Maternal Iodine Intake and Neurodevelopment of Offspring: The Japan Environment and Children’s Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Maternal Iodine Intake and Kelp and Seaweed Intake
2.3. Neurodevelopmental Assessment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Iodine Status Worldwide; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Zimmermann, M.B.; Jooste, P.L.; Pandav, C.S. Iodine-deficiency disorders. Lancet 2008, 372, 1251–1262. [Google Scholar] [CrossRef]
- Velasco, I.; Bath, S.; Rayman, M. Iodine as Essential Nutrient during the First 1000 Days of Life. Nutrients 2018, 10, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- Andersson, M.; De Benoist, B.; Delange, F.; Zupan, J. Prevention and control of iodine deficiency in pregnant and lactating women and in children less than 2-years-old: Conclusions and recommendations of the Technical Consultation. Public Health Nutr. 2007, 10, 1606–1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bath, S.C. The effect of iodine deficiency during pregnancy on child development. Proc. Nutr. Soc. 2019, 78, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Pearce, E.N.; Lazarus, J.H.; Moreno-Reyes, R.; Zimmermann, M.B. Consequences of iodine deficiency and excess in pregnant women: An overview of current knowns and unknowns. Am. J. Clin. Nutr. 2016, 104, 918S–923S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levie, D.; Korevaar, T.I.M.; Bath, S.C.; Murcia, M.; Dineva, M.; Llop, S.; Espada, M.; Van Herwaarden, A.E.; De Rijke, Y.B.; Ibarluzea, J.M.; et al. Association of Maternal Iodine Status With Child IQ: A Meta-Analysis of Individual Participant Data. J. Clin. Endocrinol. Metab. 2019, 104, 5957–5967. [Google Scholar] [CrossRef] [Green Version]
- Dineva, M.; Fishpool, H.; Rayman, M.P.; Mendis, J.; Bath, S.C. Systematic review and meta-analysis of the effects of iodine supplementation on thyroid function and child neurodevelopment in mildly-to-moderately iodine-deficient pregnant women. Am. J. Clin. Nutr. 2020, 112, 389–412. [Google Scholar] [CrossRef]
- Monaghan, A.M.; Mulhern, M.S.; McSorley, E.M.; Strain, J.J.; Dyer, M.; Van Wijngaarden, E.; Yeates, A.J. Associations between maternal urinary iodine assessment, dietary iodine intakes and neurodevelopmental outcomes in the child: A systematic review. Thyroid Res. 2021, 14, 14. [Google Scholar] [CrossRef]
- WHO. Assessment of Iodine Deficiency Disorders and Monitoring Their Elimination, 3rd ed.; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Ministry of Health, Labour and Welfare. Dietary Reference Intakes for Japanese. 2020. Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/eiyou/syokuji_kijyun.html (accessed on 20 March 2021).
- Orito, Y.; Oku, H.; Kubota, S.; Amino, N.; Shimogaki, K.; Hata, M.; Manki, K.; Tanaka, Y.; Sugino, S.; Ueta, M.; et al. Thyroid Function in Early Pregnancy in Japanese Healthy Women: Relation to Urinary Iodine Excretion, Emesis, and Fetal and Child Development. J. Clin. Endocrinol. Metab. 2009, 94, 1683–1688. [Google Scholar] [CrossRef] [Green Version]
- Katagiri, R.; Asakura, K.; Sasaki, S.; Hirota, N.; Notsu, A.; Miura, A.; Todoriki, H.; Fukui, M.; Date, C. Estimation of habitual iodine intake in Japanese adults using 16 d diet records over four seasons with a newly developed food composition database for iodine. Br. J. Nutr. 2015, 114, 624–634. [Google Scholar] [CrossRef] [Green Version]
- Zava, T.T.; Zava, D.T. Assessment of Japanese iodine intake based on seaweed consumption in Japan: A literature-based analysis. Thyroid Res. 2011, 4, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katagiri, R.; Asakura, K.; Uechi, K.; Masayasu, S.; Sasaki, S. Adequacy of iodine intake in three different Japanese adult dietary patterns: A nationwide study. Nutr. J. 2015, 14, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsukada, N.; Urakawa, Y.; Yokoyama, J.; Tanaka, H.; Igarashi, M. Dietary iodine intake in Japanese university students: Data analysis based on the Standard Tables of Food Consumption in Japan (2010 version). J. Jpn. Soc. Clin. Nutr. 2013, 35, 30–38. [Google Scholar]
- Fuse, Y.; Ohashi, T.; Yamaguchi, S.; Yamaguchi, M.; Shishiba, Y.; Irie, M. Iodine status of pregnant and postpartum Japanese women: Effect of iodine intake on maternal and neonatal thyroid function in an iodine-sufficient area. J. Clin. Endocrinol. Metab. 2011, 96, 3846–3854. [Google Scholar] [CrossRef] [Green Version]
- Kawamoto, T.; Nitta, H.; Murata, K.; Toda, E.; Tsukamoto, N.; Hasegawa, M.; Yamagata, Z.; Kayama, F.; Kishi, R.; Ohya, Y.; et al. Rationale and study design of the Japan environment and children’s study (JECS). BMC Public Health 2014, 14, 25. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, Y.; Takachi, R.; Ishihara, J.; Ishii, Y.; Sasazuki, S.; Sawada, N.; Shinozawa, Y.; Tanaka, J.; Kato, E.; Kitamura, K.; et al. Validity of Short and Long Self-Administered Food Frequency Questionnaires in Ranking Dietary Intake in Middle-Aged and Elderly Japanese in the Japan Public Health Center-Based Prospective Study for the Next Generation (JPHC-NEXT) Protocol Area. J. Epidemiol. 2016, 26, 420–432. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, K.; Jwa, S.-C.; Kobayashi, M.; Morisaki, N.; Sago, H.; Fujiwara, T. Validation of a food frequency questionnaire for Japanese pregnant women with and without nausea and vomiting in early pregnancy. J. Epidemiol. 2017, 27, 201–208. [Google Scholar] [CrossRef]
- Abel, M.H.; Caspersen, I.H.; Meltzer, H.M.; Haugen, M.; Brandlistuen, R.E.; Aase, H.; Alexander, J.; Torheim, L.E.; Brantsæter, A.-L. Suboptimal Maternal Iodine Intake Is Associated with Impaired Child Neurodevelopment at 3 Years of Age in the Norwegian Mother and Child Cohort Study. J. Nutr. 2017, 147, 1314–1324. [Google Scholar] [CrossRef] [Green Version]
- Mezawa, H.; Aoki, S.; Nakayama, S.F.; Nitta, H.; Ikeda, N.; Kato, K.; Tamai, S.; Takekoh, M.; Sanefuji, M.; Ohga, S.; et al. Psychometric profile of the Ages and Stages Questionnaires, Japanese translation. Pediatrics Int. 2019, 61, 1086–1095. [Google Scholar] [CrossRef]
- Squires, J.; Twombly, E.; Bricker, D.; Potter, L. ASQ-3 User’s Guide; Paul H. Brookes Publishing Co.: Baltimore, MD, USA, 2009. [Google Scholar]
- Zhou, S.J.; Condo, D.; Ryan, P.; Skeaff, S.A.; Howell, S.; Anderson, P.J.; McPhee, A.J.; Makrides, M. Association between maternal iodine intake in pregnancy and childhood neurodevelopment at age 18 months. Am. J. Epidemiol. 2019, 188, 332–338. [Google Scholar] [CrossRef]
- Li, M.; Francis, E.; Hinkle, S.N.; Ajjarapu, A.S.; Zhang, C. Preconception and prenatal nutrition and neurodevelopmental disorders: A systematic review and meta-analysis. Nutrients 2019, 11, 1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furukawa, T.A.; Kawakami, N.; Saitoh, M.; Ono, Y.; Nakane, Y.; Nakamura, Y.; Tachimori, H.; Iwata, N.; Uda, H.; Nakane, H.; et al. The performance of the Japanese version of the K6 and K10 in the World Mental Health Survey Japan. Int. J. Methods Psychiatr. Res. 2008, 17, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Abel, M.H.; Brandlistuen, R.E.; Caspersen, I.H.; Aase, H.; Torheim, L.E.; Meltzer, H.M.; Brantsaeter, A.L. Language delay and poorer school performance in children of mothers with inadequate iodine intake in pregnancy: Results from follow-up at 8 years in the Norwegian Mother and Child Cohort Study. Eur. J. Nutr. 2019, 58, 3047–3058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Mil, N.H.; Tiemeier, H.; Bongers-Schokking, J.J.; Ghassabian, A.; Hofman, A.; Hooijkaas, H.; Jaddoe, V.W.V.; De Muinck Keizer-Schrama, S.M.; Steegers, E.A.P.; Visser, T.J.; et al. Low Urinary Iodine Excretion during Early Pregnancy Is Associated with Alterations in Executive Functioning in Children. J. Nutr. 2012, 142, 2167–2174. [Google Scholar] [CrossRef] [Green Version]
- Bath, S.C.; Steer, C.D.; Golding, J.; Emmett, P.; Rayman, M.P. Effect of inadequate iodine status in UK pregnant women on cognitive outcomes in their children: Results from the Avon Longitudinal Study of Parents and Children (ALSPAC). Lancet 2013, 382, 331–337. [Google Scholar] [CrossRef]
- Hynes, K.; Otahal, P.; Burgess, J.; Oddy, W.; Hay, I. Reduced Educational Outcomes Persist into Adolescence Following Mild Iodine Deficiency in Utero, Despite Adequacy in Childhood: 15-Year Follow-Up of the Gestational Iodine Cohort Investigating Auditory Processing Speed and Working Memory. Nutrients 2017, 9, 1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markhus, M.; Dahl, L.; Moe, V.; Abel, M.; Brantsæter, A.; Øyen, J.; Meltzer, H.; Stormark, K.; Graff, I.; Smith, L.; et al. Maternal Iodine Status is Associated with Offspring Language Skills in Infancy and Toddlerhood. Nutrients 2018, 10, 1270. [Google Scholar] [CrossRef] [Green Version]
- Murcia, M.; Espada, M.; Julvez, J.; Llop, S.; Lopez-Espinosa, M.J.; Vioque, J.; Basterrechea, M.; Riano, I.; Gonzalez, L.; Alvarez-Pedrerol, M.; et al. Iodine intake from supplements and diet during pregnancy and child cognitive and motor development: The INMA Mother and Child Cohort Study. J. Epidemiol. Community Health 2018, 72, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Hurrell, R. Bioavailability of iodine. Eur. J. Clin. Nutr. 1997, 51, S9. [Google Scholar]
- Zimmermann, M.B. Iodine and iodine deficiency disorders. In Present Knowledge in Nutrition; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Domínguez-González, M.R.; Chiocchetti, G.M.; Herbello-Hermelo, P.; Vélez, D.; Devesa, V.; Bermejo-Barrera, P. Evaluation of Iodine Bioavailability in Seaweed Usingin VitroMethods. J. Agric. Food Chem. 2017, 65, 8435–8442. [Google Scholar] [CrossRef]
- Combet, E.; Ma, Z.F.; Cousins, F.; Thompson, B.; Lean, M.E.J. Low-level seaweed supplementation improves iodine status in iodine-insufficient women. Br. J. Nutr. 2014, 112, 753–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doerge, D.R.; Chang, H.C. Inactivation of thyroid peroxidase by soy isoflavones, in vitro and in vivo. J. Chromatogr. B 2002, 777, 269–279. [Google Scholar] [CrossRef]
- Doerge, D.R.; Sheehan, D.M. Goitrogenic and estrogenic activity of soy isoflavones. Environ. Health Perspect. 2002, 110, 349–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Institutes of Health. Iodine: Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/Iodine-HealthProfessional/ (accessed on 29 May 2021).
- Tsugane, S.; Sawada, N. The JPHC Study: Design and Some Findings on the Typical Japanese Diet. Jpn. J. Clin. Oncol. 2014, 44, 777–782. [Google Scholar] [CrossRef]
- Ministry of Education, Culture, Sports, Science and Technology. Standard Tables of Food Composition in Japan (2010); All Japan Official Gazette Inc.: Tokyo, Japan, 2010.
- Murakami, K.; Livingstone, M.; Sasaki, S. Thirteen-Year Trends in Dietary Patterns among Japanese Adults in the National Health and Nutrition Survey 2003–2015: Continuous Westernization of the Japanese Diet. Nutrients 2018, 10, 994. [Google Scholar] [CrossRef] [Green Version]
- WHO. Salt Reduction and Iodine Fortification Strategies in Public Health: Report of a Joint Technical Meeting Convened by the World Health Organization and The George Institute for Global Health in Collaboration with the International Council for the Control of Iodine Deficiency Disorders Global Network, Sydney, Australia, March 2013. Available online: https://www.who.int/publications/i/item/978924150669 (accessed on 29 May 2021).
- Nishiyama, S.; Mikeda, T.; Okada, T.; Nakamura, K.; Kotani, T.; Hishinuma, A. Transient hypothyroidism or persistent hyperthyrotropinemia in neonates born to mothers with excessive iodine intake. Thyroid 2004, 14, 1077–1083. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Han, C.; Li, C.; Mao, J.; Wang, W.; Xie, X.; Li, C.; Xu, B.; Meng, T.; Du, J.; et al. Optimal and Safe Upper Limits of Iodine Intake for Early Pregnancy in Iodine-Sufficient Regions: A Cross-Sectional Study of 7190 Pregnant Women in China. J. Clin. Endocrinol. Metab. 2015, 100, 1630–1638. [Google Scholar] [CrossRef] [Green Version]
- Korevaar, T.I.; Muetzel, R.; Medici, M.; Chaker, L.; Jaddoe, V.W.; de Rijke, Y.B.; Steegers, E.A.; Visser, T.J.; White, T.; Tiemeier, H. Association of maternal thyroid function during early pregnancy with offspring IQ and brain morphology in childhood: A population-based prospective cohort study. Lancet Diabetes Endocrinol. 2016, 4, 35–43. [Google Scholar] [CrossRef]
- Monaghan, A.M.; Mulhern, M.S.; Mc Sorley, E.M.; Strain, J.J.; Winter, T.; Van Wijngaarden, E.; Myers, G.J.; Davidson, P.W.; Shamlaye, C.; Gedeon, J.; et al. Associations between maternal thyroid function in pregnancy and child neurodevelopmental outcomes at 20 months in the Seychelles Child Development Study, Nutrition Cohort 2 (SCDS NC2). J. Nutr. Sci. 2021, 10, e71. [Google Scholar] [CrossRef]
- Gao, Y.; Sheng, C.; Xie, R.-H.; Sun, W.; Asztalos, E.; Moddemann, D.; Zwaigenbaum, L.; Walker, M.; Wen, S.W. New Perspective on Impact of Folic Acid Supplementation during Pregnancy on Neurodevelopment/Autism in the Offspring Children—A Systematic Review. PLoS ONE 2016, 11, e0165626. [Google Scholar] [CrossRef] [Green Version]
- Hamazaki, K.; Tsuchida, A.; Takamori, A.; Tanaka, T.; Ito, M.; Inadera, H.; Japan, E.; Japan Environment and Children’s Study (JECS) Group. Dietary intake of fish and omega-3 polyunsaturated fatty acids and physician-diagnosed allergy in Japanese population: The Japan Environment and Children’s Study. Nutrition 2019, 61, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Martins, B.P.; Bandarra, N.M.; Figueiredo-Braga, M. The role of marine omega-3 in human neurodevelopment, including Autism Spectrum Disorders and Attention-Deficit/Hyperactivity Disorder—A review. Crit. Rev. Food Sci. Nutr. 2020, 60, 1431–1446. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Albornoz, M.C.; García-Guáqueta, D.P.; Velez-Van-Meerbeke, A.; Talero-Gutiérrez, C. Maternal Nutrition and Neurodevelopment: A Scoping Review. Nutrients 2021, 13, 3530. [Google Scholar] [CrossRef] [PubMed]
Quintile for Iodine Intake | |||||
---|---|---|---|---|---|
1 (≤40 µg/Day) | 2 (41–123 µg/Day) | 3 (124–175 µg/Day) | 4 (176–276 µg/Day) | 5 (≥277 µg/Day) | |
n = 75,249 | 15,349 | 14,772 | 15,029 | 15,064 | 15,035 |
Iodine intake, µg/day (median) | 22.5 | 71.0 | 155 | 209 | 465.5 |
Maternal age, years (mean (SD)) | 29.9 (5.2) | 31.1 (5.0) | 31.4 (4.8) | 31.9 (4.6) | 32.0 (4.7) |
BMI (mean (SD)) | 21.4 (3.5) | 21.1 (3.2) | 21.1 (3.2) | 21.0 (3.0) | 21.1 (3.1) |
Parity (%) | |||||
0 | 7167 (48) | 6324 (44) | 5977 (40.8) | 5502 (37.3) | 5661 (38.5) |
1 | 5242 (35.1) | 5395 (37.5) | 5780 (39.4) | 6190 (42.0) | 5887 (40.1) |
≥2 | 2536 (17) | 2668 (18.5) | 2895 (19.8) | 3060 (20.7) | 3138 (21.4) |
Marital status unmarried/married (%) | 988/14,223 (6.5/93.5) | 621/14,033 (4.2/95.8) | 507/14,440 (3.4/96.6) | 395/14,561 (2.6/97.4) | 498/14,432 (3.3/96.7) |
Education status of mother (%) | |||||
<10 years | 1029 (6.8) | 638 (4.3) | 553 (3.7) | 407 (2.7) | 441 (2.9) |
10–12 years | 5818 (38.3) | 4647 (31.6) | 4492 (30.0) | 3951 (26.3) | 3957 (26.4) |
13–16 years | 8176 (53.8) | 9206 (62.5) | 9709 (64.9) | 10,422 (69.3) | 10,288 (68.6) |
≥17 years | 167 (1.1) | 236 (1.6) | 212 (1.4) | 254 (1.7) | 305 (2.0) |
Household income | |||||
<2,000,000 yen | 1154 (8.2) | 762 (5.5) | 601 (4.3) | 489 (3.4) | 592 (4.2) |
2,000,000–4,000,000 | 5694 (40.7) | 4855 (35.2) | 4832 (34.3) | 4437 (31.1) | 4263 (30.2) |
4,000,000–6,000,000 | 4227 (30.2) | 4660 (33.8) | 4749 (33.7) | 5015 (35.1) | 4885 (34.6) |
6,000,000–8,000,000 | 1847 (13.2) | 2093 (15.2) | 2328 (16.5) | 2521 (17.7) | 2567 (18.2) |
8,000,000–10,000,000 | 677 (4.8) | 871 (6.3) | 987 (7.0) | 1090 (7.6) | 1052 (7.5) |
≥10,000,000 | 399 (2.9) | 543 (3.9) | 597 (4.2) | 720 (5.0) | 758 (5.4) |
Maternal smoking (%) | |||||
never smoked | 8211 (54.0) | 8644 (58.9) | 9067 (60.7) | 9391 (62.7) | 9143 (61.2) |
quit before pregnancy | 3450 (22.7) | 3447 (23.5) | 3579 (24.0) | 3644 (24.3) | 3750 (25.1) |
quit during pregnancy | 2696 (17.7) | 1950 (13.3) | 1799 (12.1) | 1517 (10.1) | 1616 (10.8) |
smoking during pregnancy | 845 (5.6) | 626 (4.3) | 483 (3.2) | 421 (2.8) | 437 (2.9) |
Maternal drinking (%) | |||||
never drank | 5198 (34.3) | 5043 (34.4) | 5045 (33.8) | 4999 (33.4) | 4871 (32.6) |
quit before pregnancy | 2456 (16.2) | 2425 (16.5) | 2504 (16.8) | 2548 (17.0) | 2727 (18.2) |
quit during pregnancy | 7099 (46.8) | 6782 (46.2) | 7040 (47.1) | 6987 (46.6) | 6925 (46.3) |
drinking during pregnancy | 411 (2.7) | 418 (2.8) | 354 (2.4) | 455 (3.0) | 437 (2.9) |
Hypertension no/yes (%) | 14,926/423 (97.2/2.8) | 14,389/383 (97.4/2.6) | 14,642/387 (97.4/2.6) | 14,719/345 (97.7/2.3) | 14,624/411 (97.3/2.7) |
Diabetes or gestational diabetes mellitus no/yes (%) | 14,917/432 (97.2/2.8) | 14,360/412 (97.2/2.8) | 14,574/455 (97.0/3.0) | 14,627/437 (97.1/2.9) | 14,500/535 (96.4/3.6) |
K6 (mean (SD)) | 2.8 (3.8) | 2.9 (3.7) | 2.6 (3.4) | 2.7 (3.4) | 2.8 (3.6) |
Child’s sex: boys/girls (%) | 7821/7528 (51.0/49.0) | 7511/7261 (50.8/49.2) | 7663/7366 (51.0/49.0) | 7698/7366 (51.1/48.9) | 7630/7405 (50.7/49.3) |
Birth weight, g (mean (SD)) | 3053 (367) | 3061 (366) | 3062 (367) | 3071 (367) | 3064 (365) |
Birth length, cm (mean (SD)) | 49.1 (1.9) | 49.1 (2.0) | 49.1 (1.9) | 49.2 (1.9) | 49.1 (1.9) |
Birth season spring-summer/autumn-winter (%) | 7937/7412 (51.7/48.3) | 7817/6955 (52.9/47.1) | 7775/7254 (51.7/48.3) | 8002/7062 (53.1/46.9) | 8116/6919 (54.0/46.0) |
Quintile for Iodine Intake | |||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||||
OR | 95% CI | OR | 95% CI | OR | 95% CI | OR | OR | 95% CI | |
Communication | 0.68 | 0.35, 1.33 | 0.76 | 0.41, 1.40 | 0.76 | 0.41, 1.41 | 1 | 0.79 | 0.44, 1.44 |
Gross Motor | 0.94 | 0.84, 1.04 | 0.98 | 0.89, 1.09 | 0.98 | 0.89, 1.08 | 1 | 0.98 | 0.89, 1.08 |
Fine Motor | 1.19 | 1.07, 1.32 | 1.07 | 0.97, 1.18 | 1.07 | 0.97, 1.18 | 1 | 0.92 | 0.83, 1.02 |
Problem-Solving | 1.24 | 1.11, 1.38 | 1.18 | 1.07, 1.31 | 1.07 | 0.96, 1.19 | 1 | 0.89 | 0.80, 0.99 |
Personal–Social | 0.82 | 0.66, 1.02 | 0.80 | 0.65, 0.99 | 0.88 | 0.71, 1.07 | 1 | 0.87 | 0.71, 1.07 |
Quintile for Iodine Intake | |||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||||
OR | 95% CI | OR | 95% CI | OR | 95% CI | OR | OR | 95% CI | |
Communication | 1.18 | 1.03, 1.34 | 1.17 | 1.03, 1.32 | 0.99 | 0.87, 1.13 | 1 | 0.96 | 0.84, 1.09 |
Gross Motor | 1.07 | 0.95, 1.22 | 1.13 | 1.01, 1.27 | 0.97 | 0.86, 1.10 | 1 | 0.92 | 0.81, 1.04 |
Fine Motor | 1.19 | 1.08, 1.31 | 1.14 | 1.04, 1.26 | 1.01 | 0.91, 1.11 | 1 | 0.88 | 0.80, 0.97 |
Problem-Solving | 1.10 | 1.00, 1.22 | 1.12 | 1.02, 1.23 | 0.92 | 0.83, 1.01 | 1 | 0.88 | 0.79, 0.96 |
Personal–Social | 1.14 | 0.99, 1.32 | 1.16 | 1.01, 1.34 | 0.93 | 0.80, 1.08 | 1 | 0.98 | 0.85, 1.13 |
Quintile for Kelp and Seaweed Intake | |||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||||
OR | OR | 95% CI | OR | 95% CI | OR | 95% CI | OR | 95% CI | |
Communication | 1 | 1.19 | 0.65, 2.16 | 1.07 | 0.61, 1.89 | 1.01 | 0.23, 4.34 | 0.89 | 0.45, 1.76 |
Gross Motor | 1 | 1.00 | 0.91, 1.10 | 0.96 | 0.88, 1.04 | 1.11 | 0.89, 1.38 | 0.93 | 0.84, 1.03 |
Fine Motor | 1 | 0.87 | 0.79, 0.95 | 0.86 | 0.79, 0.93 | 0.93 | 0.74, 1.17 | 0.84 | 0.76, 0.93 |
Problem-Solving | 1 | 0.81 | 0.74, 0.89 | 0.83 | 0.76, 0.91 | 0.91 | 0.72, 1.15 | 0.79 | 0.71, 0.88 |
Personal–Social | 1 | 1.01 | 0.83, 1.23 | 1.10 | 0.92, 1.32 | 0.83 | 0.48, 1.41 | 0.92 | 0.74, 1.15 |
Quintile for Kelp and Seaweed Intake | |||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||||
OR | OR | 95%CI | OR | 95%CI | OR | 95%CI | OR | 95%CI | |
Communication | 1 | 0.88 | 0.79, 0.99 | 0.87 | 0.78, 0.97 | 0.73 | 0.53, 1.01 | 0.86 | 0.76, 0.98 |
Gross Motor | 1 | 0.90 | 0.80, 1.00 | 0.91 | 0.82, 1.01 | 0.98 | 0.75, 1.28 | 0.88 | 0.78, 0.99 |
Fine Motor | 1 | 0.86 | 0.79, 0.94 | 0.78 | 0.71, 0.84 | 0.79 | 0.63, 0.99 | 0.74 | 0.67, 0.82 |
Problem-Solving | 1 | 0.93 | 0.85, 1.01 | 0.86 | 0.79, 0.93 | 0.77 | 0.61, 0.97 | 0.84 | 0.76, 0.92 |
Personal–Social | 1 | 0.91 | 0.80, 1.04 | 0.88 | 0.78, 1.00 | 0.97 | 0.71, 1.33 | 0.81 | 0.70, 0.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hisada, A.; Takatani, R.; Yamamoto, M.; Nakaoka, H.; Sakurai, K.; Mori, C.; the Japan Environment and Children’s Study (JECS) Group. Maternal Iodine Intake and Neurodevelopment of Offspring: The Japan Environment and Children’s Study. Nutrients 2022, 14, 1826. https://doi.org/10.3390/nu14091826
Hisada A, Takatani R, Yamamoto M, Nakaoka H, Sakurai K, Mori C, the Japan Environment and Children’s Study (JECS) Group. Maternal Iodine Intake and Neurodevelopment of Offspring: The Japan Environment and Children’s Study. Nutrients. 2022; 14(9):1826. https://doi.org/10.3390/nu14091826
Chicago/Turabian StyleHisada, Aya, Rieko Takatani, Midori Yamamoto, Hiroko Nakaoka, Kenichi Sakurai, Chisato Mori, and the Japan Environment and Children’s Study (JECS) Group. 2022. "Maternal Iodine Intake and Neurodevelopment of Offspring: The Japan Environment and Children’s Study" Nutrients 14, no. 9: 1826. https://doi.org/10.3390/nu14091826
APA StyleHisada, A., Takatani, R., Yamamoto, M., Nakaoka, H., Sakurai, K., Mori, C., & the Japan Environment and Children’s Study (JECS) Group. (2022). Maternal Iodine Intake and Neurodevelopment of Offspring: The Japan Environment and Children’s Study. Nutrients, 14(9), 1826. https://doi.org/10.3390/nu14091826