Prediction of the Uric Acid Component in Nephrolithiasis Using Simple Clinical Information about Metabolic Disorder and Obesity: A Machine Learning-Based Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection and Description of Participants
2.2. Data Description and Processing
- ■
- Response variable
- ■
- Socio-demographic characteristics
- ■
- Health information
- ■
- Clinical information
2.3. Model Development, Fitting, and Evaluation
3. Results
3.1. Characteristics of Study Samples
3.2. Model Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raheem, O.A.; Khandwala, Y.S.; Sur, R.L.; Ghani, K.R.; Denstedt, J.D. Burden of Urolithiasis: Trends in Prevalence, Treatments, and Costs. Eur. Urol. Focus 2017, 3, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Roberson, D.; Sperling, C.; Shah, A.; Ziemba, J. Economic Considerations in the Management of Nephrolithiasis. Curr. Urol. Rep. 2020, 21, 18. [Google Scholar] [CrossRef] [PubMed]
- Fisang, C.; Anding, R.; Muller, S.C.; Latz, S.; Laube, N. Urolithiasis—An interdisciplinary diagnostic, therapeutic and secondary preventive challenge. Dtsch. Arztebl. Int. 2015, 112, 83–91. [Google Scholar] [PubMed] [Green Version]
- Ma, Q.; Fang, L.; Su, R.; Ma, L.; Xie, G.; Cheng, Y. Uric acid stones, clinical manifestations and therapeutic considerations. Postgrad Med. J. 2018, 94, 458–462. [Google Scholar] [CrossRef]
- Tran, T.V.M.; Maalouf, N.M. Uric acid stone disease: Lessons from recent human physiologic studies. Curr. Opin. Nephrol. Hypertens. 2020, 29, 407–413. [Google Scholar] [CrossRef]
- Chen, H.W.; Chen, Y.C.; Yang, F.M.; Wu, W.J.; Li, C.C.; Chang, Y.Y.; Chou, Y.H. Mediators of the Effects of Gender on Uric Acid Nephrolithiasis: A Novel Application of Structural Equation Modeling. Sci. Rep. 2018, 8, 6077. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C.; Chen, H.W.; Wu, W.J.; Chou, Y.H. Re: Can we Predict the Outcome of Oral Dissolution Therapy for Radiolucent Renal Calculi? A Prospective Study. J. Urol. 2019, 202, 825–826. [Google Scholar] [CrossRef]
- Siener, R. Nutrition and Kidney Stone Disease. Nutrients 2021, 13, 1917. [Google Scholar] [CrossRef]
- Barghouthy, Y.; Corrales, M.; Somani, B. The Relationship between Modern Fad Diets and Kidney Stone Disease: A Systematic Review of Literature. Nutrients 2021, 13, 4270. [Google Scholar] [CrossRef]
- Tsaturyan, A.; Bokova, E.; Bosshard, P.; Bonny, O.; Fuster, D.G.; Roth, B. Oral chemolysis is an effective, non-invasive therapy for urinary stones suspected of uric acid content. Urolithiasis 2020, 48, 501–507. [Google Scholar] [CrossRef]
- Hernandez, Y.; Costa-Bauza, A.; Calvo, P.; Benejam, J.; Sanchis, P.; Grases, F. Comparison of Two Dietary Supplements for Treatment of Uric Acid Renal Lithiasis: Citrate vs. Citrate + Theobromine. Nutrients 2020, 12, 2012. [Google Scholar] [CrossRef] [PubMed]
- McGrath, T.A.; Frank, R.A.; Schieda, N.; Blew, B.; Salameh, J.P.; Bossuyt, P.M.M.; McInnes, M.D.F. Diagnostic accuracy of dual-energy computed tomography (DECT) to differentiate uric acid from non-uric acid calculi: Systematic review and meta-analysis. Eur. Radiol. 2020, 30, 2791–2801. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, V.; De, S.; Shkumat, N.; Marchini, G.; Monga, M. Accurately Diagnosing Uric Acid Stones from Conventional Computerized Tomography Imaging: Development and Preliminary Assessment of a Pixel Mapping Software. J. Urol. 2018, 199, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, F.; Bonatti, M.; Zamboni, G.A.; Avesani, G.; Oberhofer, N.; Bonelli, M.; Pycha, A.; Mucelli, R.P.; Bonatti, G. Uric acid versus non-uric acid renal stones: In vivo differentiation with spectral CT. Clin. Radiol. 2017, 72, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I., 3rd; Kusek, J.W.; Egger, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016; p. 775. [Google Scholar]
- Ruopp, M.D.; Perkins, N.J.; Whitcomb, B.W.; Schisterman, E.F. Youden Index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom. J. 2008, 50, 419–430. [Google Scholar] [CrossRef] [Green Version]
- Ascenti, G.; Siragusa, C.; Racchiusa, S.; Ielo, I.; Privitera, G.; Midili, F.; Mazziotti, S. Stone-targeted dual-energy CT: A new diagnostic approach to urinary calculosis. AJR Am. J. Roentgenol. 2010, 195, 953–958. [Google Scholar] [CrossRef]
- Zhang, G.M.; Sun, H.; Xue, H.D.; Xiao, H.; Zhang, X.B.; Jin, Z.Y. Prospective prediction of the major component of urinary stone composition with dual-source dual-energy CT in vivo. Clin. Radiol. 2016, 71, 1178–1183. [Google Scholar] [CrossRef]
- Hamm, M.; Knopfle, E.; Wartenberg, S.; Wawroschek, F.; Weckermann, D.; Harzmann, R. Low dose unenhanced helical computerized tomography for the evaluation of acute flank pain. J. Urol. 2002, 167, 1687–1691. [Google Scholar] [CrossRef]
- Jendeberg, J.; Thunberg, P.; Popiolek, M.; Liden, M. Single-energy CT predicts uric acid stones with accuracy comparable to dual-energy CT-prospective validation of a quantitative method. Eur. Radiol. 2021, 31, 5980–5989. [Google Scholar] [CrossRef]
- Pearl, J.; Glymour, M.; Jewell, N.P. Causal Inference in Statistics: A Primer; Wiley: Chichester, UK, 2016; p. 136. [Google Scholar]
- Kazemi, Y.; Mirroshandel, S.A. A novel method for predicting kidney stone type using ensemble learning. Artif. Intell. Med. 2018, 84, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Parmar, M.S. Kidney stones. BMJ 2004, 328, 1420–1424. [Google Scholar] [CrossRef] [PubMed]
- Farell, G.; Huang, E.; Kim, S.Y.; Horstkorte, R.; Lieske, J.C. Modulation of proliferating renal epithelial cell affinity for calcium oxalate monohydrate crystals. J. Am. Soc. Nephrol. 2004, 15, 3052–3062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratkalkar, V.N.; Kleinman, J.G. Mechanisms of Stone Formation. Clin. Rev. Bone Miner Metab. 2011, 9, 187–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorensen, C.M.; Chandhoke, P.S. Hyperuricosuric calcium nephrolithiasis. Endocrinol. Metab. Clin. N. Am. 2002, 31, 915–925. [Google Scholar] [CrossRef]
Training Set (60%) | Validation Set (40%) | |||||||
---|---|---|---|---|---|---|---|---|
Pure Uric Acid (n = 87, 13.22%) | Non-Uric Acid (n = 571, 86.78%) | Total Patients (n = 658) | p-Value | Pure Uric Acid (n = 59, 13.41%) | Non-Uric Acid (n = 381, 86.59%) | Total Patients (n = 440) | p-Value | |
Gender | 0.095 | 0.258 | ||||||
male | 66 (75.86%) | 382 (66.90%) | 448 (68.09%) | 44 (74.58%) | 256 (67.19%) | 300 (68.18%) | ||
female | 21 (24.14%) | 189 (33.10%) | 210 (31.91%) | 15 (25.42%) | 125 (32.81%) | 140 (31.82%) | ||
Age | <0.001 | <0.001 | ||||||
≤45 | 8 (9.20%) | 184 (32.22%) | 192 (29.18%) | 8 (13.56%) | 99 (25.98%) | 107 (24.32%) | ||
45~65 | 49 (56.32%) | 308 (53.94%) | 357 (54.25%) | 32 (54.24%) | 223 (58.53%) | 255 (57.95%) | ||
>65 | 30 (34.48%) | 79 (13.84%) | 109 (16.57%) | 19 (32.20%) | 59 (15.49%) | 78 (17.73%) | ||
DM | <0.001 | 0.003 | ||||||
with | 26 (29.89%) | 74 (12.96%) | 100 (15.20%) | 16 (27.12%) | 48 (12.60%) | 64 (14.55%) | ||
without | 61 (70.11%) | 497 (87.04%) | 558 (84.80%) | 43 (72.88%) | 333 (87.40%) | 376 (85.45%) | ||
Gout | 0.046 | <0.001 | ||||||
with | 5 (5.75%) | 12 (2.10%) | 17 (2.58%) | 9 (15.25%) | 9 (2.36%) | 18 (4.09%) | ||
without | 82 (94.25%) | 559 (97.90%) | 641 (97.42%) | 50 (84.75%) | 372 (97.64%) | 422 (95.91%) | ||
Bacteriuria | 0.033 | 0.155 | ||||||
with | 7 (8.05%) | 97 (16.99%) | 104 (15.81%) | 6 (10.17%) | 67 (17.59%) | 73 (16.59%) | ||
without | 80 (91.95%) | 474 (83.01%) | 554 (84.19 %) | 53 (89.83%) | 314 (82.41%) | 367 (83.41%) |
Pure Uric Acid (15.76%) Mean (SD) 95% CI | Non-Uric Acid (84.24%) Mean (SD) 95% CI | p-Value | |
---|---|---|---|
Age | 60.44 (12.52) (58.41–62.47) | 52.75 (12.69) (51.94–53.55) | <0.001 |
BMI | 25.63 (3.80) (25.02–26.25) | 25.38 (3.53) (25.16–25.61) | 0.4297 |
Urine pH | 5.51 (0.54) (5.43–5.60) | 6.09 (0.77) (6.04–6.14) | <0.001 |
eGFR | 55.13 (29.45) (50.35–59.90) | 80.14 (29.37) (78.27–82.01) | <0.001 |
Pure Uric Acid (n = 3, 4.23%) | Non-Uric Acid (n = 68, 95.77%) | Total Patients (n = 71) | p-Value | |
---|---|---|---|---|
Gender | 0.170 | |||
male | 3 (100.00%) | 41 (60.29%) | 44 (61.97%) | |
female | 0 (0.00%) | 27 (39.71%) | 27 (38.03%) | |
Age | 0.812 | |||
≤45 | 1 (33.33%) | 15 (22.06%) | 16 (22.54%) | |
45~65 | 1 (33.33%) | 37 (54.41%) | 38 (53.52%) | |
>65 | 1 (33.33%) | 16 (23.53%) | 17 (23.94%) | |
DM | 0.095 | |||
with | 2 (66.67%) | 16 (23.53%) | 18 (25.35%) | |
without | 1 (33.33%) | 52 (76.47%) | 53 (74.65%) | |
Gout | 0.034 | |||
with | 1 (33.33%) | 3 (4.41%) | 4 (5.63%) | |
without | 2 (66.67%) | 65 (95.59%) | 67 (94.37%) | |
Bacteriuria | 0.632 | |||
with | 0 (0.00%) | 5 (7.35%) | 5 (7.04%) | |
without | 3 (100.00%) | 63 (92.65%) | 66 (92.96%) |
Pure Uric Acid (4.23%) Mean (SD), 95% CI | Non-Uric Acid (95.77%) Mean (SD) 95% CI | p-Value | |
---|---|---|---|
Age | 56.67 (14.01) (40.72–72.52) | 54.72 (13.78) (51.44–57.99) | 0.812 |
BMI | 28.77 (6.11) (21.86–35.68) | 26.80 (4.75) (25.67–27.93) | 0.489 |
Urine pH | 5.0 (0) (5.0–5.0) | 6.24 (0.88) (6.03–6.44) | 0.019 |
eGFR | 65.20 (18.55) (44.21–86.19) | 76.91 (32.07) (69.28–84.53) | 0.534 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.-W.; Chen, Y.-C.; Lee, J.-T.; Yang, F.M.; Kao, C.-Y.; Chou, Y.-H.; Chu, T.-Y.; Juan, Y.-S.; Wu, W.-J. Prediction of the Uric Acid Component in Nephrolithiasis Using Simple Clinical Information about Metabolic Disorder and Obesity: A Machine Learning-Based Model. Nutrients 2022, 14, 1829. https://doi.org/10.3390/nu14091829
Chen H-W, Chen Y-C, Lee J-T, Yang FM, Kao C-Y, Chou Y-H, Chu T-Y, Juan Y-S, Wu W-J. Prediction of the Uric Acid Component in Nephrolithiasis Using Simple Clinical Information about Metabolic Disorder and Obesity: A Machine Learning-Based Model. Nutrients. 2022; 14(9):1829. https://doi.org/10.3390/nu14091829
Chicago/Turabian StyleChen, Hao-Wei, Yu-Chen Chen, Jung-Ting Lee, Frances M. Yang, Chung-Yao Kao, Yii-Her Chou, Ting-Yin Chu, Yung-Shun Juan, and Wen-Jeng Wu. 2022. "Prediction of the Uric Acid Component in Nephrolithiasis Using Simple Clinical Information about Metabolic Disorder and Obesity: A Machine Learning-Based Model" Nutrients 14, no. 9: 1829. https://doi.org/10.3390/nu14091829
APA StyleChen, H. -W., Chen, Y. -C., Lee, J. -T., Yang, F. M., Kao, C. -Y., Chou, Y. -H., Chu, T. -Y., Juan, Y. -S., & Wu, W. -J. (2022). Prediction of the Uric Acid Component in Nephrolithiasis Using Simple Clinical Information about Metabolic Disorder and Obesity: A Machine Learning-Based Model. Nutrients, 14(9), 1829. https://doi.org/10.3390/nu14091829