatr. Soc. 2000, 48, 682–685. [Google Scholar] [CrossRef]
- Lader, M. Benzodiazepine harm: How can it be reduced? Br. J. Clin. Pharmacol. 2014, 77, 295–301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- 2019 American Geriatrics Society Beers Criteria® Update Expert Panel; Fick, D.M.; Semla, T.P.; Steinman, M.; Beizer, J.; Brandt, N.; Dombrowski, R.; DuBeau, C.E.; Pezzullo, L.; Epplin, J.J.; et al. American geriatrics society 2019 updated AGS beers criteria for potentially inappropriate medication use in older adults. J. Am. Geriatr. Soc. 2019, 67, 674–694. [Google Scholar] [CrossRef]
- Moreh, E.; Jacobs, J.M.; Stessman, J. Fatigue, function, and mortality in older adults. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2010, 65, 887–895. [Google Scholar] [CrossRef]
- Crimmins, E.M. Trends in the health of the elderly. Annu. Rev. Public Health 2004, 25, 79–98. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, J.; Baur, J.A.; Imai, S. NAD+ intermediates: The biology and therapeutic potential of NMN and NR. Cell Metab. 2018, 27, 513–528. [Google Scholar] [CrossRef] [Green Version]
- Ternes, C.M.; Schönknecht, G. Gene transfers shaped the evolution of de novo NAD+ biosynthesis in eukaryotes. Genome Biol. Evol. 2014, 6, 2335–2349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imai, S.; Guarente, L. NAD+ and sirtuins in aging and disease. Trends Cell Biol. 2014, 24, 464–471. [Google Scholar] [CrossRef]
- Satoh, A.; Brace, C.S.; Rensing, N.; Cliften, P.; Wozniak, D.F.; Herzog, E.D.; Yamada, K.A.; Imai, S. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 2013, 18, 416–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mills, K.F.; Yoshida, S.; Stein, L.R.; Grozio, A.; Kubota, S.; Sasaki, Y.; Redpath, P.; Migaud, M.E.; Apte, R.S.; Uchida, K. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 2016, 24, 795–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irie, J.; Inagaki, E.; Fujita, M.; Nakaya, H.; Mitsuishi, M.; Yamaguchi, S.; Yamashita, K.; Shigaki, S.; Ono, T.; Yukioka, H. Effect of oral administration of nicotinamide mononucleotide on clinical parameters and nicotinamide metabolite levels in healthy Japanese men. Endocr. J. 2020, 67, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Yoshino, M.; Yoshino, J.; Kayser, B.D.; Patti, G.J.; Franczyk, M.P.; Mills, K.F.; Sindelar, M.; Pietka, T.; Patterson, B.W.; Imai, S.-I. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women. Science 2021, 372, 1224–1229. [Google Scholar] [CrossRef] [PubMed]
- Liao, B.; Zhao, Y.; Wang, D.; Zhang, X.; Hao, X.; Hu, M. Nicotinamide mononucleotide supplementation enhances aerobic capacity in amateur runners: A randomized, double-blind study. J. Int. Soc. Sports Nutr. 2021, 18, 54. [Google Scholar] [CrossRef] [PubMed]
- Sugishita, K.; Sugishita, M.; Hemmi, I.; Asada, T.; Tanigawa, T. A validity and reliability study of the Japanese version of the geriatric depression scale 15 (GDS-15-J). Clin. Gerontol. 2017, 40, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J.; Reynolds, C.F., III; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Doi, Y.; Minowa, M.; Uchiyama, M.; Okawa, M.; Kim, K.; Shibui, K.; Kamei, Y. Psychometric assessment of subjective sleep quality using the Japanese version of the Pittsburgh Sleep Quality Index (PSQI-J) in psychiatric disordered and control subjects. Psychiatry Res. 2000, 97, 165–172. [Google Scholar] [CrossRef]
- Sasaki, T.; Matsumoto, S. Actual conditions of work, fatigue and sleep in non-employed, home-based female information technology workers with preschool children. Ind. Health 2005, 43, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Tsunoda, K.; Soma, Y.; Kitano, N.; Tsuji, T.; Mitsuishi, Y.; Yoon, J.; Okura, T. Age and gender differences in correlations of leisure-time, household, and work-related physical activity with physical performance in older Japanese adults. Geriatr. Gerontol. Int. 2013, 13, 919–927. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; 12 Lawrence Erlbaum Associates Inc.: Hillsdale, NJ, USA, 1988; Volume 13. [Google Scholar]
- Gomes, A.P.; Price, N.L.; Ling, A.J.Y.; Moslehi, J.J.; Montgomery, M.K.; Rajman, L.; White, J.P.; Teodoro, J.S.; Wrann, C.D.; Hubbard, B.P. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 2013, 155, 1624–1638. [Google Scholar] [CrossRef] [Green Version]
- Nadeeshani, H.; Li, J.; Ying, T.; Zhang, B.; Lu, J. Nicotinamide mononucleotide (NMN) as an anti-aging health product-promises and safety concerns. J. Adv. Res. 2021. [Google Scholar] [CrossRef]
- Wu, W.; Bours, M.J.L.; Koole, A.; Kenkhuis, M.-F.; Eussen, S.J.P.M.; Breukink, S.O.; van Schooten, F.-J.; Weijenberg, M.P.; Hageman, G.J. Cross-sectional associations between dietary daily nicotinamide intake and patient-reported outcomes in colorectal cancer survivors, 2 to 10 years post-diagnosis. Nutrients 2021, 13, 3707. [Google Scholar] [CrossRef]
- Wolkove, N.; Elkholy, O.; Baltzan, M.; Palayew, M. Sleep and aging: 1. Sleep disorders commonly found in older people. Can. Med. Assoc. J. 2007, 176, 1299–1304. [Google Scholar] [CrossRef] [Green Version]
- Valtonen, M.; Niskanen, L.; Kangas, A.P.; Koskinen, T. Effect of melatonin-rich night-time milk on sleep and activity in elderly institutionalized subjects. Nord. J. Psychiatry 2005, 59, 217–221. [Google Scholar] [CrossRef]
- Hosseini, L.; Farokhi-Sisakht, F.; Badalzadeh, R.; Khabbaz, A.; Mahmoudi, J.; Sadigh-Eteghad, S. Nicotinamide mononucleotide and melatonin alleviate aging-induced cognitive impairment via modulation of mitochondrial function and apoptosis in the prefrontal cortex and hippocampus. Neuroscience 2019, 423, 29–37. [Google Scholar] [CrossRef]
Variables (Unit) | NMN_AM (n = 27) | NMN_PM (n = 27) | Placebo_AM (n = 27) | Placebo_PM (n = 27) | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | ± | SD | Mean | ± | SD | Mean | ± | SD | Mean | ± | SD | ||
Age (year) | 72.2 | ± | 5.1 | 72.8 | ± | 4.3 | 72.5 | ± | 4.6 | 73.0 | ± | 4.7 | 0.92 |
BMI (kg/m2) | 22.9 | ± | 2.5 | 23.4 | ± | 2.8 | 22.3 | ± | 3.2 | 22.4 | ± | 2.2 | 0.46 |
Systolic blood pressure (mmHg) | 141.0 | ± | 14.5 | 140.3 | ± | 15.0 | 139.0 | ± | 15.4 | 137.2 | ± | 16.8 | 0.82 |
Diastolic blood pressure (mmHg) | 77.2 | ± | 7.8 | 79.3 | ± | 12.9 | 75.7 | ± | 10.4 | 72.9 | ± | 8.4 | 0.13 |
Heart rate (bpm) | 76.4 | ± | 12.2 | 78.1 | ± | 10.2 | 77.1 | ± | 9.9 | 76.4 | ± | 13.5 | 0.94 |
Fat mass (kg) | 15.2 | ± | 5.3 | 15.6 | ± | 6.3 | 14.3 | ± | 5.5 | 14.7 | ± | 5.6 | 0.86 |
Muscle mass (kg) | 38.0 | ± | 6.6 | 38.9 | ± | 7.2 | 37.7 | ± | 7.7 | 37.3 | ± | 6.4 | 0.86 |
Bone mass (kg) | 2.2 | ± | 0.4 | 2.2 | ± | 0.4 | 2.1 | ± | 0.4 | 2.1 | ± | 0.3 | 0.80 |
GDS score (point) | 1.6 | ± | 2.1 | 1.5 | ± | 1.8 | 1.0 | ± | 1.3 | 1.1 | ± | 1.4 | 0.58 |
† Women (n (%)) | 18 (66.7) | 18 (66.7) | 18 (66.7) | 19 (70.4) | 0.99 | ||||||||
† Poor sleep (yes; n (%)) | 19 (70.4) | 15 (55.6) | 12 (44.4) | 12 (44.4) | 0.18 | ||||||||
† Medicine (yes; n (%)) | 16 (59.3) | 15 (55.6) | 16 (59.3) | 19 (70.4) | 0.70 | ||||||||
† Medical history (yes; n (%)) | 22 (81.5) | 22 (81.5) | 23 (85.2) | 24 (88.9) | 0.86 | ||||||||
† No-smoking (n (%)) | 21 (77.8) | 21 (77.8) | 19 (70.4) | 20 (74.1) | 0.89 | ||||||||
† Quit smoking (n (%)) | 6 (23.1) | 6 (22.2) | 7 (25.9) | 6 (22.2) | |||||||||
† Smoking (n (%)) | 0 | 0 | 1 (3.7) | 1 (3.7) | |||||||||
† No-drinking (n (%)) | 17 (63.0) | 14 (51.9) | 12 (44.4) | 13 (48.1) | 0.66 | ||||||||
† ≤Drinking one day a month (n (%)) | 0 | 3 (11.1) | 2 (7.4) | 1 (3.7) | |||||||||
† Drinking 2~3 days a month (n (%)) | 4 (14.8) | 2 (7.4) | 5 (18.5) | 3 (11.1) | |||||||||
† ≤Drinking 1~7 days a week (n (%)) | 6 (22.2) | 8 (29.6) | 8 (29.6) | 10 (37.0) | |||||||||
† Intake rate of supplementation (%) | 95.7 | ± | 7.8 | 97.8 | ± | 3.3 | 98.5 | ± | 3.0 | 98.2 | ± | 2.5 | 0.12 |
Variables (Unit) | Time | NMN_AM A | NMN_PM B | Placebo_AM C | Placebo_PM D | Main Effect of Group p-Value | Main Effect of Time p-Value | Interaction p-Value (Groups × Times) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | ± | SD | Mean | ± | SD | Mean | ± | SD | Mean | ± | SD | |||||
Sleep duration (hour) | Pre | 6.3 | ± | 1.1 | 6.1 | ± | 1.1 | 6.5 | ± | 0.9 | 6.4 | ± | 1.2 | 0.81 | <0.01 | 0.72 |
Mid | 6.4 | ± | 1.1 | 6.4 | ± | 1.4 | 6.5 | ± | 0.9 | 6.5 | ± | 0.9 | ||||
Post | 6.4 | ± | 1.2 | 6.5 | ± | 1.1 | 6.7 | ± | 0.9 | 6.7 | ± | 1.0 | ||||
d | 0.14 | 0.34 | 0.25 | 0.31 | ||||||||||||
Sleep latency (minute) | Pre | 22.9 | ± | 24.4 | 19.8 | ± | 17.1 | 23.9 | ± | 19.0 | 23.7 | ± | 29.2 | 0.44 | 0.08 | 0.23 |
Mid | 34.6 | ± | 71.5 | 16.3 | ± | 13.2 | 16.0 | ± | 12.5 | 16.5 | ± | 14.2 | ||||
Post | 16.5 | ± | 16.5 | 12.0 | ± | 9.7 | 15.5 | ± | 13.1 | 17.6 | ± | 22.6 | ||||
d | 0.31 | 0.56 | 0.52 | 0.23 | ||||||||||||
Sleeping medication score (point) | Pre | 1.0 | ± | 0.2 | 1.1 | ± | 0.4 | 1.1 | ± | 0.3 | 1.0 | ± | 0 | 0.60 | 0.24 | 0.53 |
Mid | 1.1 | ± | 0.3 | 1.0 | ± | 0 | 1.1 | ± | 0.4 | 1.0 | ± | 0 | ||||
Post | 1.0 | ± | 0.2 | 1.0 | ± | 0 | 1.0 | ± | 0 | 1.0 | ± | 0 | ||||
d | ― | 0.27 | 0.39 | ― | ||||||||||||
Sleep disturbance score (point) | Pre | 7.7 | ± | 4.8 | 6.6 | ± | 3.3 | 6.1 | ± | 4.1 | 7.4 | ± | 4.1 | 0.18 | <0.01 | 0.81 |
Mid | 6.9 | ± | 4.4 | 5.3 | ± | 4.4 | 5.1 | ± | 3.7 | 5.1 | ± | 3.4 | ||||
Post | 6.6 | ± | 3.2 | 4.9 | ± | 2.8 | 4.4 | ± | 3.5 | 4.9 | ± | 3.9 | ||||
d | 0.29 | 0.55 | 0.47 | 0.61 | ||||||||||||
Daytime dysfunction score (point) | Pre | 1.9 | ± | 1.3 | 1.7 | ± | 1.1 | 1.5 | ± | 1.2 | 1.0 | ± | 0.9 | 0.07 | <0.01 | 0.08 |
Mid | 1.1 | ± | 0.9 | 1.1 | ± | 1.1 | 1.1 | ± | 0.9 | 1.0 | ± | 1.1 | ||||
Post | 1.5 | ± | 1.4 | 1.0 | ± | 0.9 | 0.9 | ± | 0.8 | 0.6 | ± | 0.9 | ||||
d | 0.27 | 0.72 | 0.61 | 0.38 | ||||||||||||
Sleep quality score (point) | Pre | 2.5 | ± | 0.6 | 2.4 | ± | 0.6 | 2.3 | ± | 0.7 | 2.4 | ± | 0.5 | 0.38 | <0.01 | 0.42 |
Mid | 2.3 | ± | 0.5 | 2.2 | ± | 0.6 | 2.1 | ± | 0.7 | 2.1 | ± | 0.4 | ||||
Post | 2.3 | ± | 0.7 | 2.0 | ± | 0.4 | 2.1 | ± | 0.6 | 2.0 | ± | 0.4 | ||||
d | 0.24 | 0.80 | 0.22 | 0.72 | ||||||||||||
Sleep efficiency (%) | Pre | 87.0 | ± | 13.5 | 92.3 | ± | 12.3 | 94.4 | ± | 22.8 | 88.2 | ± | 16.7 | 0.49 | 0.68 | 0.23 |
Mid | 88.0 | ± | 15.0 | 90.2 | ± | 14.2 | 88.5 | ± | 9.1 | 90.9 | ± | 15.0 | ||||
Post | 85.2 | ± | 14.6 | 91.1 | ± | 13.3 | 91.4 | ± | 8.4 | 91.8 | ± | 17.1 | ||||
d | 0.12 | 0.10 | 0.18 | 0.21 | ||||||||||||
Total PSQI global score (point) | Pre | 7.2 | ± | 3.1 | 6.7 | ± | 2.3 | 6.2 | ± | 2.6 | 6.3 | ± | 3.3 | 0.26 | <0.01 | 0.87 |
Mid | 6.5 | ± | 3.0 | 5.7 | ± | 2.2 | 5.6 | ± | 2.4 | 5.3 | ± | 2.6 | ||||
Post | 6.3 | ± | 3.2 | 5.2 | ± | 2.1 | 5.0 | ± | 2.0 | 4.7 | ± | 2.7 | ||||
d | 0.31 | 0.68 | 0.51 | 0.52 |
Variables (Unit) | Time | NMN_AM A | NMN_PM B | Placebo_AM C | Placebo_PM D | Main Effect of Group p-Value | Main Effect of Time p-Value | Interaction p-Value (Groups × Times) | Post Hoc Analysis with Bonferroni Correction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | ± | SD | Mean | ± | SD | Mean | ± | SD | Mean | ± | SD | ||||||
Drowsiness (point) | Pre | § 9.7 | ± | 3.8 | 10.0 | ± | 3.5 | 8.5 | ± | 2.9 | 9.1 | ± | 3.5 | 0.05 | <0.01 | 0.02 | B, D: Mid, Post < Pre Mid: D < A |
Mid | § 10.3 | ± | 3.9 | 8.3 | ± | 2.9 | 8.6 | ± | 2.6 | 7.1 | ± | 2.5 | |||||
Post | § 9.4 | ± | 3.8 | 7.9 | ± | 2.9 | 7.5 | ± | 2.5 | 7.5 | ± | 2.6 | |||||
d | 0.08 | 0.64 | 0.37 | 0.50 | |||||||||||||
Instability (point) | Pre | 8.1 | ± | 3.1 | 8.4 | ± | 3.0 | 8.4 | ± | 2.9 | 8.1 | ± | 3.9 | 0.70 | <0.01 | 0.33 | |
Mid | 8.5 | ± | 3.4 | 7.3 | ± | 2.9 | 7.2 | ± | 1.8 | 7.0 | ± | 2.8 | |||||
Post | 7.8 | ± | 2.7 | 7.6 | ± | 2.6 | 7.5 | ± | 2.3 | 6.9 | ± | 2.8 | |||||
d | 0.09 | 0.29 | 0.34 | 0.36 | |||||||||||||
Uneasiness (point) | Pre | 7.1 | ± | 2.1 | 7.1 | ± | 2.4 | 7.4 | ± | 2.3 | 7.3 | ± | 3.0 | 0.64 | 0.10 | 0.47 | |
Mid | 7.6 | ± | 2.8 | 6.5 | ± | 1.8 | 7.0 | ± | 2.3 | 6.5 | ± | 2.5 | |||||
Post | 7.0 | ± | 1.9 | 6.6 | ± | 2.5 | 7.0 | ± | 2.3 | 6.3 | ± | 2.0 | |||||
d | 0.04 | 0.21 | 0.16 | 0.37 | |||||||||||||
Dullness (point) | Pre | 9.7 | ± | 3.7 | 10.1 | ± | 4.3 | 10.4 | ± | 3.7 | 10.2 | ± | 3.4 | 0.88 | 0.03 | 0.35 | |
Mid | 10.1 | ± | 3.8 | 9.1 | ± | 4.0 | 9.8 | ± | 2.9 | 8.9 | ± | 3.0 | |||||
Post | 9.2 | ± | 3.5 | 9.2 | ± | 5.0 | 10.1 | ± | 4.1 | 9.2 | ± | 3.1 | |||||
d | 0.14 | 0.18 | 0.09 | 0.31 | |||||||||||||
Eyestrain (point) | Pre | 10.4 | ± | 4.6 | 10.1 | ± | 4.9 | 10.0 | ± | 4.3 | 10.1 | ± | 3.9 | 0.86 | 0.27 | 0.58 | |
Mid | 10.7 | ± | 5.1 | 9.9 | ± | 4.8 | 9.6 | ± | 4.3 | 9.6 | ± | 4.0 | |||||
Post | 10.0 | ± | 4.7 | 10.4 | ± | 5.2 | 8.9 | ± | 3.5 | 9.5 | ± | 3.6 | |||||
d | 0.10 | 0.06 | 0.30 | 0.15 | |||||||||||||
Total fatigue score (point) | Pre | § 45.3 | ± | 15.1 | 45.7 | ± | 15.5 | 44.8 | ± | 12.5 | 44.8 | ± | 14.5 | 0.64 | <0.01 | 0.19 | |
Mid | § 47.3 | ± | 16.3 | 41.1 | ± | 12.6 | 42.3 | ± | 9.6 | 39.0 | ± | 12.5 | |||||
Post | § 43.5 | ± | 13.0 | 41.8 | ± | 15.7 | 41.0 | ± | 11.6 | 39.5 | ± | 11.2 | |||||
d | 0.13 | 0.25 | 0.31 | 0.41 |
Variables (Unit) | Time | NMN_AM A | NMN_PM B | Placebo_AM C | Placebo_PM D | Main Effect of Group p-Value | Main Effect of Time p-Value | Interaction p-Value (Groups × Times) | Post Hoc Analysis with Bonferroni Correction | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | ± | SD | Mean | ± | SD | Mean | ± | SD | Mean | ± | SD | ||||||
Grip strength (kg) | Pre | § 27.9 | ± | 6.4 | 26.9 | ± | 8.1 | 27.4 | ± | 6.0 | 26.6 | ± | 6.5 | 0.84 | 0.09 | 0.78 | |
Post | § 28.6 | ± | 7.0 | 27.2 | ± | 6.8 | 27.5 | ± | 6.4 | 26.8 | ± | 6.3 | |||||
d | 0.10 | 0.05 | 0.02 | 0.03 | |||||||||||||
† 5-times sit to stand (s) | Pre | § 5.5 | ± | 1.1 | 6.3 | ± | 1.4 | 5.6 | ± | 0.8 | 6.4 | ± | 1.7 | 0.05 | <0.01 | 0.04 | A, B, C, D: Post < Pre |
Post | § 5.1 | ± | 0.7 | 5.3 | ± | 1.1 | 5.3 | ± | 1.0 | 5.9 | ± | 1.7 | |||||
d | 0.40 | 0.72 | 0.41 | 0.30 | |||||||||||||
† Timed up and go (s) | Pre | 5.4 | ± | 0.8 | 5.5 | ± | 0.6 | 5.2 | ± | 0.6 | 5.6 | ± | 1.3 | 0.30 | <0.01 | 0.36 | |
Post | 5.2 | ± | 0.8 | 5.2 | ± | 0.6 | 5.0 | ± | 0.4 | 5.4 | ± | 1.2 | |||||
d | 0.22 | 0.54 | 0.36 | 0.20 | |||||||||||||
† 5-m habitual walk (s) | Pre | 3.3 | ± | 0.5 | 3.3 | ± | 0.6 | 3.2 | ± | 0.4 | 3.4 | ± | 0.7 | 0.42 | 0.47 | 0.26 | |
Post | 3.4 | ± | 0.5 | 3.4 | ± | 0.6 | 3.2 | ± | 0.4 | 3.4 | ± | 0.7 | |||||
d | 0.12 | 0.22 | 0.06 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Seol, J.; Sato, T.; Fukamizu, Y.; Sakurai, T.; Okura, T. Effect of 12-Week Intake of Nicotinamide Mononucleotide on Sleep Quality, Fatigue, and Physical Performance in Older Japanese Adults: A Randomized, Double-Blind Placebo-Controlled Study. Nutrients 2022, 14, 755. https://doi.org/10.3390/nu14040755
Kim M, Seol J, Sato T, Fukamizu Y, Sakurai T, Okura T. Effect of 12-Week Intake of Nicotinamide Mononucleotide on Sleep Quality, Fatigue, and Physical Performance in Older Japanese Adults: A Randomized, Double-Blind Placebo-Controlled Study. Nutrients. 2022; 14(4):755. https://doi.org/10.3390/nu14040755
Chicago/Turabian StyleKim, Mijin, Jaehoon Seol, Toshiya Sato, Yuichiro Fukamizu, Takanobu Sakurai, and Tomohiro Okura. 2022. "Effect of 12-Week Intake of Nicotinamide Mononucleotide on Sleep Quality, Fatigue, and Physical Performance in Older Japanese Adults: A Randomized, Double-Blind Placebo-Controlled Study" Nutrients 14, no. 4: 755. https://doi.org/10.3390/nu14040755
APA StyleKim, M., Seol, J., Sato, T., Fukamizu, Y., Sakurai, T., & Okura, T. (2022). Effect of 12-Week Intake of Nicotinamide Mononucleotide on Sleep Quality, Fatigue, and Physical Performance in Older Japanese Adults: A Randomized, Double-Blind Placebo-Controlled Study. Nutrients, 14(4), 755. https://doi.org/10.3390/nu14040755