Association between Dietary Fiber Intake and Hyperuricemia among Chinese Adults: Analysis of the China Adult Chronic Disease and Nutrition Surveillance (2015)
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Dietary Assessment
2.3. Anthropometric and Laboratory Measurements
2.4. Potential Confounders
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SUA | serum uric acid |
HUA | hyperuricemia |
BMI | body mass index |
References
- Benn, C.L.; Dua, P.; Gurrell, R.; Loudon, P.; Pike, A.; Storer, R.I.; Vangjeli, C. Physiology of Hyperuricemia and Urate-Lowering Treatments. Front. Med. 2018, 5, 160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardin, T.; Richette, P. Definition of hyperuricemia and gouty conditions. Curr. Opin. Rheumatol. 2014, 26, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Hediger, M.A.; Johnson, R.J.; Miyazaki, H.; Endou, H. Molecular Physiology of Urate Transport. Physiology 2005, 20, 125–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, M.; Wen, S.; Nguyen, T.; Wang, C.; Jin, J.; Zhou, L. Converging Relationships of Obesity and Hyperuricemia with Special Reference to Metabolic Disorders and Plausible Therapeutic Implications. Diabetes Metab. Syndr. Obes. 2020, 13, 943–962. [Google Scholar] [CrossRef] [Green Version]
- Mortada, I. Hyperuricemia, Type 2 Diabetes Mellitus, and Hypertension: An Emerging Association. Curr. Hypertens. Rep. 2017, 19, 69. [Google Scholar] [CrossRef]
- Ponticelli, C.; Podestà, M.A.; Moroni, G. Hyperuricemia as a trigger of immune response in hypertension and chronic kidney disease. Kidney Int. 2020, 98, 1149–1159. [Google Scholar] [CrossRef]
- Yanai, H.; Adachi, H.; Hakoshima, M.; Katsuyama, H. Molecular Biological and Clinical Understanding of the Pathophysiology and Treatments of Hyperuricemia and Its Association with Metabolic Syndrome, Cardiovascular Diseases and Chronic Kidney Disease. Int. J. Mol. Sci. 2021, 22, 9221. [Google Scholar] [CrossRef]
- Nishizawa, H.; Maeda, N.; Shimomura, I. Impact of hyperuricemia on chronic kidney disease and atherosclerotic cardiovascular disease. Hypertens. Res. 2022, 45, 635–640. [Google Scholar] [CrossRef]
- Kuo, C.-F.; Grainge, M.J.; Zhang, W.; Doherty, M. Global epidemiology of gout: Prevalence, incidence and risk factors. Nat. Rev. Rheumatol. 2015, 11, 649–662. [Google Scholar] [CrossRef]
- Chen-Xu, M.; Yokose, C.; Rai, S.K.; Pillinger, M.H.; Choi, H.K. Contemporary Prevalence of Gout and Hyperuricemia in the United States and Decadal Trends: The National Health and Nutrition Examination Survey, 2007–2016. Arthritis Rheumatol. 2019, 71, 991–999. [Google Scholar] [CrossRef]
- Liu, R.; Han, C.; Wu, D.; Xia, X.; Gu, J.; Guan, H.; Shan, Z.; Teng, W. Prevalence of Hyperuricemia and Gout in Mainland China from 2000 to 2014: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2015, 2015, 762820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, E.; March, L. Global prevalence of hyperuricemia: A systematic review of population-based epidemiological studies. Arthritis Rheumatol. 2015, 67, 2690–2692. [Google Scholar]
- Kumar, A.U.A.; Browne, L.D.; Li, X.; Adeeb, F.; Perez-Ruiz, F.; Fraser, A.D.; Stack, A.G. Temporal trends in hyperuricaemia in the Irish health system from 2006–2014: A cohort study. PLoS ONE 2018, 13, e0198197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richette, P.; Doherty, M.; Pascual, E.; Barskova, V.; Becce, F.; Castañeda-Sanabria, J.; Coyfish, M.; Guillo, S.; Jansen, T.L.; Janssens, H.; et al. Updated EULAR evidence-based recommendations for the management of gout. Ann. Rheum. Dis. 2016, 76, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Flint, A.; Pai, J.K.; Forman, J.P.; Hu, F.B.; Willett, W.C.; Rexrode, K.M.; Mukamal, K.J.; Rimm, E.B. Dietary fiber intake and mortality among survivors of myocardial infarction: Prospective cohort study. BMJ 2014, 348, g2659. [Google Scholar] [CrossRef] [Green Version]
- Dalbeth, N.; Merriman, T.R.; Stamp, L.K. Gout. Lancet 2016, 388, 2039–2052. [Google Scholar] [CrossRef]
- Xu, H.; Huang, X.; Risérus, U.; Krishnamurthy, V.M.; Cederholm, T.; Ärnlöv, J.; Lindholm, B.; Sjögren, P.; Carrero, J.J. Dietary Fiber, Kidney Function, Inflammation, and Mortality Risk. Clin. J. Am. Soc. Nephrol. 2014, 9, 2104–2110. [Google Scholar] [CrossRef]
- Soliman, G.A. Dietary Fiber, Atherosclerosis, and Cardiovascular Disease. Nutrients 2019, 11, 1155. [Google Scholar] [CrossRef] [Green Version]
- Koguchi, T.; Tadokoro, T. Beneficial Effect of Dietary Fiber on Hyperuricemia in Rats and Humans: A Review. Int. J. Vitam. Nutr. Res. 2019, 89, 89–108. [Google Scholar] [CrossRef]
- Shatat, I.F.; Abdallah, R.T.; Sas, D.J.; Hailpern, S.M. Serum uric acid in US adolescents: Distribution and relationship to demographic characteristics and cardiovascular risk factors. Pediatr. Res. 2012, 72, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.-H.; See, L.-C.; Huang, Y.-C.; Yang, C.-H.; Sun, J.-H. Dietary Factors Associated with Hyperuricemia in Adults. Semin. Arthritis Rheum. 2008, 37, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.Z.; Flickinger, B.D.; Williamson-Hughes, P.S.; Empie, M.W. Lack of association between dietary fructose and hyperuricemia risk in adults. Nutr. Metab. 2010, 7, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Sun, J.; Zhang, P.; Zhong, F.; Cai, J.; Ma, A. Association of dietary fiber intake with hyperuricemia in U.S. adults. Food Funct. 2019, 10, 4932–4940. [Google Scholar] [CrossRef] [PubMed]
- Zykova, S.N.; Storhaug, H.M.; Toft, I.; Chadban, S.J.; Jenssen, T.G.; White, S.L. Cross-sectional analysis of nutrition and serum uric acid in two Caucasian cohorts: The AusDiab Study and the Tromsø study. Nutr. J. 2015, 14, 49. [Google Scholar] [CrossRef] [Green Version]
- Song, P.K.; Man, Q.Q.; Li, H.; Pang, S.J.; Jia, S.S.; Li, Y.Q.; He, L.; Zhao, W.H.; Zhang, J. Trends in Lipids Level and Dyslipidemia among Chinese Adults, 2002–2015. Biomed. Environ. Sci. 2019, 32, 559–570. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, G.; Pan, X. Chinese Food Composition Table, 2nd ed.; Peking University Medical Press: Beijing, China, 2009. [Google Scholar]
- Gong, W.; Liu, A.; Yao, Y.; Ma, Y.; Ding, C.; Song, C.; Yuan, F.; Zhang, Y.; Feng, G.; Chen, Z.; et al. Nutrient Supplement Use among the Chinese Population: A Cross-Sectional Study of the 2010–2012 China Nutrition and Health Surveillance. Nutrients 2018, 10, 1733. [Google Scholar] [CrossRef] [Green Version]
- Fan, M.; Lyu, J.; He, P. Chinese guidelines for data processing and analysis concerning the International Physical Activity Questionnaire. Zhonghua Liu Xing Bing Xue Za Zhi 2014, 35, 961–964. [Google Scholar]
- Li, C.; Kang, B.; Zhang, T.; Gu, H.; Song, P.; Chen, J.; Wang, X.; Xu, B.; Zhao, W.; Zhang, J. Dietary Pattern and Dietary Energy from Fat Associated with Sarcopenia in Community-Dwelling Older Chinese People: A Cross-Sectional Study in Three Regions of China. Nutrients 2020, 12, 3689. [Google Scholar] [CrossRef]
- Chen, J.; Chen, H.; Feng, J.; Zhang, L.; Li, J.; Li, R.; Wang, S.; Wilson, I.; Jones, A.; Tan, Y.; et al. Association between hyperuricemia and metabolic syndrome in patients suffering from bipolar disorder. BMC Psychiatry 2018, 18, 390. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef] [Green Version]
- Ryu, K.A.; Kang, H.H.; Kim, S.Y.; Yoo, M.K.; Kim, J.S.; Lee, C.H.; Wie, G.A. Comparison of Nutrient Intake and Diet Quality Between Hyperuricemia Subjects and Controls in Korea. Clin. Nutr. Res. 2014, 3, 56–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carabin, I.G.; Lyon, M.R.; Wood, S.; Pelletier, X.; Donazzolo, Y.; Burdock, G.A. Supplementation of the diet with the functional fiber PolyGlycoplex® is well tolerated by healthy subjects in a clinical trial. Nutr. J. 2009, 8, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, D.; Zhao, L.; Zhao, W. Status and trends in consumption of grains and dietary fiber among Chinese adults (1982–2015). Nutr. Rev. 2020, 78, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, D.; Michael, M.; Rajput, H.; Patil, R.T. Dietary fibre in foods: A review. J. Food Sci. Technol. 2012, 49, 255–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lattimer, J.M.; Haub, M.D. Effects of Dietary Fiber and It’s Components on Metabolic Health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef] [Green Version]
- Nan, H.; Pang, Z.; Wang, S.; Gao, W.; Zhang, L.; Ren, J.; Ning, F.; Tuomilehto, J.; Qing, Q. Serum uric acid, plasma glucose and diabetes. Diabetes Vasc. Dis. Res. 2010, 7, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Swann, O.G.; Kilpatrick, M.; Breslin, M.; Oddy, W.H. Dietary fiber and its associations with depression and inflammation. Nutr. Rev. 2020, 78, 394–411. [Google Scholar] [CrossRef]
- Ruggiero, C.; Cherubini, A.; Ble, A.; Bos, A.J.G.; Maggio, M.; Dixit, V.D.; Lauretani, F.; Bandinelli, S.; Senin, U.; Ferrucci, L. Uric acid and inflammatory markers. Eur. Heart J. 2006, 27, 1174–1181. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Male | p | Female | p | ||
---|---|---|---|---|---|---|
Non-Hyperuricemia | Hyperuricemia | Non-Hyperuricemia | Hyperuricemia | |||
(n = 26,159) | (n = 5761) | (n = 30,949) | (n = 3558) | |||
Age (years) | 55 (45, 65) | 53 (42, 64) | <0.001 | 52 (43, 62) | 59 (49,67) | <0.001 |
Age group (years) | <0.001 | <0.001 | ||||
<45 | 6216 (23.8%) | 1689 (29.3%) | 8721 (28.2%) | 635 (17.8%) | ||
45–59 | 9519 (36.4%) | 1966 (34.1%) | 12,027 (38.9%) | 1187 (33.4%) | ||
≥60 | 10,424 (39.8%) | 2106 (36.6%) | 10,201 (33%) | 1736 (48.8%) | ||
Region | <0.001 | <0.001 | ||||
City | 10,106 (38.6%) | 2577 (44.7%) | 12,609 (40.7%) | 1713 (48.1%) | ||
Rural | 16,053 (61.4%) | 3184 (55.3%) | 18,340 (59.3%) | 1845 (51.9%) | ||
Ethic group | 0.014 | 0.489 | ||||
Han | 23,344 (89.2%) | 5077 (88.1%) | 27,545 (89%) | 3153 (88.6%) | ||
Others | 2815 (10.8%) | 684 (11.9%) | 3404 (11%) | 405 (11.4%) | ||
Education | <0.001 | <0.001 | ||||
<High School | 10,833 (41.4%) | 2111 (36.6%) | 17,256 (55.8%) | 2157 (60.6%) | ||
High School | 13,419 (51.3%) | 3067 (53.2%) | 11,534 (37.3%) | 1201 (33.8%) | ||
>High School | 1907 (7.3%) | 583 (10.1%) | 2159 (7%) | 200 (5.6%) | ||
Marital status | <0.001 | <0.001 | ||||
Single | 1963 (7.5%) | 534 (9.3%) | 2376 (7.7%) | 395 (11.1%) | ||
Not single | 24,196(92.5%) | 5227 (90.7%) | 28,573 (92.3%) | 3163 (88.9%) | ||
Physical Activity Level | <0.001 | <0.001 | ||||
Sedentary | 4856 (18.6%) | 1163 (20.2%) | 4617 (14.9%) | 584 (16.4%) | ||
Moderate | 7512 (28.7%) | 1891 (32.8%) | 10,263 (33.2%) | 1184 (33.3%) | ||
Vigorous | 13,791 (52.7%) | 2707 (47%) | 16,069 (51.9%) | 1790 (50.3%) | ||
Smoking (yes) | 17,367 (66.4%) | 3836 (66.6%) | 0.776 | 1065 (3.4%) | 168 (4.7%) | <0.001 |
Drinking (yes) | 14,846 (56.8%) | 3680 (63.9%) | <0.001 | 5149 (16.6%) | 649 (18.2%) | 0.015 |
Hypertension (yes) | 11,156 (42.6%) | 3080 (53.5%) | <0.001 | 11,940 (38.6%) | 2039 (57.3%) | <0.001 |
Diabetes (yes) | 2345 (9%) | 532 (9.2%) | 0.517 | 2420 (7.8%) | 537 (15.1%) | <0.001 |
Dyslipidemia (yes) | 6385 (24.4%) | 2604 (45.2%) | <0.001 | 7196 (23.3%) | 1567 (44%) | <0.001 |
Urologic disease (yes) | 3280 (12.5%) | 814 (14.1%) | 0.001 | 2373 (7.7%) | 395 (11.1%) | <0.001 |
BMI (kg/m2) | 23.7 (21.4, 26.1) | 25.2 (22.8, 27.7) | <0.001 | 23.8 (21.5, 26.3) | 25.6 (23.2, 28.3) | <0.001 |
SUA (mg/dL) | 5.4 (4.7, 6.2) | 7.9 (7.5, 8.6) | <0.001 | 4.3 (3.7, 5) | 6.8 (6.4, 7.3) | <0.001 |
Intakes of | ||||||
Total energy (kcal/day) | 1874 (1502.2, 2305) | 1860.8 (1490.2, 2307.2) | 0.276 | 1547 (1252.8, 1890.5) | 1528.3 (1232.1, 1877.6) | 0.036 |
Animal protein (g/day) | 16.3 (7.3, 28.8) | 22.2 (11.9, 35.8) | <0.001 | 13.7 (6.3, 24.2) | 17.8 (9.2, 28.8) | <0.001 |
Total fiber (g/day) | 8.8 (6.2, 12.4) | 8 (5.7, 11.5) | <0.001 | 7.9 (5.6, 11) | 7.4 (5.2, 10.7) | <0.001 |
Cereal fiber (g/day) | 2.8 (1.8, 5) | 2.2 (1.5, 3.5) | <0.001 | 2.3 (1.5, 4) | 2 (1.3, 3.1) | <0.001 |
Legume fiber (g/day) | 0.1 (0, 0.4) | 0.1 (0, 0.5) | 0.188 | 0.1 (0, 0.4) | 0.1 (0, 0.4) | 0.579 |
Vegetable fiber (g/day) | 2.6 (1.5, 4.1) | 2.8 (1.7, 4.5) | <0.001 | 2.4 (1.4, 3.9) | 2.7 (1.6, 4.3) | <0.001 |
Fruit fiber (g/day) | 0 (0, 0.3) | 0 (0, 0.4) | <0.001 | 0 (0, 0.6) | 0 (0, 0.7) | 0.01 |
Characteristics | Dietary Fiber Intake (mg/day) | p-Trend | |||
---|---|---|---|---|---|
Q1 (≤5.85) | Q2 (5.86–8.25) | Q3 (8.26–11.65) | Q4 (≥11.66) | ||
n | 16,915 | 16,742 | 16,385 | 16,385 | |
male | 7233 (42.8%) | 7661 (45.8%) | 8103 (49.5%) | 8923 (54.5%) | <0.001 |
Age (years) | 54 (44, 65) | 54 (44, 64) | 53 (44, 63) | 53 (44, 63) | <0.001 |
Age group | <0.001 | ||||
<45 | 4450 (26.3%) | 4346 (26%) | 4342 (26.5%) | 4123 (25.2%) | |
45–59 | 5867 (34.7%) | 6161 (36.8%) | 6217 (37.9%) | 6454 (39.4%) | |
≥60 | 6598 (39%) | 6235 (37.2%) | 5826 (35.6%) | 5808 (35.4%) | |
Region | <0.001 | ||||
City | 6120 (36.2%) | 6888 (41.1%) | 7099 (43.3%) | 6898 (42.1%) | |
Rural | 10,795 (63.8%) | 9854 (58.9%) | 9286 (56.7%) | 9487 (57.9%) | |
Ethic group | <0.001 | ||||
Han | 14,321 (84.7%) | 15,026 (89.8%) | 14,913 (91%) | 14,859 (90.7%) | |
Others | 2594 (15.3%) | 1716 (10.2%) | 1472 (9%) | 1526 (9.3%) | |
Education | <0.001 | ||||
<High School | 9486 (56.1%) | 8396 (50.1%) | 7429 (45.3%) | 7046 (43%) | |
High School | 6465 (38.2%) | 7170 (42.8%) | 7622 (46.5%) | 7964 (48.6%) | |
>High School | 964 (5.7%) | 1176 (7%) | 1334 (8.1%) | 1375 (8.4%) | |
Marital status | <0.001 | ||||
Single | 1620 (9.6%) | 1399 (8.4%) | 1201 (7.3%) | 1048 (6.4%) | |
Not single | 15,295 (90.4%) | 15,343 (91.6%) | 15,184 (92.7%) | 15,337 (93.6%) | |
Physical Activity Level | <0.001 | ||||
Sedentary | 3118 (18.4%) | 2897 (17.3%) | 2742 (16.7%) | 2463 (15%) | |
Moderate | 5328 (31.5%) | 5350 (32%) | 5131 (31.3%) | 5041 (30.8%) | |
Vigorous | 8469 (50.1%) | 8495 (50.7%) | 8512 (51.9%) | 8881 (54.2%) | |
Smoking (yes) | 5290 (31.3%) | 5429 (32.4%) | 5646 (34.5%) | 6071 (37.1%) | <0.001 |
Drinking (yes) | 5550 (32.8%) | 5812 (34.7%) | 6246 (38.1%) | 6716 (41%) | <0.001 |
Hypertension (yes) | 7088 (41.9%) | 7234 (43.2%) | 6883 (42%) | 7010 (42.8%) | 0.396 |
Diabetes (yes) | 1414 (8.4%) | 1464 (8.7%) | 1471 (9%) | 1485 (9.1%) | 0.017 |
Dyslipidemia (yes) | 4396 (26%) | 4521 (27%) | 4325 (26.4%) | 4510 (27.5%) | 0.009 |
Urologic disease (yes) | 1641 (9.7%) | 1739 (10.4%) | 1684 (10.3%) | 1798 (11%) | <0.001 |
Hyperuricemia (yes) | 14,202 (84%) | 14,328 (85.6%) | 14,311 (87.3%) | 14,267 (87.1%) | <0.001 |
BMI (kg/m2) | 23.5 (21.2, 26) | 23.9 (21.6, 26.4) | 24.1 (21.8, 26.6) | 24.3 (22, 26.8) | <0.001 |
SUA (mg/dL) | 5.1 (4.2, 6.2) | 5 (4.1, 6.1) | 5 (4.1, 6) | 5 (4.2, 6.1) | <0.001 |
Intakes of | |||||
Total energy (kcal/day) | 1359.5 (1106.9, 1692) | 1575.1 (1302.8, 1919.9) | 1772 (1486.2, 2124.5) | 2085.9 (1735.1, 2517.8) | <0.001 |
Animal protein (g/day) | 15.1 (7.3, 25.8) | 15.1 (6.8, 26.7) | 15.7 (7, 27.7) | 16.5 (7.3, 29) | <0.001 |
Cereal fiber (g/day) | 1.6 (1.2, 2.3) | 2.4 (1.6, 3.7) | 3.2 (1.9, 5.3) | 3.9 (2.1, 7.3) | <0.001 |
Legume fiber (g/day) | 0 (0, 0.2) | 0.1 (0, 0.3) | 0.1 (0, 0.6) | 0.2 (0, 1.7) | <0.001 |
Vegetable fiber (g/day) | 1.6 (1, 2.4) | 2.5 (1.5, 3.6) | 3 (1.8, 4.7) | 4.1 (2.3, 7.4) | <0.001 |
Fruit fiber (g/day) | 0 (0, 0) | 0 (0, 0.3) | 0 (0, 0.7) | 0 (0, 1.2) | <0.001 |
Dietary Fiber Intake | Model 1 | Model 2 | Model 3 | |
---|---|---|---|---|
β (95% CI) | β (95% CI) | β (95% CI) | ||
Total fiber (g/day) | ||||
≤5.85 | 1.00 (ref.) | 1.00 (ref.) | 1.00 (ref.) | |
5.86–8.25 | −0.03 (−0.04, −0.01) | −0.03 (−0.04, −0.02) | −0.03 (−0.05, −0.02) | |
8.26–11.65 | −0.06 (−0.07, −0.04) | −0.07 (−0.08, −0.05) | −0.06 (−0.08, −0.05) | |
≥11.66 | −0.06 (−0.07, −0.04) | −0.06 (−0.08, −0.04) | −0.06 (−0.08, −0.04) | |
p-trend | <0.001 | <0.001 | <0.001 | |
Cereal fiber (g/day) | ||||
≤2.36 | 1.00 (ref.) | 1.00 (ref.) | 1.00 (ref.) | |
2.37–3.75 | −0.03 (−0.04, −0.02) | −0.03 (−0.05, −0.02) | −0.04 (−0.05, −0.03) | |
3.76–6 | −0.1 (−0.12, −0.09) | −0.11 (−0.13, −0.09) | −0.11 (−0.13, −0.1) | |
≥6.1 | −0.18 (−0.2, −0.16) | −0.18 (−0.2, −0.15) | −0.18 (−0.2, −0.16) | |
p-trend | <0.001 | <0.001 | <0.001 | |
Legume fiber (g/day) | ||||
0 | 1.00 (ref.) | 1.00 (ref.) | 1.00 (ref.) | |
0.01–0.2 | 0.01 (0, 0.03) | 0 (−0.01, 0.02) | 0.01 (0, 0.02) | |
0.21–1.13 | −0.01 (−0.02, 0) | −0.02 (−0.03, −0.01) | −0.01 (−0.03, 0) | |
≥1.14 | 0.02 (0, 0.03) | 0.02 (0.01, 0.04) | 0.03 (0.01, 0.04) | |
p-trend | 0.345 | 0.075 | 0.051 | |
Vegetable fiber (g/day) | ||||
≤1.68 | 1.00 (ref.) | 1.00 (ref.) | 1.00 (ref.) | |
1.69–3.1 | 0.01 (−0.01, 0.02) | 0 (−0.01, 0.01) | 0 (−0.01, 0.01) | |
3.11–5.02 | 0.01 (−0.01, 0.02) | 0 (−0.02, 0.01) | 0 (−0.02, 0.01) | |
≥5.03 | 0.02 (0.01, 0.04) | 0 (−0.02, 0.02) | 0 (−0.01, 0.02) | |
p-trend | 0.205 | 0.904 | 0.869 | |
Fruit fiber (g/day) | ||||
0 | 1.00 (ref.) | 1.00 (ref.) | 1.00 (ref.) | |
0.01–0.58 | −0.02 (−0.05, 0) | −0.02 (−0.04, 0.01) | −0.02 (−0.04, 0.01) | |
0.59–1.56 | 0 (−0.02, 0.03) | 0.01 (−0.01, 0.04) | 0.01 (−0.01, 0.04) | |
≥1.57 | 0.01 (−0.01, 0.04) | 0.01 (−0.02, 0.03) | 0.01 (−0.01, 0.04) | |
p-trend | 0.043 | 0.266 | 0.296 |
Dietary Fiber Intake | Model 1 | Model 2 | Model 3 | |
---|---|---|---|---|
OR (95% CI) | OR (95% CI) | OR (95% CI) | ||
Total fiber (g/day) | ||||
≤5.85 | 1.00 (ref.) | 1.00 (ref.) | 1.00 (ref.) | |
5.86–8.25 | 0.95 (0.92, 0.98) | 0.94 (0.91, 0.97) | 0.93 (0.9, 0.96) | |
8.26–11.65 | 0.86 (0.83, 0.89) | 0.85 (0.81, 0.88) | 0.85 (0.82, 0.88) | |
≥11.66 | 0.89 (0.86, 0.92) | 0.88 (0.85, 0.92) | 0.88 (0.84, 0.91) | |
p-trend | <0.001 | <0.001 | 0.001 | |
Cereal fiber (g/day) | ||||
≤2.36 | 1.00 (ref.) | 1.00 (ref.) | 1.00 (ref.) | |
2.37–3.75 | 0.96 (0.93, 0.99) | 0.95 (0.92, 0.98) | 0.94 (0.91, 0.97) | |
3.76–6 | 0.81 (0.78, 0.84) | 0.79 (0.76, 0.82) | 0.78 (0.75, 0.82) | |
≥6.1 | 0.68 (0.65, 0.72) | 0.68 (0.64, 0.72) | 0.67 (0.63, 0.71) | |
p-trend | <0.001 | <0.001 | <0.001 | |
Legume fiber (g/day) | ||||
0 | 1.00 (ref.) | 1.00 (ref.) | 1.00 (ref.) | |
0.01–0.2 | 1.02 (0.99, 1.06) | 1.01 (0.98, 1.04) | 1.02 (0.98, 1.05) | |
0.21–1.13 | 0.99 (0.96, 1.02) | 0.98 (0.95, 1.02) | 0.99 (0.96, 1.03) | |
≥1.14 | 1.02 (0.98, 1.05) | 1.04 (1, 1.08) | 1.05 (1, 1.09) | |
p-trend | 0.736 | 0.244 | 0.248 | |
Vegetable fiber (g/day) | ||||
≤1.68 | 1.00 (ref.) | 1.00 (ref.) | 1.00 (ref.) | |
1.69–3.1 | 1.02 (0.98, 1.05) | 1 (0.97, 1.04) | 1.01 (0.97, 1.04) | |
3.11–5.02 | 1 (0.96, 1.03) | 0.99 (0.95, 1.02) | 0.98 (0.95, 1.02) | |
≥5.03 | 1.03 (0.99, 1.07) | 0.99 (0.95, 1.03) | 1.01 (0.97, 1.05) | |
p-trend | 0.559 | 0.776 | 0.982 | |
Fruit fiber (g/day) | ||||
0 | 1.00 (ref.) | 1.00 (ref.) | 1.00 (ref.) | |
0.01–0.58 | 1.03 (0.98, 1.1) | 1.04 (0.98, 1.11) | 1.04 (0.98, 1.11) | |
0.59–1.56 | 1.04 (0.98, 1.1) | 1.06 (1, 1.13) | 1.06 (1, 1.13) | |
≥1.57 | 1.06 (1, 1.12) | 1.05 (0.99, 1.11) | 1.06 (1, 1.12) | |
p-trend | 0.486 | 0.214 | 0.264 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Q.; Yu, L.; Li, Y.; Man, Q.; Jia, S.; Zhou, Y.; Zuo, H.; Zhang, J. Association between Dietary Fiber Intake and Hyperuricemia among Chinese Adults: Analysis of the China Adult Chronic Disease and Nutrition Surveillance (2015). Nutrients 2022, 14, 1433. https://doi.org/10.3390/nu14071433
Zhu Q, Yu L, Li Y, Man Q, Jia S, Zhou Y, Zuo H, Zhang J. Association between Dietary Fiber Intake and Hyperuricemia among Chinese Adults: Analysis of the China Adult Chronic Disease and Nutrition Surveillance (2015). Nutrients. 2022; 14(7):1433. https://doi.org/10.3390/nu14071433
Chicago/Turabian StyleZhu, Qianrang, Lianlong Yu, Yuqian Li, Qingqing Man, Shanshan Jia, Yonglin Zhou, Hui Zuo, and Jian Zhang. 2022. "Association between Dietary Fiber Intake and Hyperuricemia among Chinese Adults: Analysis of the China Adult Chronic Disease and Nutrition Surveillance (2015)" Nutrients 14, no. 7: 1433. https://doi.org/10.3390/nu14071433
APA StyleZhu, Q., Yu, L., Li, Y., Man, Q., Jia, S., Zhou, Y., Zuo, H., & Zhang, J. (2022). Association between Dietary Fiber Intake and Hyperuricemia among Chinese Adults: Analysis of the China Adult Chronic Disease and Nutrition Surveillance (2015). Nutrients, 14(7), 1433. https://doi.org/10.3390/nu14071433