Association between Stages of Hepatic Steatosis and Physical Activity Performance in Adults with Metabolic Syndrome: A Cross-Sectional Analysis in FLIPAN Study
Abstract
:1. Introduction
2. Methods
2.1. Design
2.2. Subjects, Recruitment, Intrahepatic Fat Contents Measurements, Randomization and Ethics
2.3. Fitness and Physical Activity Assessment
2.4. Physical Activity
2.5. Other Health Outcomes
2.6. Statistics
3. Results
4. Discussion
Strengths and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Cho, J.; Lee, I.; Park, D.H.; Kwak, H.B.; Min, K. Relationships between Socioeconomic Status, Handgrip Strength, and Non-Alcoholic Fatty Liver Disease in Middle-Aged Adults. Int. J. Environ. Res. Public Health 2021, 18, 1892. [Google Scholar] [CrossRef]
- Mascaró, C.M.; Bouzas, C.; Tur, J.A. Association between Non-Alcoholic Fatty Liver Disease and Mediterranean Lifestyle: A Systematic Review. Nutrients 2021, 14, 49. [Google Scholar] [CrossRef] [PubMed]
- Kneeman, J.M.; Misdraji, J.; Corey, K.E. Secondary causes of nonalcoholic fatty liver disease. Therap. Adv. Gastroenterol. 2012, 5, 199–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orkin, S.; Brokamp, C.; Yodoshi, T.; Trout, A.T.; Liu, C.; Meryum, S.; Taylor, S.; Wolfe, C.; Sheridan, R.; Seth, A.; et al. Community Socioeconomic Deprivation and Nonalcoholic Fatty Liver Disease Severity. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 364–370. [Google Scholar] [CrossRef]
- Romero-Gómez, M.; Zelber-Sagi, S.; Trenell, M. Treatment of NAFLD with diet, physical activity and exercise. J. Hepatol. 2017, 67, 829–846. [Google Scholar] [CrossRef] [Green Version]
- González-Gross, M.; Meléndez, A. Sedentarism, active lifestyle and sport: Impact on health and obesity prevention. Nutr. Hosp. 2013, 28 (Suppl. S5), 89–98. [Google Scholar]
- Carroll, S.; Dudfield, M. What is the relationship between exercise and metabolic abnormalities? A review of the metabolic syndrome. Sports Med. 2004, 34, 371–418. [Google Scholar] [CrossRef] [PubMed]
- Asada, F.; Nomura, T.; Hosui, A.; Kubota, M. Influence of increased physical activity without body weight loss on hepatic inflammation in patients with nonalcoholic fatty liver disease. Environ. Health Prev. Med. 2020, 25, 18. [Google Scholar] [CrossRef]
- Smart, N.A.; King, N.; McFarlane, J.R.; Graham, P.L.; Dieberg, G. Effect of exercise training on liver function in adults who are overweight or exhibit fatty liver disease: A systematic review and meta-analysis. Br. J. Sports Med. 2018, 52, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Martin, S.B.; Morrow, J.R., Jr.; Jackson, A.W.; Dunn, A.L. Variables related to meeting the CDC/ACSM physical activity guidelines. Med. Sci. Sports Exerc. 2000, 32, 2087–2092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alessa, H.B.; Chomistek, A.K.; Hankinson, S.E.; Barnett, J.B.; Rood, J.; Matthews, C.E.; Rimm, E.B.; Willett, W.C.; Hu, F.B.; Tobias, D.K. Objective Measures of Physical Activity and Cardiometabolic and Endocrine Biomarkers. Med. Sci. Sports Exerc. 2017, 49, 1817–1825. [Google Scholar] [CrossRef] [Green Version]
- Gelli, C.; Tarocchi, M.; Abenavoli, L.; Di Renzo, L.; Galli, A.; De Lorenzo, A. Effect of a counseling-supported treatment with the Mediterranean diet and physical activity on the severity of the non-alcoholic fatty liver disease. World J. Gastroenterol. 2017, 23, 3150–3162. [Google Scholar] [CrossRef]
- Del Ben, M.; Polimeni, L.; Baratta, F.; Pastori, D.; Loffredo, L.; Angelico, F. Modern approach to the clinical management of non-alcoholic fatty liver disease. World J. Gastroenterol. 2014, 20, 8341–8350. [Google Scholar]
- Centis, E.; Moscatiello, S.; Bugianesi, E.; Bellentani, S.; Fracanzani, A.L.; Calugi, S.; Petta, S.; Grave, R.D.; Marchesini, G. Stage of change and motivation to healthier lifestyle in non-alcoholic fatty liver disease. J. Hepatol. 2013, 58, 771–777. [Google Scholar] [CrossRef]
- Wu, T.; Gao, X.; Chen, M.; van Dam, R.M. Long-term effectiveness of diet-plus-exercise interventions vs. diet-only interventions for weight loss: A meta-analysis. Obes. Rev. 2009, 10, 313–323. [Google Scholar] [CrossRef]
- Tutino, V.; De Nunzio, V.; Caruso, M.G.; Bonfiglio, C.; Franco, I.; Mirizzi, A.; de Leonardis, G.; Cozzolongo, R.; Giannuzzi, V.; Giannelli, G.; et al. Aerobic Physical Activity and a Low Glycemic Diet Reduce the AA/EPA Ratio in Red Blood Cell Membranes of Patients with NAFLD. Nutrients 2018, 10, 1299. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.V.; Zandvakili, I.; Thaiss, C.A.; Schneider, K.M. Physical activity is associated with reduced risk of liver disease in the prospective UK Biobank cohort. JHEP Rep. 2021, 3, 100263. [Google Scholar] [CrossRef]
- Park, J.H.; Lim, N.K.; Park, H.Y. Protective Effect of Leisure-Time Physical Activity and Resistance Training on Nonalcoholic Fatty Liver Disease: A Nationwide Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 2350. [Google Scholar] [CrossRef]
- Tsunoda, K.; Kitano, N.; Kai, Y.; Jindo, T.; Uchida, K.; Arao, T. Dose-response relationships of accelerometer-measured sedentary behaviour and physical activity with non-alcoholic fatty liver disease. Aliment Pharmacol. Ther. 2021, 54, 1330–1339. [Google Scholar] [CrossRef]
- NCT04442620; Prevention and Reversion of NAFLD in Obese Patients With Metabolic Syndrome by Mediterranean Diet and Physical Activity (FLIPAN) [Internet]. ClinicalTrials.gov. 2020. Available online: https://clinicaltrials.gov/ct2/show/NCT04442620 (accessed on 20 January 2022).
- The International Diabetic Federation (IDF). The IDF Consensus Worldwide Definition of Definition of the Metabolic Syndrome. Available online: http://www.idf.org/webdata/docs/IDF_Meta_def_final.pdf (accessed on 22 January 2022).
- Abbate, M.; Mascaró, C.M.; Montemayor, S.; Barbería-Latasa, M.; Casares, M.; Gómez, C.; Angullo-Martinez, E.; Tejada, S.; Abete, I.; Zulet, M.A.; et al. Energy Expenditure Improved Risk Factors Associated with Renal Function Loss in NAFLD and MetS Patients. Nutrients 2021, 13, 629. [Google Scholar] [CrossRef]
- Tang, A.; Tan, J.; Sun, M.; Hamilton, G.; Bydder, M.; Wolfson, T.; Gamst, A.C.; Middleton, M.; Brunt, E.M.; Loomba, R.; et al. Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 2013, 267, 422–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suni, J.; Husu, P.; Rinne, M. Fitness for Health: The ALPHA-FIT Test Battery for Adults Aged 18-69—Tester’s Manual. UUK Inst [Internet]. 2009. Available online: http://www.ukkinstituutti.fi/en/alpha (accessed on 22 January 2022).
- Chester Step Test Kit (Official) by Professor Kevin Sykes [Internet]. Available online: https://cartwrightfitness.co.uk/product/chester-step-test-kit/ (accessed on 18 February 2022).
- Elosua, R.; Garcia, M.; Aguilar, A.; Molina, L.; Covas, M.I.; Marrugat, J. Validation of the Minnesota Leisure Time Physical Activity Questionnaire In Spanish Women. Investigators of the MARATDON Group. Med. Sci. Sports Exerc. 2000, 32, 1431–1437. [Google Scholar] [CrossRef] [PubMed]
- Elosua, R.; Marrugat, J.; Molina, L.; Pons, S.; Pujol, E. Validation of the Minnesota Leisure Time Physical Activity Questionnaire in Spanish men. The MARATHOM Investigators. Am. J. Epidemiol. 1994, 139, 1197–1209. [Google Scholar] [CrossRef] [PubMed]
- Sadeh, A.; Hauri, P.J.; Kripke, D.F.; Lavie, P. The role of actigraphy in the evaluation of sleep disorders. Sleep 1995, 18, 288–302. [Google Scholar] [CrossRef]
- Ancoli-Israel, S.; Cole, R.; Alessi, C.; Chambers, M.; Moorcroft, W.; Pollak, C.P. The role of actigraphy in the study of sleep and circadian rhythms. Sleep 2003, 26, 342–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carazo-Vargas, P.; Moncada-Jiménez, J. The association between sleep efficiency and physical performance in taekwondo athletes. Retos 2020, 37, 227–232. [Google Scholar]
- Reed, D.L.; Sacco, W.P. Measuring sleep efficiency: What should the denominator be? J. Clin. Sleep Med. 2016, 12, 263–266. [Google Scholar] [CrossRef]
- de Souza, L.; Benedito-Silva, A.A.; Nogueira Pires, M.L.; Poyares, D.; Tufik, S.; Calil, H.M. Further validation of actigraphy for sleep studies. Sleep 2003, 26, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Hillman, T.E.; Nunes, Q.M.; Hornby, S.T.; Stanga, Z.; Neal, K.R.; Rowlands, B.J.; Allison, S.P.; Lobo, D.N. A practical posture for hand grip dynamometry in the clinical setting. Clin. Nutr. 2005, 24, 224–228. [Google Scholar] [CrossRef]
- Vargas-Pinilla, O.C.; Rodríguez-Grande, E.I. Reproducibility and agreement between three positions for handgrip assessment. Sci. Rep. 2011, 11, 1–6. [Google Scholar] [CrossRef]
- Rodrigues de Lima, T.; González-Chica, D.A.; Santos Silva, D.A. Clusters of cardiovascular risk factors and its association with muscle strength in adults. J. Sports Med. Phys. Fit. 2020, 60, 479–485. [Google Scholar] [CrossRef]
- Takahashi, A.; Abe, K.; Usami, K.; Imaizumi, H.; Hayashi, M.; Okai, K.; Kanno, Y.; Tanji, N.; Watanabe, H.; Ohira, H. Simple Resistance Exercise helps Patients with Non-alcoholic Fatty Liver Disease. Int. J. Sports Med. 2015, 36, 848–852. [Google Scholar] [CrossRef] [PubMed]
- Tomlinson, D.J.; Erskine, R.M.; Morse, C.I.; Winwood, K.; Onambélé-Pearson, G. The impact of obesity on skeletal muscle strength and structure through adolescence to old age. Biogerontology 2016, 17, 467–483. [Google Scholar] [CrossRef] [Green Version]
- Abdelbasset, W.K.; Tantawy, S.A.; Kamel, D.M.; Alqahtani, B.A.; Elnegamy, T.E.; Soliman, G.S.; Ibrahim, A.A. Effects of high-intensity interval and moderate-intensity continuous aerobic exercise on diabetic obese patients with nonalcoholic fatty liver disease: A comparative randomized controlled trial. Medicine (Baltimore) 2020, 99, e19471. [Google Scholar] [CrossRef]
- Xiong, Y.; Peng, Q.; Cao, C.; Xu, Z.; Zhang, B. Effect of Different Exercise Methods on Non-Alcoholic Fatty Liver Disease: A Meta-Analysis and Meta-Regression. Int. J. Environ. Res. Public Health 2021, 18, 3242. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.; Gerber, L.; Paik, J.M.; Price, J.K.; Escheik, C.; Younossi, Z.M. Aerobic capacity and exercise performance in nonalcoholic fatty liver disease. J. Sports Med. Phys. Fit. 2019, 59, 1376–1388. [Google Scholar] [CrossRef] [PubMed]
- Sykes, K. The Chester Aerobic Fitness Tests Manual, 2nd ed.; Cartwright Fitness Publs: Chester, UK, 2016. [Google Scholar]
- Kistler, K.D.; Brunt, E.M.; Clark, J.M.; Diehl, A.M.; Sallis, J.F.; Schwimmer, J.B.; NASH CRN Research Group. Physical activity recommendations, exercise intensity, and histological severity of nonalcoholic fatty liver disease. Am. J. Gastroenterol. 2011, 106, 460–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, T.C.; Rodgers, W.M.; Fraser, S.N. Exploring the relationship between socioeconomic status, control beliefs and exercise behavior: A multiple mediator model. J. Behav. Med. 2012, 35, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Marin-Alejandre, B.A.; Abete, I.; Cantero, I.; Riezu-Boj, J.I.; Milagro, F.I.; Monreal, J.I.; Elorz, M.; Herrero, J.I.; Benito-Boillos, A.; Quiroga, J.; et al. Association between Sleep Disturbances and Liver Status in Obese Subjects with Nonalcoholic Fatty Liver Disease: A Comparison with Healthy Controls. Nutrients 2019, 11, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, C.W.; Yun, K.E.; Jung, H.S.; Chang, Y.; Choi, E.S.; Kwon, M.J.; Lee, E.U.; Woo, E.J.; Kim, N.H.; Shin, H.; et al. Sleep duration and quality in relation to non-alcoholic fatty liver disease in middle-aged workers and their spouses. J. Hepatol. 2013, 59, 351–357. [Google Scholar] [CrossRef]
- Katsagoni, C.N.; Georgoulis, M.; Papatheodoridis, G.V.; Fragopoulou, E.; Ioannidou, P.; Papageorgiou, M.; Alexopoulou, A.; Papadopoulos, N.; Deutsch, M.; Kontogianni, M.D. Associations Between Lifestyle Characteristics and the Presence of Nonalcoholic Fatty Liver Disease: A Case-Control Study. Metab. Syndr. Relat. Disord. 2017, 15, 72–79. [Google Scholar] [CrossRef]
- Gallardo-Alfaro, L.; Bibiloni, M.D.M.; Mascaró, C.M.; Montemayor, S.; Ruiz-Canela, M.; Salas-Salvad, J.; Corella, D.; Fitó, M.; Romaguera, D.; Vioque, J.; et al. Leisure-Time Physical Activity, Sedentary Behaviour and Diet Quality are Associated with Metabolic Syndrome Severity: The PREDIMED-Plus Study. Nutrients 2020, 12, 1013. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Vazquez-Montesino, L.M.; Li, A.A.; Cholankeril, G.; Ahmed, A. Inadequate Physical Activity and Sedentary Behavior Are Independent Predictors of Nonalcoholic Fatty Liver Disease. Hepatology 2020, 72, 1556–1568. [Google Scholar] [CrossRef]
- Jung, H.S.; Chang, Y.; Kwon, M.J.; Sung, E.; Yun, K.E.; Cho, Y.K.; Shin, H.; Ryu, S. Smoking and the Risk of Non-Alcoholic Fatty Liver Disease: A Cohort Study. Am. J. Gastroenterol. 2019, 114, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Tanaka, N.; Fujimori, N.; Sugiura, A.; Yamazaki, T.; Joshita, S.; Komatsu, M.; Umemura, T.; Matsumoto, A.; Tanaka, E. Mild drinking habit is a risk factor for hepatocarcinogenesis in non-alcoholic fatty liver disease with advanced fibrosis. World J. Gastroenterol. 2018, 24, 1440–1450. [Google Scholar] [CrossRef] [PubMed]
- Kechagias, S.; Nasr, P.; Blomdahl, J.; Ekstedt, M. Established and emerging factors affecting the progression of nonalcoholic fatty liver disease. Metabolism 2020, 111S, 154183. [Google Scholar] [CrossRef] [PubMed]
- Wieland, A.C.; Mettler, P.; McDermott, M.T.; Crane, L.A.; Cicutto, L.C.; Bambha, K.M. Low awareness of nonalcoholic fatty liver disease among patients at high metabolic risk. J. Clin. Gastroenterol. 2015, 49, e6–e10. [Google Scholar] [CrossRef] [PubMed]
- Jeznach-Steinhagen, A.; Ostrowska, J.; Czerwonogrodzka-Senczyna, A.; Boniecka, I.; Shahnazaryan, U.; Kuryłowicz, A. Dietary and Pharmacological Treatment of Nonalcoholic Fatty Liver Disease. Medicina (Kaunas) 2019, 55, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
S0 (n = 41) | S1 (n = 72) | S2 (n = 37) | ||
---|---|---|---|---|
Median (IQR) | Median (IQR) | Median (IQR) | p | |
Age (years) | 52.0 (12.0) b | 53.0 (12.0) | 51.0 (9.0) b | 0.023 |
Education (years) | 18.0 (7.0) a,b | 14.5 (6.0) a | 15.0 (7.0) b | <0.001 |
n (%) | n (%) | n (%) | ||
Gender | 0.279 | |||
Female | 18 (43.9) | 28 (38.9) | 13 (35.1) | |
Male | 23 (56.1) | 44 (61.1) | 24 (64.9) | |
Marital status | <0.001 | |||
Single | 1 (2.4) | 11 (15.3) | 2 (5.4) | |
Married/unmarried partner | 34 (82.9) | 49 (68.1) | 30 (81.1) | |
Divorced/separated | 6 (14.6) | 11 (15.3) | 5 (13.5) | |
Widower | 0 (0) | 1 (1.4) | 0 (0) | |
Socioeconomic status according job | <0.001 | |||
Low | 4 (50.0) | 29 (69.0) | 21 (80.8) | |
Medium | 2 (25.0) | 12 (28.6) | 4 (15.4) | |
High | 2 (25.0) | 1 (2.4) | 1 (3.8) | |
Smoking habit | <0.001 | |||
No | 34 (85.0) | 57 (81.4) | 34 (97.1) | |
≥1 cigarette/day | 6 (15.0) | 13 (18.6) | 1 (2.9) | |
Alcohol consumption | <0.001 | |||
No | 5 (12.2) | 18 (25.0) | 16 (43.2) | |
Yes, <7 drinks/week | 29 (70.7) | 40 (55.6) | 17 (45.9) | |
≥7 drinks/week | 7 (17.1) | 14 (19.4) | 4 (10.8) |
S0 | S1 | S2 | ||
---|---|---|---|---|
Median (IQR) | Median (IQR) | Median (IQR) | p Value | |
Motor fitness tests | ||||
One-leg balance (s) | 52.0 (15.1) | 60.0 (27.7) | 32.7 (46.0) | 0.110 |
Standing handgrip (kg) | 37.2 (23.2) | 40.6 (23.5) | 39.1 (15.3) | 0.275 |
Jump-and-reach (cm) | 26.0 (18.0) | 23.0 (10.0) | 20.0 (12.0) | 0.154 |
Modified push-up (reps) | 9.0 (6.0) b | 10.0 (7.0) | 7.0 (6.0) b | 0.036 |
Fitness score tests | 2.0 (4.0) | 2.0 (3.0) | 2.0 (1.0) | 0.668 |
Sitting handgrip (kg) | 36.0 (25.0) | 39.9 (22.6) | 35.0 (19.0) | 0.090 |
Chester-step (ml O2/kg/min) | 36.7 (11.2) a,b | 34.4 (10.4) a,c | 28.3 (9.5) b,c | <0.001 |
Intensity PA (accelerometer) | ||||
Sedentary (min/day) | 648.1 (120.9) b | 610.4 (157.9) c | 654.8 (142.4) b,c | 0.003 |
Light (min/day) | 528.4 (118.4) | 491.9 (174.4) | 541.7 (122.9) | 0.188 |
Moderate (min/day) | 201.3 (168.6) a,b | 202.1 (50.7) a | 160.9 (81.1) b | <0.001 |
Sleep efficiency (%) | 93.8 (3.3) b | 92.5 (6.7) | 91.5 (3.3) b | 0.007 |
Vigorous (min/day) | 0 | 0 | 0 | 1.000 |
Energy expenditure | ||||
Measured accelerometer (MET/day) | 1.8 (0.5) b | 1.9 (0.3) c | 1.8 (0.3) b,c | <0.001 |
Reported Minnesota (MET/day) | 0.3 (0.5) | 0.3 (0.4) | 0.3 (0.4) | 0.188 |
Measured-Reported (MET/day) | 1.6 (0.8) | 1.7 (0.5) c | 1.5 (0.2) c | 0.009 |
S0 | S1 | S2 | ||
---|---|---|---|---|
OR (95% CI) | OR (95% CI) | OR (95% CI) | ||
Motor fitness tests | ||||
One-leg balance | Crude OR | 1.00 (ref.) | 0.61 (0.25–1.50) | 0.46 (0.17–1.21) |
OR Adjusted 1 | 1.00 (ref.) | 0.83 (0.31–2.19) | 0.56 (0.19–1.64) | |
Standing handgrip | Crude OR | 1.00 (ref.) | 0.65 (0.29–1.46) | 0.75 (0.32–1.74) |
OR Adjusted 1 | 1.00 (ref.) | 0.40 (0.17–0.97) * | 0.39 (0.15–1.00) | |
Jump-and-reach | Crude OR | 1.00 (ref.) | 1.27 (0.56–2.85) | 0.98 (0.42–2.27) |
OR Adjusted 1 | 1.00 (ref.) | 0.71 (0.29–1.75) | 0.60 (0.23–1.57) | |
Modified push-up | Crude OR | 1.00 (ref.) | 0.46 (0.26–0.81) * | 0.46 (0.25–0.85) * |
OR Adjusted 1 | 1.00 (ref.) | 0.44 (0.16–1.22) | 0.33 (0.11–0.98) * | |
Fitness score tests | Crude OR | 1.00 (ref.) | 0.56 (0.25–1.29) | 0.49 (0.21–1.17) |
OR Adjusted 1 | 1.00 (ref.) | 0.41 (0.14–1.17) | 0.34 (0.11–1.04) | |
Sitting handgrip | Crude OR | 1.00 (ref.) | 0.44 (0.30–0.66) * | 0.41 (0.26–0.65) * |
OR Adjusted 1 | 1.00 (ref.) | 0.41 (0.17–0.98) * | 0.24 (0.09–0.63) * | |
Chester-step | Crude OR | 1.00 (ref.) | 0.24 (0.12–0.48) * | 0.11 (0.05–0.23) * |
OR Adjusted 1 | 1.00 (ref.) | 0.18 (0.07–0.49) * | 0.05 (0.02–0.16) * | |
Intensity PA (accelerometer) | ||||
Sedentary | Crude OR | 1.00 (ref.) | 0.38 (0.20–0.69) * | 0.34 (0.17–0.68) * |
OR Adjusted 1 | 1.00 (ref.) | 1.88 (0.65–5.47) | 4.01 (1.28–12.55) * | |
Light | Crude OR | 1.00 (ref.) | 7.14 (2.20–23.18) * | 5.00 (1.39–17.94) * |
OR Adjusted 1 | 1.00 (ref.) | 1.21 (0.18–8.15) | 1.74 (0.24–12.65) | |
Moderate | Crude OR | 1.00 (ref.) | 4.00 (2.10–7.61) * | 3.30 (1.62–6.71) * |
OR Adjusted 1 | 1.00 (ref.) | 1.97 (0.72–5.42) | 0.53 (0.18–1.54) | |
Sleep efficiency | Crude OR | 1.00 (ref.) | 0.96 (0.53–1.74) | 0.54 (0.28–1.05) |
OR Adjusted 1 | 1.00 (ref.) | 0.29 (0.10–0.85) * | 0.13 (0.04–0.40) * | |
Energy expenditure | ||||
Measured accelerometer | Crude OR | 1.00 (ref.) | 1.04 (0.58–1.85) | 0.31 (0.16–0.62) * |
OR Adjusted 1 | 1.00 (ref.) | 0.31 (0.10–0.91) * | 0.06 (0.02–0.24) * | |
Reported Minnesota | Crude OR | 1.00 (ref.) | 0.51 (0.34–0.75) * | 0.64 (0.41–1.01) |
OR Adjusted 1 | 1.00 (ref.) | 0.27 (0.11–0.67) * | 0.41 (0.16–1.09) | |
Measured-Reported | Crude OR | 1.00 (ref.) | 0.82 (0.46–1.46) | 0.58 (0.30–1.12) |
OR Adjusted 1 | 1.00 (ref.) | 1.42 (0.52–3.92) | 0.63 (0.22–1.83) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mascaró, C.M.; Bouzas, C.; Montemayor, S.; Casares, M.; Gómez, C.; Ugarriza, L.; Borràs, P.-A.; Martínez, J.A.; Tur, J.A. Association between Stages of Hepatic Steatosis and Physical Activity Performance in Adults with Metabolic Syndrome: A Cross-Sectional Analysis in FLIPAN Study. Nutrients 2022, 14, 1790. https://doi.org/10.3390/nu14091790
Mascaró CM, Bouzas C, Montemayor S, Casares M, Gómez C, Ugarriza L, Borràs P-A, Martínez JA, Tur JA. Association between Stages of Hepatic Steatosis and Physical Activity Performance in Adults with Metabolic Syndrome: A Cross-Sectional Analysis in FLIPAN Study. Nutrients. 2022; 14(9):1790. https://doi.org/10.3390/nu14091790
Chicago/Turabian StyleMascaró, Catalina M., Cristina Bouzas, Sofía Montemayor, Miguel Casares, Cristina Gómez, Lucía Ugarriza, Pere-Antoni Borràs, J. Alfredo Martínez, and Josep A. Tur. 2022. "Association between Stages of Hepatic Steatosis and Physical Activity Performance in Adults with Metabolic Syndrome: A Cross-Sectional Analysis in FLIPAN Study" Nutrients 14, no. 9: 1790. https://doi.org/10.3390/nu14091790
APA StyleMascaró, C. M., Bouzas, C., Montemayor, S., Casares, M., Gómez, C., Ugarriza, L., Borràs, P. -A., Martínez, J. A., & Tur, J. A. (2022). Association between Stages of Hepatic Steatosis and Physical Activity Performance in Adults with Metabolic Syndrome: A Cross-Sectional Analysis in FLIPAN Study. Nutrients, 14(9), 1790. https://doi.org/10.3390/nu14091790