Dietary Management of Chronic Kidney Disease and Secondary Hyperoxaluria in Patients with Short Bowel Syndrome and Type 3 Intestinal Failure
Abstract
:1. Introduction
2. The Patient’s Journey
2.1. Gastrointestinal
2.2. Renal and Urinary Tract
3. Oxalate Nephrolithiasis and the Gastrointestinal Tract
4. Crohn’s Disease, Intestinal Failure and Parenteral Nutrition Implications
5. Nutrition in CKD
6. The Multidisciplinary Team (MDT) Role
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scales, C.D., Jr.; Smith, A.C.; Hanley, J.M.; Saigal, C.S. Urologic Diseases in America Project. Prevalence of kidney stones in the United States. Eur. Urol. 2012, 62, 160–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayer, J.A. Progress in Understanding the Genetics of Calcium-Containing Nephrolithiasis. J. Am. Soc. Nephrol. 2017, 28, 748. [Google Scholar] [CrossRef] [PubMed]
- Yasui, T.; Iguchi, M.; Suzuki, S.; Kohri, K. Prevalence and epidemiological characteristics of urolithiasis in Japan: National trends between 1965 and 2005. Urology 2008, 71, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Li, M.; Fan, H.; Bai, R. Temporal Trend of Urolithiasis Incidence in China: An Age-Period-Cohort Analysis. Int. J. Gen. Med. 2021, 14, 2533–2539. [Google Scholar] [CrossRef]
- Raheem, O.A.; Khandwala, Y.S.; Sur, R.L.; Ghani, K.R.; Denstedt, J.D. Burden of Urolithiasis: Trends in Prevalence, Treatments, and Costs. Eur. Urol. Focus 2017, 3, 18–26. [Google Scholar] [CrossRef]
- Goldfarb, D.S.; Fischer, M.E.; Keich, Y.; Goldberg, J. A twin study of genetic and dietary influences on nephrolithiasis: A report from the Vietnam Era Twin (VET) Registry. Kidney Int. 2005, 67, 1053–1061. [Google Scholar] [CrossRef] [Green Version]
- Gambaro, G.; Vezzoli, G.; Casari, G.; Rampoldi, L.; D’Angelo, A.; Borghi, L. Genetics of hypercalciuria and calcium nephrolithiasis: From the rare monogenic to the common polygenic forms. Am. J. Kidney Dis. 2004, 44, 963–986. [Google Scholar] [CrossRef]
- Demoulin, N.; Aydin, S.; Gillion, V.; Morelle, J.; Jadoul, M. Pathophysiology and Management of Hyperoxaluria and Oxalate Nephropathy: A Review. Am. J. Kidney Dis. 2021, in press. [Google Scholar] [CrossRef]
- Dobbins, J.W.; Binder, H.J. Effect of bile salts and fatty acids on the colonic absorption of oxalate. Gastroenterology 1976, 70, 1096–1100. [Google Scholar] [CrossRef]
- Dowling, R.H.; Rose, G.A.; Sutor, D.J. Hyperoxaluria and renal calculi in ileal disease. Lancet 1971, 1, 1103–1106. [Google Scholar] [CrossRef]
- Smith, L.H.; Fromm, H.; Hofmann, A.F. Acquired hyperoxaluria, nephrolithiasis, and intestinal disease. Description of a syndrome. N. Engl. J. Med. 1972, 286, 1371–1375. [Google Scholar] [CrossRef] [PubMed]
- Chadwick, V.S.; Modha, K.; Dowling, R.H. Mechanism for hyperoxaluria in patients with ileal dysfunction. N. Engl. J. Med. 1973, 289, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Earnest, D.L.; Johnson, G.; Williams, H.E.; Admirand, W.H. Hyperoxaluria in patients with ileal resection: An abnormality in dietary oxalate absorption. Gastroenterology 1974, 66, 1114–1122. [Google Scholar] [CrossRef]
- Dobbins, J.W.; Binder, H.J. Importance of the colon in enteric hyperoxaluria. N. Engl. J. Med. 1977, 296, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Hylander, E.; Jarnum, S.; Jensen, H.J.; Thale, M. Enteric hyperoxaluria: Dependence on small intestinal resection, colectomy, and steatorrhoea in chronic inflammatory bowel disease. Scand. J. Gastroenterol. 1978, 13, 577–588. [Google Scholar] [CrossRef]
- Modigliani, R.; Labayle, D.; Aymes, C.; Denvil, R. Evidence for excessive absorption of oxalate by the colon in enteric hyperoxaluria. Scand. J. Gastroenterol. 1978, 13, 187–192. [Google Scholar] [CrossRef]
- Kelly, J.P.; Curhan, G.C.; Cave, D.R.; Anderson, T.E.; Kaufman, D.W. Factors related to colonization with Oxalobacter formigenes in U.S. adults. J. Endourol. 2011, 25, 673–679. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, D.W.; Kelly, J.P.; Curhan, G.C.; Anderson, T.E.; Dretler, S.P.; Preminger, G.M.; Cave, D.R. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J. Am. Soc. Nephrol. 2008, 19, 1197–1203. [Google Scholar] [CrossRef] [Green Version]
- Ticinesi, A.; Milani, C.; Guerra, A.; Allegri, F.; Lauretani, F.; Nouvenne, A.; Mancabelli, L.; Lugli, G.A.; Turroni, F.; Duranti, S.; et al. Understanding the gut-kidney axis in nephrolithiasis: An analysis of the gut microbiota composition and functionality of stone formers. Gut 2018, 67, 2097–2106. [Google Scholar] [CrossRef]
- Stanford, J.; Charlton, K.; Stefoska-Needham, A.; Ibrahim, R.; Lambert, K. The gut microbiota profile of adults with kidney disease and kidney stones: A systematic review of the literature. BMC Nephrol. 2020, 21, 215. [Google Scholar] [CrossRef]
- Tasian, G.E.; Jemielita, T.; Goldfarb, D.S.; Copelovitch, L.; Gerber, J.S.; Wu, Q.; Denburg, M.R. Oral Antibiotic Exposure and Kidney Stone Disease. J. Am. Soc. Nephrol. 2018, 29, 1731–1740. [Google Scholar] [CrossRef] [PubMed]
- Lieske, J.C.; Tremaine, W.J.; De Simone, C.; O’Connor, H.M.; Li, X.; Bergstralh, E.J.; Goldfarb, D.S. Diet, but not oral probiotics, effectively reduces urinary oxalate excretion and calcium oxalate supersaturation. Kidney Int. 2010, 78, 1178–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milliner, D.; Hoppe, B.; Groothoff, J. A randomised Phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Urolithiasis 2018, 46, 313–323. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, B.; Beck, B.; Gatter, N.; von Unruh, G.; Tischer, A.; Hesse, A.; Laube, N.; Kaul, P.; Sidhu, H. Oxalobacter formigenes: A potential tool for the treatment of primary hyperoxaluria type 1. Kidney Int. 2006, 70, 1305–1311. [Google Scholar] [CrossRef] [Green Version]
- A Phase III Double-Blind, Randomised Study to Evaluate the Long-Term Efficacy and Safety of Oxabact in Patients with Primary Hyperoxaluria. (NCT Number): NCT03116685. Available online: https://clinicaltrials.gov/ct2/show/NCT03116685 (accessed on 26 October 2021).
- Emmett, M.; Guirl, M.J.; Santa Ana, C.A.; Porter, J.L.; Neimark, S.; Hofmann, A.F.; Fordtran, J.S. Conjugated bile acid replacement therapy reduces urinary oxalate excretion in short bowel syndrome. Am. J. Kidney Dis. 2003, 41, 230–237. [Google Scholar] [CrossRef]
- Caspary, W.F.; Tönissen, J.; Lankisch, P.G. ‘Enteral’ hyperoxaluria. Effect of cholestyramine, calcium, neomycin, and bile acids on intestinal oxalate absorption in man. Acta Hepatogastroenterol (Stuttg) 1977, 24, 193–200. [Google Scholar]
- Lingeman, J.E.; Pareek, G.; Easter, L.; Pease, R.; Grujic, D.; Brettman, L.; Langman, C.B. ALLN-177, oral enzyme therapy for hyperoxaluria. Int. Urol. Nephrol. 2019, 51, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Langman, C.B.; Grujic, D.; Pease, R.M.; Easter, L.; Nezzer, J.; Margolin, A.; Brettman, L. A Double-Blind, Placebo Controlled, Randomized Phase 1 Cross-Over Study with ALLN-177, an Orally Administered Oxalate Degrading Enzyme. Am. J. Nephrol. 2016, 44, 150–158. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Escher, J.; Hébuterne, X.; Kłęk, S.; Krznaric, Z.; Schneider, S.; Shamir, R.; Stardelova, K.; Wierdsma, N.; Wiskin, A.E.; et al. ESPEN guideline: Clinical nutrition in inflammatory bowel disease. Nutr. Hosp. 2017, 36, 321–347. [Google Scholar] [CrossRef]
- Mahadea, D.; Adamczewska, E.; Ratajczak, A.E.; Rychter, A.M.; Zawada, A.; Eder, P.; Dobrowolska, A.; Krela-Kaźmierczak, I. Iron Deficiency Anemia in Inflammatory Bowel Diseases-A Narrative Review. Nutrients 2021, 13, 4008. [Google Scholar] [CrossRef]
- Dittrich, A.E.; Sutton, R.T.; Haynes, K.; Wang, H.; Fedorak, R.N.; Kroeker, K.I. Incidence Rates for Surgery in Crohn's Disease Have Decreased: A Population-based Time-trend Analysis. Inflamm. Bowel Dis. 2020, 26, 1909–1916. [Google Scholar] [CrossRef] [PubMed]
- Meima-van Praag, E.M.; Buskens, C.J.; Hompes, R.; Bemelman, W.A. Surgical management of Crohn's disease: A state of the art review. Int. J. Colorectal Dis. 2021, 36, 1133–1145. [Google Scholar] [CrossRef] [PubMed]
- Mountford, C.G.; Manas, D.M.; Thompson, N.P. A practical approach to the management of high-output stoma. Frontline Gastroenterol. 2014, 5, 203–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nightingale, J.; Woodward, J.M.; Small Bowel and Nutrition Committee of the British Society of Gastroenterology. Guidelines for management of patients with a short bowel. Gut 2006, 55 (Suppl. 4), iv1–iv12. [Google Scholar] [CrossRef] [Green Version]
- Nightingale, J.M. The short-bowel syndrome. Eur. J. Gastroenterol. Hepatol. 1995, 7, 514–520. [Google Scholar] [CrossRef]
- Pironi, L.; Arends, J.; Baxter, J.; Bozzetti, F.; Peláez, R.B.; Cuerda, C.; Forbes, A.; Gabe, S.; Gillanders, L.; Holst, M.; et al. ESPEN endorsed recommendations. Definition and classification of intestinal failure in adults. Clin. Nutr. 2015, 34, 171–180. [Google Scholar] [CrossRef]
- Chalencon, E.; Koppe, L.; Lauverjat, M.; Barnoud, D.; Fouque, D.; Chambrier, C. Evolution of renal function in patients with severe intestinal failure on home parenteral nutrition. Clin. Kidney J. 2021, 14, 925–932. [Google Scholar] [CrossRef]
- Boncompain-Gérard, M.; Robert, D.; Fouque, D.; Hadj-Aïssa, A. Renal function and urinary excretion of electrolytes in patients receiving cyclic parenteral nutrition. JPEN J. Parenter. Enteral Nutr. 2000, 24, 234–239. [Google Scholar] [CrossRef]
- Agostini, F.; Sasdelli, A.S.; Guidetti, M.; Comai, G.; La Manna, G.; Pironi, L. Outcome of kidney function in adults on long-term home parenteral nutrition for chronic intestinal failure. Nutrition 2019, 60, 212–216. [Google Scholar] [CrossRef]
- Dreesen, M.; Foulon, V.; Spriet, I.; Goossens, G.A.; Hiele, M.; De Pourcq, L.; Willems, L. Epidemiology of catheter-related infections in adult patients receiving home parenteral nutrition: A systematic review. Clin. Nutr. 2013, 32, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Jayaprakash, V.; Gopalakrishnan, N. A clarion call for follow-up of acute kidney injury survivors: Perspective from a developing country. J. Nephrol. 2022, 35, 1029–1031. [Google Scholar] [CrossRef] [PubMed]
- Pohju, A.K.; Hakkarainen, A.I.; Pakarinen, M.P.; Sipponen, T.M. Longitudinal evolution of catheter-related bloodstream infections, kidney function and liver status in a nationwide adult intestinal failure cohort. Scand. J. Gastroenterol. 2022, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Cuerda, C.; Pironi, L.; Arends, J.; Bozzetti, F.; Gillanders, L.; Jeppesen, P.B.; Joly, F.; Kelly, D.; Lal, S.; Staun, M.; et al. ESPEN practical guideline: Clinical nutrition in chronic intestinal failure. Clin. Nutr. 2021, 40, 5196–5220. [Google Scholar] [CrossRef] [PubMed]
- Klein, G.L. Metabolic bone disease of total parenteral nutrition. Nutrition 1998, 14, 149–152. [Google Scholar] [CrossRef]
- Guzman, M.; Manithody, C.; Krebs, J.; Denton, C.; Besmer, S.; Rajalakshmi, P.; Jain, S.; Villalona, G.A.; Jain, A.K. Impaired Gut-Systemic Signaling Drives Total Parenteral Nutrition-Associated Injury. Nutrients 2020, 12, 1493. [Google Scholar] [CrossRef]
- Alvarez-Sola, G.; Uriarte, I.; Latasa, M.U.; Fernandez-Barrena, M.G.; Urtasun, R.; Elizalde, M.; Barcena-Varela, M.; Jiménez, M.; Chang, H.C.; Barbero, R.; et al. Fibroblast growth factor 15/19 (FGF15/19) protects from diet-induced hepatic steatosis: Development of an FGF19-based chimeric molecule to promote fatty liver regeneration. Gut 2017, 66, 1818–1828. [Google Scholar] [CrossRef]
- Bond, A.; Huijbers, A.; Pironi, L.; Schneider, S.M.; Wanten, G.; Lal, S. Review article: Diagnosis and management of intestinal failure-associated liver disease in adults. Aliment. Pharmacol. Ther. 2019, 50, 640–653. [Google Scholar] [CrossRef]
- Angeli, P.; Rodríguez, E.; Piano, S.; Ariza, X.; Morando, F.; Solà, E.; Romano, A.; García, E.; Pavesi, M.; Risso, A.; et al. Acute kidney injury and acute-on-chronic liver failure classifications in prognosis assessment of patients with acute decompensation of cirrhosis. Gut 2015, 64, 1616–1622. [Google Scholar] [CrossRef] [Green Version]
- Krag, A.; Bendtsen, F.; Henriksen, J.H.; Møller, S. Low cardiac output predicts development of hepatorenal syndrome and survival in patients with cirrhosis and ascites. Gut 2010, 59, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Gullo, A.; Lum, P.D. Intensive and Critical Care Medicine Reflections, Recommendations and Perspectives; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Periyalwar, P.; Dasarathy, S. Malnutrition in cirrhosis: Contribution and consequences of sarcopenia on metabolic and clinical responses. Clin. Liver Dis. 2012, 16, 95–131. [Google Scholar] [CrossRef] [Green Version]
- Plauth, M.; Bernal, W.; Dasarathy, S.; Merli, M.; Plank, L.D.; Schütz, T.; Bischoff, S.C. ESPEN guideline on clinical nutrition in liver disease. Clin. Nutr. 2019, 38, 485–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bunchorntavakul, C.; Reddy, K.R. Review article: Malnutrition/sarcopenia and frailty in patients with cirrhosis. Aliment. Pharmacol. Ther. 2020, 51, 64–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrero, J.J.; Stenvinkel, P.; Cuppari, L.; Ikizler, T.A.; Kalantar-Zadeh, K.; Kaysen, G.; Mitch, W.E.; Price, S.R.; Wanner, C.; Wang, A.Y.; et al. Etiology of the protein-energy wasting syndrome in chronic kidney disease: A consensus statement from the International Society of Renal Nutrition and Metabolism (ISRNM). J. Ren. Nutr. 2013, 23, 77–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatino, A.; Cuppari, L.; Stenvinkel, P.; Lindholm, B.; Avesani, C.M. Sarcopenia in chronic kidney disease: What have we learned so far? J. Nephrol. 2021, 34, 1347–1372. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Enoki, Y.; Maruyama, T. Sarcopenia in Chronic Kidney Disease: Factors, Mechanisms, and Therapeutic Interventions. Biol. Pharm. Bull. 2019, 42, 1437–1445. [Google Scholar] [CrossRef] [Green Version]
- Ko, G.J.; Obi, Y.; Tortorici, A.R.; Kalantar-Zadeh, K. Dietary protein intake and chronic kidney disease. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Hanna, R.M.; Ghobry, L.; Wassef, O.; Rhee, C.M.; Kalantar-Zadeh, K. A Practical Approach to Nutrition, Protein-Energy Wasting, Sarcopenia, and Cachexia in Patients with Chronic Kidney Disease. Blood Purif. 2020, 49, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Klahr, S.; Levey, A.S.; Beck, G.J.; Caggiula, A.W.; Hunsicker, L.; Kusek, J.W.; Striker, G. The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N. Engl. J. Med. 1994, 330, 877–884. [Google Scholar] [CrossRef]
- Cupisti, A.; Avesani, C.M.; D’Alessandro, C.; Garibotto, G. Nutritional management of kidney diseases: An unmet need in patient care. J. Nephrol. 2020, 33, 895–897. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76 (Suppl. 1), S1–S107. [Google Scholar] [CrossRef]
- Gunst, J.; Vanhorebeek, I.; Casaer, M.P.; Hermans, G.; Wouters, P.J.; Dubois, J.; Claes, K.; Schetz, M.; Van den Berghe, G. Impact of early parenteral nutrition on metabolism and kidney injury. J. Am. Soc. Nephrol. 2013, 24, 995–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatino, A.; Regolisti, G.; Antonucci, E.; Cabassi, A.; Morabito, S.; Fiaccadori, E. Intradialytic parenteral nutrition in end-stage renal disease: Practical aspects, indications and limits. J. Nephrol. 2014, 27, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, T.; Kumar, P.; Reddy, T.; Wood, K.D.; Knight, J.; Assimos, D.G.; Holmes, R.P. Dietary oxalate and kidney stone formation. Am. J. Physiol. Renal Physiol. 2019, 316, F409–F413. [Google Scholar] [CrossRef] [PubMed]
- Ormanji, M.S.; Rodrigues, F.G.; Heilberg, I.P. Dietary Recommendations for Bariatric Patients to Prevent Kidney Stone Formation. Nutrients 2020, 12, 1442. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.; Vu, L.; Matarese, L.E. Bacteria, Bones, and Stones: Managing Complications of Short Bowel Syndrome. Nutr. Clin. Pract. 2018, 33, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Penniston, K.L.; Palmer, E.A.; Medenwald, R.J.; Johnson, S.N.; John, L.M.; Beshensky, D.J.; Saeed, I.A. Oxalate Content of Enteral Nutrition Formulas. J. Pediatr. Gastroenterol. Nutr. 2019, 69, e135–e140. [Google Scholar] [CrossRef]
- Getting, J.E.; Gregoire, J.R.; Phul, A.; Kasten, M.J. Oxalate nephropathy due to ‘juicing’: Case report and review. Am. J. Med. 2013, 126, 768–772. [Google Scholar] [CrossRef]
- Pereira, R.A.; Alvarenga, M.D.S.; de Andrade, L.S.; Teixeira, R.R.; Teixeira, P.C.; da Silva, W.R.; Cuppari, L. Effect of a nutritional behavioral intervention on intuitive eating in overweight women with chronic kidney disease. J. Ren. Nutr. 2022, in press. [Google Scholar] [CrossRef]
- National Clinical Guideline Centre (UK). Obesity: Identification, Assessment and Management of Overweight and Obesity in Children, Young People and Adults: Partial Update of CG43; National Institute for Health and Care Excellence (NICE): London, UK, 2014. [Google Scholar]
- Mechanick, J.I.; Youdim, A.; Jones, D.B.; Garvey, W.T.; Hurley, D.L.; McMahon, M.M.; Heinberg, L.J.; Kushner, R.; Adams, T.D.; Shikora, S.; et al. Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient—2013 update: Cosponsored by American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery. Endocr. Pract. 2013, 19, 337–372. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adler, M.; Millar, E.C.; Deans, K.A.; Torreggiani, M.; Moroni, F. Dietary Management of Chronic Kidney Disease and Secondary Hyperoxaluria in Patients with Short Bowel Syndrome and Type 3 Intestinal Failure. Nutrients 2022, 14, 1646. https://doi.org/10.3390/nu14081646
Adler M, Millar EC, Deans KA, Torreggiani M, Moroni F. Dietary Management of Chronic Kidney Disease and Secondary Hyperoxaluria in Patients with Short Bowel Syndrome and Type 3 Intestinal Failure. Nutrients. 2022; 14(8):1646. https://doi.org/10.3390/nu14081646
Chicago/Turabian StyleAdler, Maciej, Ewen C. Millar, Kevin A. Deans, Massimo Torreggiani, and Francesca Moroni. 2022. "Dietary Management of Chronic Kidney Disease and Secondary Hyperoxaluria in Patients with Short Bowel Syndrome and Type 3 Intestinal Failure" Nutrients 14, no. 8: 1646. https://doi.org/10.3390/nu14081646
APA StyleAdler, M., Millar, E. C., Deans, K. A., Torreggiani, M., & Moroni, F. (2022). Dietary Management of Chronic Kidney Disease and Secondary Hyperoxaluria in Patients with Short Bowel Syndrome and Type 3 Intestinal Failure. Nutrients, 14(8), 1646. https://doi.org/10.3390/nu14081646