Does Mediterranean Adequacy Index Correlate with Cardiovascular Events in Patients with Advanced Chronic Kidney Disease? An Exploratory Study
Abstract
:1. Introduction
2. Patients and Methods
2.1. Participants
2.2. Assessment of Energy Intake and Diet
2.3. Statistical Analysis
3. Results
3.1. Comparison in Nutritional Status and Quality of Life
3.2. Comparison in Biochemical Parameters
3.3. Association with Cardiovascular Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lichtenstein, A.H.; Appel, L.J.; Vadiveloo, M.; Hu, F.B.; Kris-Etherton, P.M.; Rebholz, C.M.; Sacks, F.M.; Thorndike, A.N.; Van Horn, L.; Wylie-Rosett, J. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e472–e487. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.B.; Fedacko, J.; Fatima, G.; Magomedova, A.; Watanabe, S.; Elkilany, G. Why and How the Indo-Mediterranean Diet May Be Superior to Other Diets: The Role of Antioxidants in the Diet. Nutrients 2022, 14, 898. [Google Scholar] [CrossRef] [PubMed]
- Georgoulis, M.; Kontogianni, M.D.; Yiannakouris, N. Mediterranean diet and diabetes: Prevention and treatment. Nutrients 2014, 6, 1406–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominguez, L.J.; Veronese, N.; Baiamonte, E.; Guarrera, M.; Parisi, A.; Ruffolo, C.; Tagliaferri, F.; Barbagallo, M. Healthy Aging and Dietary Patterns. Nutrients 2022, 14, 889. [Google Scholar] [CrossRef]
- Cava, E.; Marzullo, P.; Farinelli, D.; Gennari, A.; Saggia, C.; Riso, S.; Prodam, F. Breast Cancer Diet “BCD”: A Review of Healthy Dietary Patterns to Prevent Breast Cancer Recurrence and Reduce Mortality. Nutrients 2022, 14, 476. [Google Scholar] [CrossRef]
- Pan, P.; Yu, J.; Wang, L.S. Colon Cancer: What We Eat. Surg. Oncol. Clin. N. Am. 2018, 27, 243–267. [Google Scholar] [CrossRef]
- Kouvari, M.; D’Cunha, N.M.; Travica, N.; Sergi, D.; Zec, M.; Marx, W.; Naumovski, N. Metabolic Syndrome, Cognitive Impairment and the Role of Diet: A Narrative Review. Nutrients 2022, 14, 333. [Google Scholar] [CrossRef]
- Andersen, J.A.; Rowland, B.; Gloster, E.; Willis, D.E.; Hernandez, N.; Felix, H.C.; Long, C.R.; McElfish, P.A. Associations among Self-Reported Mental Health, Physical Activity, and Diet during the COVID-19 Pandemic. Nutr. Health 2022, 2601060221082362. [Google Scholar] [CrossRef]
- Filip, R.; Anchidin-Norocel, L.; Gheorghita, R.; Savage, W.K.; Dimian, M. Changes in Dietary Patterns and Clinical Health Outcomes in Different Countries during the SARS-CoV-2 Pandemic. Nutrients 2021, 13, 3612. [Google Scholar] [CrossRef]
- English, L.K.; Ard, J.D.; Bailey, R.L.; Bates, M.; Bazzano, L.A.; Boushey, C.J.; Brown, C.; Butera, G.; Callahan, E.H.; de Jesus, J.; et al. Evaluation of Dietary Patterns and All-Cause Mortality: A Systematic Review. JAMA Netw. Open 2021, 4, e2122277. [Google Scholar] [CrossRef]
- What is the Seven Countries Study? Available online: https://www.sevencountriesstudy.com/ (accessed on 9 February 2022).
- Menotti, A.; Puddu, P.E. How the Seven Countries Study contributed to the definition and development of the Mediterranean diet concept: A 50-year journey. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Mora, J.J.; Garcia-Vigara, A.; Sanchez-Sanchez, M.L.; Garcia-Perez, M.A.; Tarin, J.; Cano, A. The Mediterranean diet: A historical perspective on food for health. Maturitas 2020, 132, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Representative List of the Intangible Cultural Heritage of Humanity Comittee. Mediterranean Diet. Available online: https://ich.unesco.org/en/RL/mediterranean-diet-00884 (accessed on 9 February 2022).
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean diet and multiple health outcomes: An umbrella review of meta-analyses of observational studies and randomised trials. Eur. J. Clin. Nutr. 2018, 72, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Lacoba, R.; Pardo-Garcia, I.; Amo-Saus, E.; Escribano-Sotos, F. Mediterranean diet and health outcomes: A systematic meta-review. Eur. J. Public Health 2018, 28, 955–961. [Google Scholar] [CrossRef] [Green Version]
- Lorite-Fuentes, I.; Montero-Vilchez, T.; Arias-Santiago, S.; Molina-Leyva, A. Potential Benefits of the Mediterranean Diet and Physical Activity in Patients with Hidradenitis Suppurativa: A Cross-Sectional Study in a Spanish Population. Nutrients 2022, 14, 551. [Google Scholar] [CrossRef] [PubMed]
- Molina-Leyva, A.; Cuenca-Barrales, C.; Vega-Castillo, J.J.; Ruiz-Carrascosa, J.C.; Ruiz-Villaverde, R. Adherence to Mediterranean diet in Spanish patients with psoriasis: Cardiovascular benefits? Dermatol. Ther. 2019, 32, e12810. [Google Scholar] [CrossRef]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [Green Version]
- Chauveau, P.; Aparicio, M.; Bellizzi, V.; Campbell, K.; Hong, X.; Johansson, L.; Kolko, A.; Molina, P.; Sezer, S.; Wanner, C.; et al. Mediterranean diet as the diet of choice for patients with chronic kidney disease. Nephrol. Dial. Transplant. 2018, 33, 725–735. [Google Scholar] [CrossRef]
- D’Alessandro, C.; Piccoli, G.B.; Calella, P.; Brunori, G.; Pasticci, F.; Egidi, M.F.; Capizzi, I.; Bellizzi, V.; Cupisti, A. “Dietaly”: Practical issues for the nutritional management of CKD patients in Italy. BMC Nephrol. 2016, 17, 102. [Google Scholar] [CrossRef]
- Mafra, D.; Lobo, J.C.; Barros, A.F.; Koppe, L.; Vaziri, N.D.; Fouque, D. Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease. Future Microbiol. 2014, 9, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Vaziri, N.D.; Wong, J.; Pahl, M.; Piceno, Y.M.; Yuan, J.; DeSantis, T.Z.; Ni, Z.; Nguyen, T.H.; Andersen, G.L. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 2013, 83, 308–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gryp, T.; Vanholder, R.; Vaneechoutte, M.; Glorieux, G. p-Cresyl Sulfate. Toxins 2017, 9, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, R.J.; Small, D.M.; Vesey, D.A.; Johnson, D.W.; Francis, R.; Vitetta, L.; Gobe, G.C.; Morais, C. Indoxyl sulphate and kidney disease: Causes, consequences and interventions. Nephrology 2016, 21, 170–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.J.; Wu, V.; Wu, P.C.; Wu, C.J. Meta-Analysis of the Associations of p-Cresyl Sulfate (PCS) and Indoxyl Sulfate (IS) with Cardiovascular Events and All-Cause Mortality in Patients with Chronic Renal Failure. PLoS ONE 2015, 10, e0132589. [Google Scholar] [CrossRef] [PubMed]
- Wu, I.W.; Hsu, K.H.; Lee, C.C.; Sun, C.Y.; Hsu, H.J.; Tsai, C.J.; Tzen, C.Y.; Wang, Y.C.; Lin, C.Y.; Wu, M.S. p-Cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol. Dial. Transplant. 2011, 26, 938–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, A.; Zheng, D.; Qiu, R.; Mai, W.; Zhou, Y. Lipoprotein-associated phospholipase A2 (Lp-PLA(2)): A novel and promising biomarker for cardiovascular risks assessment. Dis. Markers 2013, 34, 323–331. [Google Scholar] [CrossRef]
- Li, D.; Wei, W.; Ran, X.; Yu, J.; Li, H.; Zhao, L.; Zeng, H.; Cao, Y.; Zeng, Z.; Wan, Z. Lipoprotein-associated phospholipase A2 and risks of coronary heart disease and ischemic stroke in the general population: A systematic review and meta-analysis. Clin. Chim. Acta 2017, 471, 38–45. [Google Scholar] [CrossRef]
- Li, D.; Zhao, L.; Yu, J.; Zhang, W.; Du, R.; Liu, X.; Liu, Y.; Chen, Y.; Zeng, R.; Cao, Y.; et al. Lipoprotein-associated phospholipase A2 in coronary heart disease: Review and meta-analysis. Clin. Chim. Acta 2017, 465, 22–29. [Google Scholar] [CrossRef]
- Bach, A.; Serra-Majem, L.; Carrasco, J.L.; Roman, B.; Ngo, J.; Bertomeu, I.; Obrador, B. The use of indexes evaluating the adherence to the Mediterranean diet in epidemiological studies: A review. Public Health Nutr. 2006, 9, 132–146. [Google Scholar] [CrossRef]
- Alberti-Fidanza, A.; Fidanza, F.; Chiuchiu, M.P.; Verducci, G.; Fruttini, D. Dietary studies on two rural italian population groups of the Seven Countries Study. 3. Trend Of food and nutrient intake from 1960 to 1991. Eur. J. Clin. Nutr. 1999, 53, 854–860. [Google Scholar] [CrossRef] [Green Version]
- Alberti-Fidanza, A.; Fidanza, F. Mediterranean Adequacy Index of Italian diets. Public Health Nutr. 2004, 7, 937–941. [Google Scholar] [CrossRef] [PubMed]
- Fidanza, F.; Alberti, A.; Lanti, M.; Menotti, A. Mediterranean Adequacy Index: Correlation with 25-year mortality from coronary heart disease in the Seven Countries Study. Nutr. Metab. Cardiovasc. Dis. 2004, 14, 254–258. [Google Scholar] [CrossRef]
- Menotti, A.; Alberti-Fidanza, A.; Fidanza, F. The association of the Mediterranean Adequacy Index with fatal coronary events in an Italian middle-aged male population followed for 40 years. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 369–375. [Google Scholar] [CrossRef]
- Kromhout, D.; Menotti, A.; Alberti-Fidanza, A.; Puddu, P.E.; Hollman, P.; Kafatos, A.; Tolonen, H.; Adachi, H.; Jacobs, D.R., Jr. Comparative ecologic relationships of saturated fat, sucrose, food groups, and a Mediterranean food pattern score to 50-year coronary heart disease mortality rates among 16 cohorts of the Seven Countries Study. Eur. J. Clin. Nutr. 2018, 72, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Salvini, S.; Parpinel, M.; Gnagnarella, P.; Maisonneuve, P.; Turrini, A. Banca Dati di Composizione Degli Alimenti Per Studi Epidemiologici in Italia; Istituto Europeo di Oncologia: Milan, Italy, 1998. [Google Scholar]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Maroni, B.J.; Steinman, T.I.; Mitch, W.E. A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int. 1985, 27, 58–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Physical status: The use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ. Tech. Rep. Ser. 1995, 854, 1–452. [Google Scholar]
- Frisancho, A.R. Anthropometric Standards for the Assessment of Growth and Nutritional Status; University of Michigan Press: Ann Arbor, MI, USA, 1990. [Google Scholar]
- Ware, J.; Snoww, K.K.; Kosinski, M.A.; Gandek, B.G. SF36 Health Survey: Manual and Interpretation Guide; Nimrod Press: Boston, MA, USA, 1993; Volume 30. [Google Scholar]
- Cukor, D.; Fruchter, Y.; Ver Halen, N.; Naidoo, S.; Patel, A.; Saggi, S.J. A preliminary investigation of depression and kidney functioning in patients with chronic kidney disease. Nephron Clin. Pract. 2012, 122, 139–145. [Google Scholar] [CrossRef]
- Vilarnau, C.; Stracker, D.M.; Funtikov, A.; da Silva, R.; Estruch, R.; Bach-Faig, A. Worldwide adherence to Mediterranean Diet between 1960 and 2011. Eur. J. Clin. Nutr. 2019, 72, 83–91. [Google Scholar] [CrossRef]
- Da Silva, R.; Bach-Faig, A.; Raido Quintana, B.; Buckland, G.; Vaz de Almeida, M.D.; Serra-Majem, L. Worldwide variation of adherence to the Mediterranean diet, in 1961–1965 and 2000–2003. Public Health Nutr. 2009, 12, 1676–1684. [Google Scholar] [CrossRef] [Green Version]
- Mencarini, L.; Tanturri, M.L. Time use, family role-set and childbearing among Italian working women. Genus 2004, 60, 111–137. [Google Scholar]
- Giuli, C.; Papa, R.; Mocchegiani, E.; Marcellini, F. Dietary habits and ageing in a sample of Italian older people. J. Nutr. Health Aging 2012, 16, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Nardone, P.; Pierannunzio, D.; Ciardullo, S.; Lazzeri, G.; Cappello, N.; Spinelli, A.; 2018 HBSC-Italia Group; the 2018 HBSC-Italia Group. Dietary habits among Italian adolescents and their relation to socio-demographic characteristics. Ann. Ist. Super. Sanita 2020, 56, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Castro-Quezada, I.; Roman-Vinas, B.; Serra-Majem, L. The Mediterranean diet and nutritional adequacy: A review. Nutrients 2014, 6, 231–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Giuseppe, R.; Bonanni, A.; Olivieri, M.; Di Castelnuovo, A.; Donati, M.B.; de Gaetano, G.; Cerletti, C.; Iacoviello, L. Adherence to Mediterranean diet and anthropometric and metabolic parameters in an observational study in the ‘Alto Molise’ region: The MOLI-SAL project. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, R.; Shepherd, R. Resistance to changes in diet. Proc. Nutr. Soc. 2002, 61, 267–272. [Google Scholar] [CrossRef]
- Shepherd, R. Influences on food choice and dietary behavior. Forum Nutr. 2005, 57, 36–43. [Google Scholar] [CrossRef]
- Kelly, M.P.; Barker, M. Why is changing health-related behaviour so difficult? Public Health 2016, 136, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Vanstone, M.; Giacomini, M.; Smith, A.; Brundisini, F.; DeJean, D.; Winsor, S. How diet modification challenges are magnified in vulnerable or marginalized people with diabetes and heart disease: A systematic review and qualitative meta-synthesis. Ont. Health Technol. Assess. Ser. 2013, 13, 1–40. [Google Scholar]
- Alberti, A.; Fruttini, D.; Fidanza, F. The Mediterranean Adequacy Index: Further confirming results of validity. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 61–66. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Pitsavos, C.; Stefanadis, C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Goulet, J.; Lamarche, B.; Nadeau, G.; Lemieux, S. Effect of a nutritional intervention promoting the Mediterranean food pattern on plasma lipids, lipoproteins and body weight in healthy French-Canadian women. Atherosclerosis 2003, 170, 115–124. [Google Scholar] [CrossRef]
- Gerber, M. Qualitative methods to evaluate Mediterranean diet in adults. Public Health Nutr. 2006, 9, 147–151. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; Garcia, A.; Perez-Rodrigo, C.; Aranceta, J. Food, youth and the Mediterranean diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in children and adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Mila-Villarroel, R.; Bach-Faig, A.; Puig, J.; Puchal, A.; Farran, A.; Serra-Majem, L.; Carrasco, J.L. Comparison and evaluation of the reliability of indexes of adherence to the Mediterranean diet. Public Health Nutr. 2011, 14, 2338–2345. [Google Scholar] [CrossRef] [Green Version]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef]
- Cupisti, A.; Brunori, G.; Di Iorio, B.R.; D’Alessandro, C.; Pasticci, F.; Cosola, C.; Bellizzi, V.; Bolasco, P.; Capitanini, A.; Fantuzzi, A.L.; et al. Nutritional treatment of advanced CKD: Twenty consensus statements. J. Nephrol. 2018, 31, 457–473. [Google Scholar] [CrossRef] [Green Version]
- Cupisti, A.; Bolasco, P.; D’Alessandro, C.; Giannese, D.; Sabatino, A.; Fiaccadori, E. Protection of Residual Renal Function and Nutritional Treatment: First Step Strategy for Reduction of Uremic Toxins in End-Stage Kidney Disease Patients. Toxins 2021, 13, 289. [Google Scholar] [CrossRef]
- Rysz, J.; Franczyk, B.; Cialkowska-Rysz, A.; Gluba-Brzozka, A. The Effect of Diet on the Survival of Patients with Chronic Kidney Disease. Nutrients 2017, 9, 495. [Google Scholar] [CrossRef] [Green Version]
- Desroches, S.; Lapointe, A.; Ratte, S.; Gravel, K.; Legare, F.; Turcotte, S. Interventions to enhance adherence to dietary advice for preventing and managing chronic diseases in adults. Cochrane Database Syst. Rev. 2013, CD008722. [Google Scholar] [CrossRef] [Green Version]
- Lambert, K.; Mullan, J.; Mansfield, K. An integrative review of the methodology and findings regarding dietary adherence in end stage kidney disease. BMC Nephrol. 2017, 18, 318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Mauri, A.; Carrera, D.; Vidali, M.; Bagnati, M.; Rolla, R.; Riso, S.; Torreggiani, M.; Chiarinotti, D. Compliance, Adherence and Concordance Differently Predict the Improvement of Uremic and Microbial Toxins in Chronic Kidney Disease on Low Protein Diet. Nutrients 2022, 14, 487. [Google Scholar] [CrossRef] [PubMed]
n. 60 | |
---|---|
Age, years | 68 (17) |
Male/Female n (%) | 42/18 (70/30%) |
Hypertension n (%) | 54 (90%) |
Diabetes n (%) | 17 (28.3%) |
Coronary artery disease n (%) | 12 (20%) |
Cerebral vascular disease n (%) | 11 (18.3%) |
Peripheral vascular disease n (%) | 1 (1.7%) |
Cause of renal failure Hypertension n (%) Diabetes n (%) Genetics n (%) Other n (%) | 24 (40%) 9 (15%) 11 (18%) 16 (27%) |
nPCR, g/kg/day | 0.93 (0.41) |
Declared protein intake, g/kg/day | 0.75 (0.28) |
Total energy intake, Kcal/kg/day | 22.90 (8.30) |
l-MAI | h-MAI | p | |
---|---|---|---|
BMI, kg/cm2 | 28.0 (6.9) | 28.0 (7.8) | 0.57 |
Lean Mass, kg | 49.9 (15.7) | 57.7 (17.7) | 0.71 |
Fat Mass, kg | 22.7 (10.8) | 23.4 (5.4) | 0.74 |
Angle Phase | 4.9 (1.4) | 4.9 (1.8) | 0.27 |
Hand Grip, kg | 28.0 (18.0) | 36 (14.8) | 0.09 |
Physical functioning, points | 75 (35) | 80 (35) | 0.19 |
Role limitation due to physical health, points | 37 (100) | 62 (100) | 0.59 |
Pain, points | 61 (66) | 74 (52) | 0.03 |
General Health, points | 41 (34) | 56 (27) | 0.23 |
Energy-fatigue, points | 45 (39) | 57 (27) | 0.48 |
Social functioning, points | 62 (47) | 75 (50) | 0.75 |
Role limitation due to emotional problems, points | 66 (100) | 83 (100) | 0.45 |
Emotional well-being, points | 66 (39) | 72 (27) | 0.53 |
l-MAI | h-MAI | p | |
---|---|---|---|
MAI | 1.14 (0.71) | 3.40 (1.46) | |
Age, years | 69 (18) | 68 (16) | 0.68 |
eGFR, mL/min | 19.40 (4.95) | 17.80 (4.90) | 0.57 |
Proteinuria, g/24 h | 0.75 (2.62) | 1.50 (1.83) | 0.74 |
Hemoglobin, g/dL | 11.4 (2.7) | 11.7 (2.1) | 0.17 |
BUN, mg/dL | 47 (19) | 53 (18) | 0.97 |
Uric acid, mg/dL | 5.7 (1.2) | 6.4 (3.1) | 0.72 |
Albumin, mg/dL | 4.2 (0.5) | 4.3 (0.5) | 0.12 |
Calcium, mg/dL | 9.2 (1.0) | 9.3 (0.8) | 0.02 |
Phosphorus, mg/dL | 3.6 (0.7) | 3.5 (1.3) | 0.44 |
Total cholesterol, mg/dL | 176 (57) | 179 (42) | 0.83 |
HDL, mg/dL | 47 (19) | 42 (20) | 0.05 |
Triglycerides, mg/dL | 158 (62) | 145 (131) | 1.00 |
LDL, mg/dL | 99 (59) | 100 (49) | 0.92 |
HCO3−, mEq/L | 23.6 (3.7) | 22.5 (5.0) | 0.65 |
C-Reactive Protein, mg/dL | 0.26 (0.49) | 0.22 (0.61) | 0.41 |
PTH, ng/mL | 69.1 (85.8) | 64.4 (61.9) | 0.81 |
Urinary Sodium, mEq/day | 137 (88) | 134 (57) | 1.00 |
nPCR, g/kg/day | 0.90 (0.34) | 0.94 (0.40) | 0.59 |
Declared protein intake, g/kg/day | 0.86 (0.43) | 0.70 (0.17) | 0.02 |
Total energy intake, Kcal/kg/day | 24.60 (7.55) | 21.40 (7.77) | 0.03 |
Lp-PLA2, nmol/mL/min | 137 (63) | 163 (63) | 0.92 |
t-PCS, mcMol | 144 (87) | 102 (121) | 0.43 |
f-PCS, mcMol | 4.67 (3.47) | 4.40 (5.38) | 0.98 |
t-IS, mcMol | 32.4 (23.3) | 24.9 (19.3) | 0.16 |
f-IS, mcMol | 1.22 (0.87) | 1.21 (0.79) | 0.70 |
Age | eGFR | PTU | Hemoglobin | Urea | Uric Acid | Albumin | Calcium | Phosphate | Total Cholesterol | HDL | Triglycerides | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAI | Correlation coefficient | −0.060 | 0.002 | 0.051 | 0.136 | 0.078 | 0.070 | 0.204 | 0.314 | −0.065 | −0.032 | −0.202 | −0.041 |
p | 0.647 | 0.989 | 0.703 | 0.300 | 0.552 | 0.620 | 0.117 | 0.015 | 0.620 | 0.811 | 0.121 | 0.755 | |
n | 60 | 60 | 59 | 60 | 60 | 52 | 60 | 60 | 60 | 60 | 60 | 60 | |
LDL | HCO3− | CRP | PTH | UNa | nPCR | t-PCS | f-PCS | t-IS | f-IS | Lp-PLA2 | Number of Comorbidities | ||
MAI | Correlation coefficient | −0.032 | 0.065 | −0.021 | 0.009 | 0.017 | 0.201 | −0.143 | −0.022 | −0.232 | −0.087 | −0.012 | 0.125 |
p | 0.817 | 0.628 | 0.875 | 0.946 | 0.900 | 0.124 | 0.294 | 0.875 | 0.085 | 0.524 | 0.932 | 0.340 | |
n | 55 | 58 | 60 | 60 | 59 | 60 | 56 | 56 | 56 | 56 | 53 | 60 |
95% CI | ||||
---|---|---|---|---|
Odds-Ratio | Lower | Higher | p-Value | |
Age, years | 1.064 | 0.993 | 1.140 | 0.077 |
Sex (males vs. females) | 1.311 | 0.332 | 5.171 | 0.699 |
MAI | 0.703 | 0.424 | 1.167 | 0.173 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Mauri, A.; Carrera, D.; Vidali, M.; Bagnati, M.; Rolla, R.; Riso, S.; Chiarinotti, D.; Torreggiani, M. Does Mediterranean Adequacy Index Correlate with Cardiovascular Events in Patients with Advanced Chronic Kidney Disease? An Exploratory Study. Nutrients 2022, 14, 1687. https://doi.org/10.3390/nu14091687
De Mauri A, Carrera D, Vidali M, Bagnati M, Rolla R, Riso S, Chiarinotti D, Torreggiani M. Does Mediterranean Adequacy Index Correlate with Cardiovascular Events in Patients with Advanced Chronic Kidney Disease? An Exploratory Study. Nutrients. 2022; 14(9):1687. https://doi.org/10.3390/nu14091687
Chicago/Turabian StyleDe Mauri, Andreana, Deborah Carrera, Matteo Vidali, Marco Bagnati, Roberta Rolla, Sergio Riso, Doriana Chiarinotti, and Massimo Torreggiani. 2022. "Does Mediterranean Adequacy Index Correlate with Cardiovascular Events in Patients with Advanced Chronic Kidney Disease? An Exploratory Study" Nutrients 14, no. 9: 1687. https://doi.org/10.3390/nu14091687
APA StyleDe Mauri, A., Carrera, D., Vidali, M., Bagnati, M., Rolla, R., Riso, S., Chiarinotti, D., & Torreggiani, M. (2022). Does Mediterranean Adequacy Index Correlate with Cardiovascular Events in Patients with Advanced Chronic Kidney Disease? An Exploratory Study. Nutrients, 14(9), 1687. https://doi.org/10.3390/nu14091687