First Trimester Maternal Homocysteine and Embryonic and Fetal Growth: The Rotterdam Periconception Cohort
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Participant Measurements
2.3. Laboratory Assays
2.4. Embryonic and Fetal Measurements
2.4.1. First Trimester
2.4.2. Second and Third Trimester
2.5. Additional Calculations
2.6. Statistical Analyses
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Maternal Homocysteine and Baseline Characteristics
3.3. First Trimester Embryonic Growth
3.4. Second and Third Trimester Fetal Growth
3.5. Birth Weight
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Kalhan, S.C. One carbon metabolism in pregnancy: Impact on maternal, fetal and neonatal health. Mol. Cell Endocrinol. 2016, 435, 48–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steegers-Theunissen, R.P.; Twigt, J.; Pestinger, V.; Sinclair, K.D. The periconceptional period, reproduction and long-term health of offspring: The importance of one-carbon metabolism. Hum. Reprod. Update 2013, 19, 640–655. [Google Scholar] [CrossRef] [Green Version]
- Clare, C.E.; Brassington, A.H.; Kwong, W.Y.; Sinclair, K.D. One-Carbon Metabolism: Linking Nutritional Biochemistry to Epigenetic Programming of Long-Term Development. Annu. Rev. Anim. Biosci. 2019, 7, 263–287. [Google Scholar] [CrossRef] [PubMed]
- Ducker, G.S.; Rabinowitz, J.D. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017, 25, 27–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, M.; Urdiales, J.L.; Amores-Sanchez, M.I. Roles of homocysteine in cell metabolism: Old and new functions. Eur. J. Biochem. 2001, 268, 3871–3882. [Google Scholar] [CrossRef]
- Xu, J.; Sinclair, K.D. One-carbon metabolism and epigenetic regulation of embryo development. Reprod. Fertil. Dev. 2015, 27, 667–676. [Google Scholar] [CrossRef]
- Takimoto, H.; Mito, N.; Umegaki, K.; Ishiwaki, A.; Kusama, K.; Abe, S.; Yamawaki, M.; Fukuoka, H.; Ohta, C.; Yoshiike, N. Relationship between dietary folate intakes, maternal plasma total homocysteine and B-vitamins during pregnancy and fetal growth in Japan. Eur. J. Nutr. 2007, 46, 300–306. [Google Scholar] [CrossRef]
- Lindblad, B.; Zaman, S.; Malik, A.; Martin, H.; Ekstrom, A.M.; Amu, S.; Holmgren, A.; Norman, M. Folate, vitamin B12, and homocysteine levels in South Asian women with growth-retarded fetuses. Acta Obstet. Gynecol. Scand. 2005, 84, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Bergen, N.E.; Jaddoe, V.W.; Timmermans, S.; Hofman, A.; Lindemans, J.; Russcher, H.; Raat, H.; Steegers-Theunissen, R.P.; Steegers, E.A. Homocysteine and folate concentrations in early pregnancy and the risk of adverse pregnancy outcomes: The Generation R Study. BJOG 2012, 119, 739–751. [Google Scholar] [CrossRef]
- Parisi, F.; Rousian, M.; Koning, A.H.; Willemsen, S.P.; Cetin, I.; Steegers-Theunissen, R.P. Periconceptional maternal one-carbon biomarkers are associated with embryonic development according to the Carnegie stages. Hum. Reprod. 2017, 32, 523–530. [Google Scholar] [CrossRef]
- Parisi, F.; Rousian, M.; Koning, A.H.; Willemsen, S.P.; Cetin, I.; Steegers, E.A.; Steegers-Theunissen, R.P. Periconceptional maternal biomarkers of one-carbon metabolism and embryonic growth trajectories: The Rotterdam Periconceptional Cohort (Predict Study). Fertil Steril. 2017, 107, 691–698.e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ars, C.L.; Nijs, I.M.; Marroun, H.E.; Muetzel, R.; Schmidt, M.; Steenweg-de Graaff, J.; van der Lugt, A.; Jaddoe, V.W.; Hofman, A.; Steegers, E.A.; et al. Prenatal folate, homocysteine and vitamin B12 levels and child brain volumes, cognitive development and psychological functioning: The Generation R Study. Br. J. Nutr. 2019, 122, S1–S9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, A.; Sinclair, G.; Mattman, A.; Vallance, H.D.; Lamers, Y. Maternal vitamin B12 status in early pregnancy and its association with birth outcomes in Canadian mother-newborn Dyads. Br. J. Nutr. 2021, 126, 1823–1831. [Google Scholar] [CrossRef] [PubMed]
- Steegers-Theunissen, R.P.; Boers, G.H.; Blom, H.J.; Nijhuis, J.G.; Thomas, C.M.; Borm, G.F.; Eskes, T.K. Neural tube defects and elevated homocysteine levels in amniotic fluid. Am. J. Obstet. Gynecol. 1995, 172, 1436–1441. [Google Scholar] [CrossRef] [Green Version]
- Steegers-Theunissen, R.P.; Boers, G.H.; Trijbels, F.J.; Eskes, T.K. Neural-tube defects and derangement of homocysteine metabolism. N. Engl. J. Med. 1991, 324, 199–200. [Google Scholar] [CrossRef] [PubMed]
- van Uitert, E.M.; van Ginkel, S.; Willemsen, S.P.; Lindemans, J.; Koning, A.H.; Eilers, P.H.; Exalto, N.; Laven, J.S.; Steegers, E.A.; Steegers-Theunissen, R.P. An optimal periconception maternal folate status for embryonic size: The Rotterdam Predict study. BJOG 2014, 121, 821–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rousian, M.; Schoenmakers, S.; Eggink, A.J.; Gootjes, D.V.; Koning, A.H.J.; Koster, M.P.H.; Mulders, A.; Baart, E.B.; Reiss, I.K.M.; Laven, J.S.E.; et al. Cohort Profile Update: The Rotterdam Periconceptional Cohort and embryonic and fetal measurements using 3D ultrasound and virtual reality techniques. Int. J. Epidemiol. 2021, 50, 6294444. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.S.; Wong, P.W.; Malinow, M.R. Hyperhomocyst(e)inemia as a risk factor for occlusive vascular disease. Annu. Rev. Nutr. 1992, 12, 279–298. [Google Scholar] [CrossRef]
- Tinelli, C.; Di Pino, A.; Ficulle, E.; Marcelli, S.; Feligioni, M. Hyperhomocysteinemia as a Risk Factor and Potential Nutraceutical Target for Certain Pathologies. Front. Nutr. 2019, 6, 49. [Google Scholar] [CrossRef]
- CBS. Opleidingsniveau. 2021. Available online: https://www.cbs.nl/nl-nl/nieuws/2019/33/verschil-levensverwachting-hoog-en-laagopgeleid-groeit/opleidingsniveau (accessed on 20 December 2021).
- Rousian, M.; Koster, M.P.H.; Mulders, A.; Koning, A.H.J.; Steegers-Theunissen, R.P.M.; Steegers, E.A.P. Virtual reality imaging techniques in the study of embryonic and early placental health. Placenta 2018, 64 (Suppl. 1), S29–S35. [Google Scholar] [CrossRef]
- Rousian, M.; Koning, A.H.; van der Spek, P.J.; Steegers, E.A.; Exalto, N. Virtual reality for embryonic measurements requiring depth perception. Fertil. Steril. 2011, 95, 773–774. [Google Scholar] [CrossRef]
- Baken, L.; van Gruting, I.M.; Steegers, E.A.; van der Spek, P.J.; Exalto, N.; Koning, A.H. Design and validation of a 3D virtual reality desktop system for sonographic length and volume measurements in early pregnancy evaluation. J. Clin. Ultrasound 2015, 43, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Husen, S.C.; Koning, I.V.; Go, A.; van Graafeiland, A.W.; Willemsen, S.P.; Groenenberg, I.A.L.; Steegers-Theunissen, R.P.M. Three-dimensional ultrasound imaging of fetal brain fissures in the growth restricted fetus. PLoS ONE 2019, 14, e0217538. [Google Scholar] [CrossRef]
- Welling, M.S.; Husen, S.C.; Go, A.; Groenenberg, I.A.L.; Willemsen, S.P.; Bijma, H.H.; Steegers-Theunissen, R.P.M. Growth trajectories of the human fetal brain in healthy and complicated pregnancies and associations with neurodevelopmental outcome in the early life course. Early Hum. Dev. 2020, 151, 105224. [Google Scholar] [CrossRef]
- Hadlock, F.P.; Harrist, R.B.; Sharman, R.S.; Deter, R.L.; Park, S.K. Estimation of fetal weight with the use of head, body, and femur measurement—A prospective study. Am. J. Obstet. Gynecol. 1985, 151, 333–337. [Google Scholar] [CrossRef]
- van Uitert, E.M.; van der Elst-Otte, N.; Wilbers, J.J.; Exalto, N.; Willemsen, S.P.; Eilers, P.H.; Koning, A.H.; Steegers, E.A.; Steegers-Theunissen, R.P. Periconception maternal characteristics and embryonic growth trajectories: The Rotterdam Predict study. Hum. Reprod. 2013, 28, 3188–3196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koning, I.V.; Dudink, J.; Groenenberg, I.A.L.; Willemsen, S.P.; Reiss, I.K.M.; Steegers-Theunissen, R.P.M. Prenatal cerebellar growth trajectories and the impact of periconceptional maternal and fetal factors. Hum. Reprod. 2017, 32, 1230–1237. [Google Scholar] [CrossRef]
- Parisi, F.; Rousian, M.; Koning, A.H.J.; Willemsen, S.P.; Steegers, E.A.P.; Steegers-Theunissen, R.P.M. Effect of human embryonic morphological development on fetal growth parameters: The Rotterdam Periconceptional Cohort (Predict Study). Reprod. Biomed. Online 2019, 38, 613–620. [Google Scholar] [CrossRef]
- Koning, I.V.; Baken, L.; Groenenberg, I.A.; Husen, S.C.; Dudink, J.; Willemsen, S.P.; Gijtenbeek, M.; Koning, A.H.; Reiss, I.K.; Steegers, E.A.; et al. Growth trajectories of the human embryonic head and periconceptional maternal conditions. Hum. Reprod. 2016, 31, 968–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salomon, L.J.; Alfirevic, Z.; Da Silva Costa, F.; Deter, R.L.; Figueras, F.; Ghi, T.; Glanc, P.; Khalil, A.; Lee, W.; Napolitano, R.; et al. ISUOG Practice Guidelines: Ultrasound assessment of fetal biometry and growth. Ultrasound Obstet. Gynecol. 2019, 53, 715–723. [Google Scholar] [CrossRef]
- Hoftiezer, L.; Hof, M.H.P.; Dijs-Elsinga, J.; Hogeveen, M.; Hukkelhoven, C.; van Lingen, R.A. From population reference to national standard: New and improved birthweight charts. Am. J. Obstet. Gynecol. 2019, 220, 383.e1–383.e17. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Luo, D.; Wang, Q.; Ma, Y.; Ping, L.; Wu, T.; Tang, J.; Peng, D.; Zhao, P. Serum homocysteine and folate concentrations in early pregnancy and subsequent events of adverse pregnancy outcome: The Sichuan Homocysteine study. BMC Pregnancy Childbirth 2020, 20, 176. [Google Scholar] [CrossRef]
- Al-Bayyari, N.; Hamadneh, J.; Hailat, R.; Hamadneh, S. Total homocysteine is positively correlated with body mass index, waist-to-hip ratio, and fat mass among overweight reproductive women: A cross-sectional study. Nutr. Res. 2017, 48, 9–15. [Google Scholar] [CrossRef]
- Tuenter, A.; Bautista Nino, P.K.; Vitezova, A.; Pantavos, A.; Bramer, W.M.; Franco, O.H.; Felix, J.F. Folate, vitamin B12, and homocysteine in smoking-exposed pregnant women: A systematic review. Matern. Child. Nutr. 2019, 15, e12675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drake, A.J.; O’Shaughnessy, P.J.; Bhattacharya, S.; Monteiro, A.; Kerrigan, D.; Goetz, S.; Raab, A.; Rhind, S.M.; Sinclair, K.D.; Meharg, A.A.; et al. In utero exposure to cigarette chemicals induces sex-specific disruption of one-carbon metabolism and DNA methylation in the human fetal liver. BMC Med. 2015, 13, 18. [Google Scholar] [CrossRef] [Green Version]
- Kaye, A.D.; Jeha, G.M.; Pham, A.D.; Fuller, M.C.; Lerner, Z.I.; Sibley, G.T.; Cornett, E.M.; Urits, I.; Viswanath, O.; Kevil, C.G. Folic Acid Supplementation in Patients with Elevated Homocysteine Levels. Adv. Ther. 2020, 37, 4149–4164. [Google Scholar] [CrossRef]
- Spijkers, S.; Lens, J.W.; Schats, R.; Lambalk, C.B. Fresh and Frozen-Thawed Embryo Transfer Compared to Natural Conception: Differences in Perinatal Outcome. Gynecol. Obstet. Investig. 2017, 82, 538–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luke, B.; Brown, M.B.; Wantman, E.; Stern, J.E.; Toner, J.P.; Coddington, C.C., 3rd. Increased risk of large-for-gestational age birthweight in singleton siblings conceived with in vitro fertilization in frozen versus fresh cycles. J. Assist. Reprod. Genet. 2017, 34, 191–200. [Google Scholar] [CrossRef] [Green Version]
- van Duijn, L.; Hoek, J.; Rousian, M.; Baart, E.B.; Willemsen, S.P.; Laven, J.S.E.; Steegers-Theunissen, R.P.M.; Schoenmakers, S. Prenatal growth trajectories and birth outcomes after frozen-thawed extended culture embryo transfer and fresh embryo transfer: The Rotterdam Periconception Cohort. Reprod. Biomed. Online 2021, 43, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Rubini, E.; Baijens, I.M.M.; Horanszky, A.; Schoenmakers, S.; Sinclair, K.D.; Zana, M.; Dinnyes, A.; Steegers-Theunissen, R.P.M.; Rousian, M. Maternal One-Carbon Metabolism during the Periconceptional Period and Human Foetal Brain Growth: A Systematic Review. Genes 2021, 12, 1634. [Google Scholar] [CrossRef] [PubMed]
- Nilsen, R.M.; Vollset, S.E.; Monsen, A.L.; Ulvik, A.; Haugen, M.; Meltzer, H.M.; Magnus, P.; Ueland, P.M. Infant birth size is not associated with maternal intake and status of folate during the second trimester in Norwegian pregnant women. J. Nutr. 2010, 140, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Takimoto, H.; Hayashi, F.; Kusama, K.; Kato, N.; Yoshiike, N.; Toba, M.; Ishibashi, T.; Miyasaka, N.; Kubota, T. Elevated maternal serum folate in the third trimester and reduced fetal growth: A longitudinal study. J. Nutr. Sci. Vitaminol. 2011, 57, 130–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergen, N.E.; Schalekamp-Timmermans, S.; Jaddoe, V.W.; Hofman, A.; Lindemans, J.; Russcher, H.; Tiemeier, H.; Steegers-Theunissen, R.P.; Steegers, E.A. Maternal and Neonatal Markers of the Homocysteine Pathway and Fetal Growth: The Generation R Study. Paediatr. Perinat. Epidemiol. 2016, 30, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Hoek, J.; Schoenmakers, S.; Ringelberg, B.; Reijnders, I.F.; Willemsen, S.P.; De Rijke, Y.B.; Mulders, A.; Steegers-Theunissen, R.P.M. Periconceptional maternal and paternal homocysteine levels and early utero-placental (vascular) growth trajectories: The Rotterdam periconception cohort. Placenta 2021, 115, 45–52. [Google Scholar] [CrossRef]
- Eskes, T.K. Clotting disorders and placental abruption: Homocysteine—A new risk factor. Eur. J. Obstet. Gynecol. Reprod. Biol. 2001, 95, 206–212. [Google Scholar] [CrossRef]
- Chaudhry, S.H.; Taljaard, M.; MacFarlane, A.J.; Gaudet, L.M.; Smith, G.N.; Rodger, M.; Rennicks White, R.; Walker, M.C.; Wen, S.W. The role of maternal homocysteine concentration in placenta-mediated complications: Findings from the Ottawa and Kingston birth cohort. BMC Pregnancy Childbirth 2019, 19, 75. [Google Scholar] [CrossRef] [PubMed]
- Hogeveen, M.; Blom, H.J.; den Heijer, M. Maternal homocysteine and small-for-gestational-age offspring: Systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 95, 130–136. [Google Scholar] [CrossRef]
- Yajnik, C.S.; Chandak, G.R.; Joglekar, C.; Katre, P.; Bhat, D.S.; Singh, S.N.; Janipalli, C.S.; Refsum, H.; Krishnaveni, G.; Veena, S.; et al. Maternal homocysteine in pregnancy and offspring birthweight: Epidemiological associations and Mendelian randomization analysis. Int. J. Epidemiol. 2014, 43, 1487–1497. [Google Scholar] [CrossRef]
- Murphy, M.M.; Scott, J.M.; Arija, V.; Molloy, A.M.; Fernandez-Ballart, J.D. Maternal homocysteine before conception and throughout pregnancy predicts fetal homocysteine and birth weight. Clin. Chem. 2004, 50, 1406–1412. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.; Quan, S.; Yang, G.; Ye, Q.; Chen, M.; Yu, H.; Wang, G.; Wang, Y.; Zeng, X.; Qiao, S. One Carbon Metabolism and Mammalian Pregnancy Outcomes. Mol. Nutr. Food Res. 2021, 65, e2000734. [Google Scholar] [CrossRef] [PubMed]
- Kooijman, M.N.; Kruithof, C.J.; van Duijn, C.M.; Duijts, L.; Franco, O.H.; van Ijzendoorn, M.H.; de Jongste, J.C.; Klaver, C.C.; van der Lugt, A.; Mackenbach, J.P.; et al. The Generation R Study: Design and cohort update 2017. Eur. J. Epidemiol. 2016, 31, 1243–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henrichs, J.; Schenk, J.J.; Barendregt, C.S.; Schmidt, H.G.; Steegers, E.A.; Hofman, A.; Jaddoe, V.W.; Moll, H.A.; Verhulst, F.C.; Tiemeier, H. Fetal growth from mid- to late pregnancy is associated with infant development: The Generation R Study. Dev. Med. Child Neurol. 2010, 52, 644–651. [Google Scholar] [CrossRef] [PubMed]
- Broere-Brown, Z.A.; Schalekamp-Timmermans, S.; Jaddoe, V.W.V.; Steegers, E.A.P. Deceleration of fetal growth rate as alternative predictor for childhood outcomes: A birth cohort study. BMC Pregnancy Childbirth 2019, 19, 216. [Google Scholar] [CrossRef] [PubMed]
- Forges, T.; Monnier-Barbarino, P.; Alberto, J.M.; Gueant-Rodriguez, R.M.; Daval, J.L.; Gueant, J.L. Impact of folate and homocysteine metabolism on human reproductive health. Hum. Reprod. Update 2007, 13, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Jia, C.; Shi, Q.; Zhu, Y.; Liu, Y. Hyperhomocysteinemia in men with a reproductive history of fetal neural tube defects: Three case reports and literature review. Medicine 2019, 98, e13998. [Google Scholar] [CrossRef]
- van der Windt, M.; Schoenmakers, S.; Willemsen, S.; van Rossem, L.; Steegers-Theunissen, R. Optimizing the Periconception Lifestyle of Women With Overweight Using a Blended Personalized Care Intervention Combining eHealth and Face-to-face Counseling (eFUSE): Protocol for a Randomized Controlled Trial. JMIR Res. Protoc. 2021, 10, e28600. [Google Scholar] [CrossRef] [PubMed]
- van der Windt, M.; van der Kleij, R.M.; Snoek, K.M.; Willemsen, S.P.; Dykgraaf, R.H.M.; Laven, J.S.E.; Schoenmakers, S.; Steegers-Theunissen, R.P.M. Impact of a Blended Periconception Lifestyle Care Approach on Lifestyle Behaviors: Before-and-After Study. J. Med. Internet Res. 2020, 22, e19378. [Google Scholar] [CrossRef]
- van Dijk, M.R.; Koster, M.P.H.; Oostingh, E.C.; Willemsen, S.P.; Steegers, E.A.P.; Steegers-Theunissen, R.P.M. A Mobile App Lifestyle Intervention to Improve Healthy Nutrition in Women Before and During Early Pregnancy: Single-Center Randomized Controlled Trial. J. Med. Internet Res. 2020, 22, e15773. [Google Scholar] [CrossRef]
- van Dijk, M.R.; Koster, M.P.H.; Willemsen, S.P.; Huijgen, N.A.; Laven, J.S.E.; Steegers-Theunissen, R.P.M. Healthy preconception nutrition and lifestyle using personalized mobile health coaching is associated with enhanced pregnancy chance. Reprod. Biomed. Online 2017, 35, 453–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oostingh, E.C.; Koster, M.P.H.; van Dijk, M.R.; Willemsen, S.P.; Broekmans, F.J.M.; Hoek, A.; Goddijn, M.; Klijn, N.F.; van Santbrink, E.J.P.; Steegers, E.A.P.; et al. First effective mHealth nutrition and lifestyle coaching program for subfertile couples undergoing in vitro fertilization treatment: A single-blinded multicenter randomized controlled trial. Fertil. Steril. 2020, 114, 945–954. [Google Scholar] [CrossRef] [PubMed]
- Oostingh, E.C.; Ophuis, R.H.; Koster, M.P.; Polinder, S.; Lingsma, H.F.; Laven, J.S.; Steegers-Theunissen, R.P. Mobile Health Coaching on Nutrition and Lifestyle Behaviors for Subfertile Couples Using the Smarter Pregnancy Program: Model-Based Cost-Effectiveness Analysis. JMIR Mhealth Uhealth 2019, 7, e13935. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Natural Pregnancies (n = 555) | IVF/ICSI Pregnancies (n = 505) | p-Value |
Age a, mean ± SD | 31.8 ± 4.4 | 33.1 ± 4.3 | 0.000 |
Ethnicity, n (%) | 0.553 | ||
Dutch | 424 (80) | 390 (81) | |
Western, other | 27 (5) | 31 (6) | |
Non-western | 77 (15) | 63 (13) | |
Education level, n (%) | 0.042 | ||
Low | 46 (9) | 25 (5) | |
Intermediate | 172 (33) | 181 (38) | |
High | 309 (59) | 274 (57) | |
BMI b, median (IQR) | 24.5 (22.2–28.5) | 24.4 (21.9–27.7) | 0.007 |
Nulliparous, n (%) | 131 (25) | 249 (51) | 0.000 |
Alcohol use, n (%) | 197 (37) | 110 (23) | 0.000 |
Smoking, n (%) | 86 (16) | 57 (12) | 0.047 |
Folic acid supplement use, n (%) | 520 (98) | 484 (100) | 0.002 |
Caffeine use, n (%) | 0.285 | ||
None | 231 (44) | 225 (46) | |
Moderate | 223 (42) | 181 (37) | |
High | 76 (14) | 79 (16) | |
tHcy e, mean ± SD | 6.5 ± 1.7 | 6.3 ± 1.4 | 0.020 |
Biomarkers * | Natural Pregnancies (n = 411) | IVF/ICSI Pregnancies (n = 271) | p-Value |
tHcy e, median (IQR) | 6.2 (5.3–7.2) | 6.0 (5.2–6.9) | 0.055 |
Serum folate c, median (IQR) | 38.9 (31.9–44.7) | 41.0 (34.9–55.5) | 0.002 |
Vitamin B12 d, median (IQR) | 316.5 (237.8–397.0) | 316.0 (256.0–404.0) | 0.238 |
Paternal tHcy e, median (IQR) | 11.7 (10.0–13.8) | 11.3 (9.7–13.3) | 0.509 |
Paternal serum folate c, median (IQR) | 17.5 (13.9–22.1) | 18.9 (15.0–24.2) | 0.005 |
Paternal vitamin B12 d, median (IQR) | 344.0 (271.0–419.0) | 323.5 (260.0–416.0) | 0.426 |
Model 1 | Model 2 | |||
---|---|---|---|---|
CRL | ||||
Beta (95% CI) √mm | p-value | Beta (95% CI) √mm | p-value | |
Included population n = 919 | −0.027 (−0.043, −0.012) | <0.001 | −0.023 (−0.038, −0.007) | 0.004 |
Natural pregnancies n = 494 | −0.027 (−0.052, −0.001) | 0.039 | −0.019 (−0.044, 0.006) | 0.141 |
IVF/ICSI pregnancies, FrET n = 143 | −0.051 (−0.080, −0.022) | <0.001 | −0.051 (−0.081, −0.023) | <0.001 |
IVF/ICSI pregnancies, FET n = 282 | −0.015 (−0.031, 0.001) | 0.061 | −0.013 (−0.029, 0.002) | 0.095 |
EV | ||||
Beta (95% CI) 3√cm | p-value | Beta (95% CI) 3√cm | p-value | |
Included population n = 898 | −0.013 (−0.021, −0.006) | <0.001 | −0.011 (−0.018, −0.004) | 0.003 |
Natural pregnancies n = 482 | −0.014 (−0.026, −0.002) | 0.022 | −0.011 (−0.022, 0.001) | 0.079 |
IVF/ICSI pregnancies, FrET n = 144 | −0.024 (−0.039, −0.009) | 0.001 | −0.024 (−0.039, −0.009) | 0.001 |
IVF/ICSI pregnancies, FET n = 272 | −0.005 (−0.013, 0.003) | 0.213 | −0.004 (−0.012, 0.003) | 0.305 |
Model 1 | Model 2 | |||
---|---|---|---|---|
BPD | ||||
Beta (95% CI) mm | p-value | Beta (95% CI) mm | p-value | |
Included population n = 966 | −0.002 (−0.099, 0.095) | 0.966 | 0.009 (−0.092, 0.111) | 0.855 |
Natural pregnancies n = 519 | 0.025 (0.704, −0.104) | 0.704 | 0.042 (−0.100, 0.183) | 0.563 |
IVF/ICSI pregnancies n = 447 | −0.007 (−0.154, 0.140) | 0.925 | −0.004 (−0.149, 0.141) | 0.955 |
HC | ||||
Beta (95% CI) mm | p-value | Beta (95% CI) mm | p-value | |
Included population n = 982 | −0.067 (−0.327, 0.193) | 0.613 | −0.035 (−0.304, 0.234) | 0.801 |
Natural pregnancies n = 525 | −0.027 (−0.385, 0.330) | 0.881 | 0.003 (−0.381, 0.386) | 0.989 |
IVF/ICSI pregnancies n = 457 | 0.009 (−0.351, 0.369) | 0.961 | 0.054 (−0.297, 0.406) | 0.762 |
TCD | ||||
Beta (95% CI) mm | p-value | Beta (95% CI) mm | p-value | |
Included population n = 972 | −0.025 (−0.058, 0.008) | 0.137 | −0.023 (−0.057, 0.012) | 0.198 |
Natural pregnancies n = 519 | −0.044 (−0.087, 0.000) | 0.051 | −0.040 (−0.088, 0.008) | 0.100 |
IVF/ICSI pregnancies n = 453 | 0.027 (−0.020, 0.074) | 0.256 | 0.020 (−0.027, 0.067 | 0.409 |
AC | ||||
Beta (95% CI) mm | p-value | Beta (95% CI) mm | p-value | |
Included population n = 980 | 0.011 (−0.276, 0.297) | 0.942 | 0.053 (−0.250, 0.357) | 0.731 |
Natural pregnancies n = 524 | 0.136 (−0.240, 0.511) | 0.478 | 0.149 (−0.262, 0.561 | 0.477 |
IVF/ICSI pregnancies n = 456 | −0.002 (−0.462, 0.423) | 0.994 | 0.048 (−0.386, 0.481) | 0.829 |
FL | ||||
Beta (95% CI) mm | p-value | Beta (95% CI) mm | p-value | |
Included population n = 980 | −0.041 (−0.110, 0.027) | 0.235 | −0.036 (−0.112, 0.019) | 0.345 |
Natural pregnancies n = 525 | −0.030 (−0.121, 0.061) | 0.521 | −0.018 (−0.121, 0.085) | 0.729 |
IVF/ICSI pregnancies n = 455 | −0.018 (−0.119, 0.082) | 0.722 | −0.031 (−0.139, 0.077) | 0.569 |
EFW | ||||
Beta (95% CI) g | p-value | Beta (95% CI) g | p-value | |
Included population n = 835 | −0.845 (−2.356, 0.665) | 0.272 | −0.614 (−2.249, 1.021) | 0.461 |
Natural pregnancies n = 450 | −0.160 (−2.204, 1.883) | 0.878 | 0.099 (−2.215, 2.414) | 0.933 |
IVF/ICSI pregnancies n = 385 | −0.666 (−2.715, 1.384) | 0.524 | −0.665 (−2.767, 1.455) | 0.541 |
Model 1 | Model 2 | ||||
---|---|---|---|---|---|
Included population | |||||
Beta (95% CI) g | p-value | Beta (95% CI) g | p-value | ||
n = 229 | Q1 | Reference | Reference | ||
n = 233 | Q2 | −83.97 (−161.0.7, −6.88) | 0.030 | −69.017 (−148.84, 10.81) | 0.090 |
n = 297 | Q3 | −14.03 (−51.73, 23.68) | 0.465 | −12.27 (−50.09, 25.56) | 0.524 |
n = 224 | Q4 | −13.02 (−40.44, 14.40) | 0.351 | −15.97 (−44.26, 12.29) | 0.267 |
Natural pregnancies | |||||
Beta (95% CI) g | p-value | Beta (95% CI) g | p-value | ||
n = 127 | Q1 | Reference | Reference | ||
n = 111 | Q2 | −62.38 (−171.91, 47.15) | 0.263 | −96.74 (−208.45, 14.96) | 0.090 |
n = 155 | Q3 | −37.75 (−88.45, 12.95) | 0.144 | −50.29 (−103.09, 2.49) | 0.060 |
n = 136 | Q4 | −33.62 (−68.39, 1.14) | 0.060 | −51.98 (−88.13, −15.84) | 0.005 |
IVF/ICSI pregnancies | |||||
Beta (95% CI) g | p-value | Beta (95% CI) g | p-value | ||
n = 102 | Q1 | Reference | Reference | ||
n = 122 | Q2 | −92.28 (−202.91, 18.36) | 0.102 | −42.04 (−160.02, 75.93) | 0.483 |
n = 142 | Q3 | 14.33 (−42.72, 71.37) | 0.621 | 23.02 (−32.36, 78.39) | 0.414 |
n = 88 | Q4 | 14.51 (−30.35, 59.36) | 0.524 | 28.44 (−17.81, 74.70) | 0.226 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubini, E.; Snoek, K.M.; Schoenmakers, S.; Willemsen, S.P.; Sinclair, K.D.; Rousian, M.; Steegers-Theunissen, R.P.M. First Trimester Maternal Homocysteine and Embryonic and Fetal Growth: The Rotterdam Periconception Cohort. Nutrients 2022, 14, 1129. https://doi.org/10.3390/nu14061129
Rubini E, Snoek KM, Schoenmakers S, Willemsen SP, Sinclair KD, Rousian M, Steegers-Theunissen RPM. First Trimester Maternal Homocysteine and Embryonic and Fetal Growth: The Rotterdam Periconception Cohort. Nutrients. 2022; 14(6):1129. https://doi.org/10.3390/nu14061129
Chicago/Turabian StyleRubini, Eleonora, Katinka M. Snoek, Sam Schoenmakers, Sten P. Willemsen, Kevin D. Sinclair, Melek Rousian, and Régine P. M. Steegers-Theunissen. 2022. "First Trimester Maternal Homocysteine and Embryonic and Fetal Growth: The Rotterdam Periconception Cohort" Nutrients 14, no. 6: 1129. https://doi.org/10.3390/nu14061129
APA StyleRubini, E., Snoek, K. M., Schoenmakers, S., Willemsen, S. P., Sinclair, K. D., Rousian, M., & Steegers-Theunissen, R. P. M. (2022). First Trimester Maternal Homocysteine and Embryonic and Fetal Growth: The Rotterdam Periconception Cohort. Nutrients, 14(6), 1129. https://doi.org/10.3390/nu14061129