The Importance of Neonatal Screening for Galactosemia
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Incidence
3.2. Clinical Manifestations and Diagnosis
3.3. Treatment and Prognosis
3.4. Neonatal Screening
4. Discussions
5. Future Recommendations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Cerone, J.; Rios, A. Galactosemia. Pediatr. Rev. 2019, 40, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Coelho, A.I.; Rubio-Gozalbo, M.E.; Vicente, J.B.; Rivera, I. Sweet and sour: An update on classic galactosemia. J. Inherit. Metab. Dis. 2017, 40, 325–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogoenmark, T.; Somran, J.; Phuaksaman, C.; Kunrat, J. Classical galactosemia in a Thai infant: Case report and review of the literature. Asian Biomed. 2015, 9, 95–100. [Google Scholar]
- Welling, L.; Bernstein, L.E.; Berry, G.T.; Burlina, A.B.; Eyskens, F.; Gautschi, M.; Grünewald, S.; Gubbels, C.S.; Knerr, I.; Labrune, P.; et al. International clinical guideline for the management of classical galactosemia: Diagnosis, treatment, and follow-up. J. Inherit. Metab. Dis. 2017, 40, 171–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timson, D.J. The molecular basis of galactosemia—Past, present and future. Gene 2016, 589, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Wada, Y.; Kikuchi, A.; Arai-Ichinoi, N.; Sakamoto, O.; Takezawa, Y.; Iwasawa, S.; Niihori, T.; Nyuzuki, H.; Nakajima, Y.; Ogawa, E.; et al. Biallelic GALM pathogenic variants cause a novel type of galactosemia. Genet. Med. 2019, 21, 1286–1294. [Google Scholar] [CrossRef]
- Viggiano, E.; Marabotti, A.; Politano, L.; Burlina, A. Galactose-1-phosphate uridyltransferase deficiency: A literature review of the putative mechanisms of short and long-term complications and allelic variants. Clin. Genet. 2018, 93, 206–215. [Google Scholar] [CrossRef]
- Berry, G.T. Classic galactosemia and clinical variant galactosemia. In GeneReviews; Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993; pp. 1993–2022. Available online: https://insp.gov.ro/sites/cnepss/resurse-imc-alimentatia-la-san (accessed on 2 November 2022).
- Yazici, H.; Canda, E.; Altınok, Y.A.; Ucar, S.K.; Coker, M. Two siblings with galactose mutarotase deficiency: Clinical differences. JIMD Rep. 2021, 63, 25–28. [Google Scholar] [CrossRef]
- Sneha, P.; Ebrahimi, E.A.; Ghazala, S.A.; Thirumal Kumar, D.; Siva, R.; Doss, G.P.; Zayed, H. Structural analysis of missense mutations in galactokinase 1 (GALK1) leading to galactosemia type-2. J. Biol. Chem. 2018, 119, 7585–7598. [Google Scholar]
- Walter, J.H.; Fridovich-Keil, J.L. Galactosemia. In The Online Metabolic and Molecular Bases of Inherited Disease; McGraw Hill: New York, NY, USA, 2007; pp. 1–20. Available online: https://ommbid.mhmedical.com/content.aspx?bookid=2709§ionid=225081023 (accessed on 2 November 2022).
- Kikuchi, A.; Wada, Y.; Ohura, T.; Kure, S. The discovery of GALM deficiency (Type IV Galactosemia) and newborn screening system for galactosemia in Japan. Int. J. Neonatal Screen. 2021, 7, 68. [Google Scholar] [CrossRef]
- Kotb, M.A.; Mansour, L.; Basanti, C.W.S.; El Garf, W.; Ali, G.I.Z.; El Sorogy, S.T.M.; Kamel, I.E.M.; Kamal, N.M. Pilot study of classic galactosemia: Neurodevelopmental impact and other complications urge neonatal screening in Egypt. J. Adv. Res. 2018, 12, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Porta, F.; Pagliardini, S.; Pagliardini, V.; Ponzone, A.; Spada, M. Newborn screening for galactosemia: A 30-year single center experience. World J. Pediatr. 2015, 11, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Pyhtila, B.M.; Shaw, K.A.; Neumann, S.E.; Fridovich-Keil, J.L. Newborn screening for galactosemia in the United States: Looking back, looking around, and looking ahead. In JIMD Reports; Zschocke, J., Gibson, K., Brown, G., Morava, E., Peters, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 15, pp. 79–93. [Google Scholar]
- Coss, K.P.; Doran, P.P.; Owoeye, C.; Codd, M.B.; Hamid, N.; Mayne, P.D.; Crushell, E.; Knerr, I.; Monavari, A.A.; Treacy, E.P. Classical galactosaemia in Ireland: Incidence, complications and outcomes of treatment. J. Inherit. Metab. Dis. 2013, 36, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, M.; Jover, S.; Armas, M.; Duque, M.R.; Santana, C.; Giros, M.L.; Boleda, M.D. Galactosemia presenting as congenital pseudoafibrinogenaemia. J. Inherit. Metab. Dis. 1999, 22, 943–944. [Google Scholar] [CrossRef]
- Bosch, A.M.; Bakker, H.D.; van Gennip, A.H.; van Kempen, J.V.; Wanders, R.J.; Wijburg, F.A. Clinical features of galactokinase deficiency: A review of the literature. J. Inherit. Metab. Dis. 2002, 25, 629–634. [Google Scholar] [CrossRef]
- Hennermann, J.B.; Schadewald, P.; Vetter, B.; Shin, Y.S.; Monch, E.; Klein, J. Features and outcome of galactokinase deficiency in children diagnosed by newborn screening. J. Inherit. Metab. Dis. 2011, 34, 399–407. [Google Scholar] [CrossRef]
- Karadag, N.; Zenciroglu, A.; Eminoglu, F.T.; Dilli, D.; Karagol, B.S.; Kundak, A.; Dursun, A.; Hakan, N.; Okumus, N. Literature review and outcome of classic galactosemia diagnosed in the neonatal period. Clin. Lab. 2013, 59, 1139–1146. [Google Scholar] [CrossRef]
- Markovitz, R.; Owen, N.; Satter, L.F.; Kirk, S.; Mahoney, D.H.; Bertuch, A.A.; Scaglia, F. Expansion of the clinical phenotype of GALE deficiency. Am. J. Med. Genet. A 2021, 185, 3118–3121. [Google Scholar] [CrossRef]
- Daenzer, J.M.I.; Rasmussen, S.A.; Patel, S.; McKenna, J.; Fridovich-Keil, J.L. Neonatal GALT gene replacement offers metabolic and phenotypic correction through early adulthood in a rat model of classic galactosemia. J. Inherit. Metab. Dis. 2021, 45, 203–214. [Google Scholar] [CrossRef]
- Delnoy, B.; Haskovic, M.; Vanoevelen, J.; Steinbusch, L.K.M.; Vos, E.N.; Knoops, K.; Zimmermann, L.J.I.; Noga, M.; Lefeber, D.J.; Martini, P.G.V.; et al. Novel mRNA therapy restores GALT protein and enzyme activity in a zebrafish model of classic galactosemia. J. Inherit. Metab. Dis. 2022, 45, 748–758. [Google Scholar] [CrossRef]
- Tyfield, L.A. Galactosemia and allelic variation at the galactose-1-phosphate uridyltransferase gene: A complex relationship between genotype and phenotype. Eur. J. Pediatr. 2000, 159, S204–S207. [Google Scholar] [CrossRef] [PubMed]
- Succoio, M.; Sacchettini, R.; Rossi, A.; Parenti, G.; Ruoppolo, M. Galactosemia: Biochemistry, molecular genetics, newborn screening, and treatment. Biomolecules 2022, 12, 968. [Google Scholar] [CrossRef] [PubMed]
- Mackinnon, S.R.; Krojer, T.; Foster, W.R.; Diaz-Saez, L.; Tang, M.; Huber, K.V.M.; von Delft, F.; Lai, K.; Brennan, P.E.; Bezerra, G.A.; et al. Fragment Screening Reveals Starting Points for Rational Design of Galactokinase 1 Inhibitors to Treat Classic Galactosemia. ACS Chem. Biol. 2021, 16, 586–595. [Google Scholar] [CrossRef] [PubMed]
- University of Wisconsin. Health Professional Guide to Newborn Screening. Available online: http://www.slh.wis.edu/newborn/guide (accessed on 4 November 2022).
- Bosch, A.M. Classical galactosaemia revisited. J. Inherit. Metab. Dis. 2006, 29, 516–525. [Google Scholar] [CrossRef]
- Coelho, A.I.; Trabuco, M.; Silva, M.J.; Almeida, I.T.D.; Leandro, P.; Rivera, I.; Vicente, J.B. Arginine Functionally Improves Clinically Relevant Human Galactose-1-Phosphate Uridylyltransferase (GALT) Variants Expressed in a Prokaryotic Model. In JIMD Reports; Zschocke, J., Baumgartner, M., Morava, E., Patterson, M., Rahman, S., Peters, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 23. [Google Scholar] [CrossRef] [Green Version]
- Berry, G.T.; Segal, S.; Gitzelmann, R. Disorders of galactose metabolism. In Inborn Metabolic Diseases; Fernandes, J., Saudubray, J.M., van den Berghe, G., Walter, J.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 121–130. [Google Scholar]
- Holton, J.B.; Walter, J.H.; Tyfield, L.A. Galactosemia. In The Metabolic and Molecular Bases of Inherited Disease, 8th ed.; Scriver, C.R., Beaudet, A.L., Sly, W.S., Valle, D., Eds.; McGraw-Hill: New York, NY, USA, 2001; pp. 1553–1587. [Google Scholar]
- Pasquali, M.; Yu, C.; Coffee, B. Laboratory diagnosis of galactosemia: A technical standard and guideline of the American College of Medical Genetics and Genomics (ACMG). ACMG Lab. Qual. Assur. Comm. Genet. Med. 2018, 20, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Gozalbo, M.E.; Derks, B.; Martin Das, A.; Meyer, U.; Möslinger, D.; Luz Couce, M.L.; Empain, A.; Ficicioglu, C.; Palacios, N.J.; Pelegrin, M.M.D.L.S.D.; et al. Galactokinase deficiency: Lessons from the GalNet registry. Genet. Med. 2021, 23, 202–210. [Google Scholar] [CrossRef]
- Cordeiro, C.; Garcia, P.; Coelho, D.; Oliva, M. Galactokinase deficiency: A treatable cause of bilateral cataracts. BMJ Case Rep. 2021, 14, e242227. [Google Scholar] [CrossRef]
- Stroek, K.; Bouva, M.J.; Schielen, P.C.J.I.; Vaz, F.M.; Heijboer, A.C.; de Jonge, R.; Boelen, A.; Bosch, A.M. Recommendations for Newborn Screening for Galactokinase Deficiency: A Systematic Review and Evaluation of Dutch Newborn Screening Data. Mol. Genet. Metab. 2018, 124, 50–56. [Google Scholar] [CrossRef]
- Openo, K.K.; Schulz, J.M.; Vargas, C.A.; Orton, C.S.; Epstein, E.P.; Schnur, R.E.; Scaglia, F.; Berry, G.T.; Gottesman, G.S.; Ficicioglu, C.; et al. Epimerase-deficiency galactosemia is not a binary condition. Am. J. Hum. Genet. 2006, 78, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Bosch, A.M.; Ijlst, L.; Oostheim, W.; Mulders, J.; Bakker, H.D.; Wijburg, F.A.; Wanders, R.J.; Waterham, H.R. Identification of novel mutations in classical galactosemia. Hum. Mutat. 2005, 25, 502. [Google Scholar] [CrossRef]
- Frederick, A.B.; Cutler, D.J.; Fridovich-Keil, J.L. Rigor of non-dairy galactose restriction in early childhood, measured by retrospective survey, does not associate with severity of five long-term outcomes quantified in 231 children and adults with classic galactosemia. J. Inherit. Metab. Dis. 2017, 40, 813–821. [Google Scholar] [CrossRef] [PubMed]
- Seo, A.; Gulsuner, S.; Pierce, S.; Ben-Harosh, M.; Shalev, H.; Walsh, T.; Krasnov, T.; Dgany, O.; Doulatov, S.; Tamary, H.; et al. Inherited thrombocytopenia associated with mutation of UDP-galactose-4-epimerase (GALE). Hum. Mol. Genet. 2018, 28, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Therrell, B.L.; Lloyd-Puryear, M.A.; Camp, K.M.; Mann, M.Y. Inborn errors of metabolism identified via newborn screening: Ten-year incidence data and costs of nutritional interventions for research agenda planning. Mol. Genet. Metab. 2014, 113, 14–26. [Google Scholar] [CrossRef] [Green Version]
- Shaw, K.A.; Mulle, J.G.; Epstein, M.P.; Fridovich-Keil, J.L. Gastrointestinal health in classic galactosemia. In JIMD Reports; Morava, E., Baumgartner, M., Patterson, M., Rahman, S., Zschocke, J., Peters, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 33, pp. 27–32. [Google Scholar]
- Demirbas, D.; Huang, X.; Daesety, V.; Feenstra, S.; Haskovic, M.; Qi, W.; Gubbels, C.S.; Hecht, L.; Levy, H.L.; Waisbren, S.E.; et al. The ability of an LC-MS/MS-based erythrocyte GALT enzyme assay to predict the phenotype in subjects with GALT deficiency. Mol. Genet. Metab. 2019, 126, 368–376. [Google Scholar] [CrossRef] [PubMed]
- Iwasawa, S.; Kikuchi, A.; Wada, Y.; Arai-Ichinoi, N.; Sakamoto, O.; Tamiya, G.; Shigeo Kure, S. The prevalence of GALM mutations that cause galactosemia: A database of functionally evaluated variants. Mol. Genet. Metab. 2019, 126, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Timson, D.J. Type IV galactosemia. Genet. Med. 2019, 21, 1283–1285. [Google Scholar] [CrossRef] [PubMed]
- Banford, S.; Timson, D.J. The structural and molecular biology of type IV galactosemia. Biochimie 2021, 183, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Caro, N.A.R.; Cornejo, V.; Guevara-Morales, J.M.; Echeverri-Peña, O.Y. Advances and Challenges in Classical Galactosemia. Pathophysiology and Treatment. J. Inborn Errors Metab. Screen. 2022, 10, e20210026. [Google Scholar]
- Delnoy, B.; Coelho, A.; Rubio-Gozalbo, M. Current and Future Treatments for Classic Galactosemia. J. Pers. Med. 2021, 11, 75. [Google Scholar] [CrossRef]
- Fridovich-Keil, J.L.; Carlock, G.; Patel, S.; Potter, N.L.; Coles, C.D. Acute and early developmental outcomes of children with Duarte galactosemia. JIMD Rep. 2021, 63, 101–106. [Google Scholar] [CrossRef]
- Liguori, L.; Monticelli, M.; Allocca, M.; Mele, B.H.; Lukas, J.; Cubellis, M.V.; Andreotti, G. Pharmacological Chaperones: A Therapeutic Approach for Diseases Caused by Destabilizing Missense Mutations. Int. J. Mol. Sci. 2020, 21, 489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, X.; Wang, L.; Wu, C.; Shi, H.; Zhou, Z.; Montgomery, S.; Cao, Y. Sex hormones, gonadotropins, and sex hormone-binding globulin in infants fed breast milk, cow milk formula, or soy formula. Sci. Rep. 2017, 7, 4332. [Google Scholar] [CrossRef]
- Oliveira, F.R.K.; Silva, E.; Gustavo, A.F.; Gonçalves, R.B.; Bolfi, F.; Mendes, A.L.; Dos Santos Nunes-Nogueira, V. Association between a soy-based infant diet and the onset of puberty: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0251241. [Google Scholar]
- Ficicioglu, C.; Hussa, C.; Yager, C.; Segal, S. Effect of galactose free formula on galactose-1-phosphate in two infants with classical galactosemia. J. Inherit. Metab. Dis. 2005, 28, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Zlatunich, C.O.; Packman, S. Galactosaemia: Early treatment with an elemental formula. Eur. J. Pediatr. 2008, 167, 595–596. [Google Scholar] [CrossRef] [PubMed]
- Bosch, A.M. Classic galactosemia: Dietary dilemmas. J. Inherit. Metab. Dis. 2011, 34, 257–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waisbren, S.E.; Potter, N.L.; Gordon, C.M.; Green, R.C.; Greenstein, P.; Gubbels, C.S.; Rubio-Gozalbo, E.; Schomer, D.; Welt, C.; Anastasoaie, V.; et al. The adult galactosemic phenotype. J. Inherit. Metab. Dis. 2012, 35, 279–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamsen, L.S.; Kelsey, T.W.; Ernst, E.; Macklon, K.T.; Lund, A.M.; Andersen, C.Y. Cryopreservation of ovarian tissue may be considered in young girls with galactosemia. J. Assist. Reprod. Genet. 2018, 35, 1209–1217. [Google Scholar] [CrossRef] [Green Version]
- Fridovich-Keil, J.L.; Gubbels, C.S.; Spencer, J.B.; Sanders, R.D.; Land, J.A.; Rubio-Gozalbo, E. Ovarian function in girls and women with GALT-deficiency galactosemia. J. Inherit. Metab. Dis. 2011, 34, 357–366. [Google Scholar] [CrossRef] [Green Version]
- Welsink-Karssies, M.M.; Ferdinandusse, S.; Geurtsen, G.J.; Hollak, C.E.M.; Huidekoper, H.H.; Janssen, M.C.H.; Langendonk, J.G.; Van Der Lee, J.H.; O’Flaherty, R.; Oostrom, K.J.; et al. Deep phenotyping classical galactosemia: Clinical outcomes and biochemical markers. Brain Commun. 2020, 2, fcaa006. [Google Scholar] [CrossRef] [Green Version]
- Forges, T.; Monnier-Barbarino, P.; Leheup, B.; Jouvet, P. Pathophysiology of impaired ovarian function in galactosaemia. Hum. Reprod. Update 2006, 12, 573–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, S.A.; Daenzer, J.M.I.; Fridovich-Keil, J.L. A pilot study of neonatal GALT gene replacement using AAV9 dramatically lowers galactose metabolites in blood, liver, and brain and minimizes cataracts in GALT-null rat pups. J. Inherit. Metab. Dis. 2021, 44, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Brophy, M.L.; Chen, T.W.; Le, K.; Tabet, R.; Ahn, Y.; Murphy, J.E.; Bell, R.D. AAV-mediated gene therapy rescues GALT activity and reduces ER stress in classic galactosemia. Mol. Ther. 2020, 28, 303. [Google Scholar]
- Brophy, M.L.; Stansfield, J.C.; Ahn, Y.; Cheng, S.H.; Murphy, J.E.; Bell, R.D. AAV-mediated expression of galactose-1-phosphate uridyltransferase corrects defects of galactose metabolism in classic galactosemia patient fibroblasts. J. Inherit. Metab. Dis. 2022, 45, 481–492. [Google Scholar] [CrossRef]
- Balakrishnan, B.; An, D.; Nguyen, V.; DeAntonis, C.; Martini, P.G.V.; Lai, K. Novel mRNA-based therapy reduces toxic galactose metabolites and overcomes galactose sensitivity in a mouse model of classic galactosemia. Mol. Ther. 2020, 28, 304–312. [Google Scholar] [CrossRef]
- Banford, S.; McCorvie, T.J.; Pey, A.L.; Timson, D.J. Galactosemia: Towards pharmacological chaperones. J. Pers. Med. 2021, 11, 106. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.; Boxer, M.B.; Marabotti, A. GALK inhibitors for classic galactosemia. Future Med. Chem. 2014, 6, 1003–1015. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, Y.Q.; Lee, O.W.; Liu, L.; Tang, M.; Lai, K.; Boxer, M.B.; Hall, M.D.; Shen, M. Discovery of novel inhibitors of human galactokinase by virtual screening. J. Comput. Aided Mol. Des. 2019, 33, 405–417. [Google Scholar] [CrossRef]
- US National Library of Medicine. ClinicalTrials.gov Database Identifier NCT04117711, Safety and Pharmacokinetics of AT-007 in Healthy Subjects and in Adult Subjects with Classic Galactosemia. Available online: https://clinicaltrials.gov/ct2/show/NCT04117711 (accessed on 9 November 2022).
- Balakrishnan, B.; Nicholas, C.; Siddiqi, A.; Chen, W.; Bales, E.; Feng, M.; Johnson, J.; Lai, K. Reversal of aberrant PI3K/Akt signaling by Salubrinal in a GalT-deficient mouse model. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 3286–3293. [Google Scholar] [CrossRef]
- Balakrishnan, B.; Siddiqi, A.; Mella, J.; Lupo, A.; Li, E.; Hollien, J.; Johnson, J.; Lai, K. Salubrinal enhances eIF2α phosphorylation and improves fertility in a mouse model of classic galactosemia. Biochim. Biophys. Acta Mol. Basis Dis. 2019, 1865, 165516. [Google Scholar] [CrossRef]
- Kotb, M.A.; Mansour, L.; Shamma, R.A. Screening for galactosemia: Is there a place for it? Int. J. Gen. Med. 2019, 12, 193–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welling, L.; Boelen, A.; Derks, T.G.J.; Schielen, P.C.J.I.; de Vries, M.; Williams, M.; Wijburg, F.A.; Bosch, A.M. Nine years of newborn screening for classical galactosemia in the Netherlands: Effectiveness of screening methods, and identification of patients with previously unreported phenotypes. Mol. Genet. Metab. 2017, 120, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Therrell, B.L.; Padilla, C.D.; Loeber, J.G.; Kneisser, I.; Saadallah, A.; Borrajo, G.J.; Adams, J. Current status of newborn screening worldwide. Semin. Perinatol. 2015, 39, 171–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatam, N.; Askarian, M.; Shirvani, S.; Siavashi, E. Neonatal screening: Cost-utility analysis for galactosemia. Iran. J. Public Health 2017, 46, 112–119. [Google Scholar] [PubMed]
- Shaafie, L.A.; Vijay Raju, A.D.; Menon, P.K. Neonatal screening for inborn errors of metabolism—Our experience at Cabri, Gulf Medical University. Gulf Med. J. ASM 2016, 5, S35–S42. [Google Scholar]
- Shah, V.; Friedman, S.; Moore, A.M.; Platt, B.A.; Feigenbaum, A.S.J. Selective screening for neonatal galactosemia: An alternative approach. Acta Paediatr. 2001, 90, 948–949. [Google Scholar] [CrossRef] [PubMed]
- Carlock, G.; Fischer, S.T.; Lynch, M.E.; Potter, N.L.; Coles, C.D.; Epstein, M.P.; Mulle, J.G.; Kable, J.A.; Barrett, C.E.; Edwards, S.M.; et al. Developmental outcomes in Duarte galactosemia. Pediatrics 2019, 143, e20182516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lund, A.M.; Hougaard, D.M.; Simonsen, H.; Andresen, B.S.; Christensen, M.; Dunø, M.; Skogstrand, K.; Olsen, R.K.; Jensen, U.G.; Cohen, A.; et al. Biochemical screening of 504,049 newborns in Denmark, the Faroe Islands and Greenland—Experience and development of a routine program for expanded newborn screening. Mol. Genet. Metab. 2012, 107, 281–293. [Google Scholar] [CrossRef]
- Timson, D.J. Therapies for galactosemia: A patent landscape. Pharm. Pat. Anal. 2020, 9, 45–51. [Google Scholar] [CrossRef]
- Haskovic, M.; Coelho, A.I.; Bierau, J.; Vanoevelen, J.M.; Steinbusch, L.K.M.; Zimmermann, L.J.I.; Villamor-Martinez, E.; Berry, G.T.; Rubio-Gozalbo, M.E. Pathophysiology and targets for treatment in hereditary galactosemia: A systematic review of animal and cellular models. J. Inherit. Metab. Dis. 2020, 43, 392–408. [Google Scholar] [CrossRef]
- Peter, B.; Potter, N.; Davis, J.; Donenfeld-Peled, I.; Finestack, L.; Stoel-Gammon, C.; Lien, K.; Bruce, L.; Vose, C.; Eng, L.; et al. Toward a paradigm shift from deficit-based to proactive speech and language treatment: Randomized pilot trial of the Babble Boot Camp in infants with classic galactosemia. F1000Research 2020, 8, 271. [Google Scholar] [CrossRef] [Green Version]
- Padilla, C.D.; Lam, S.T. Issues on universal screening for galactosemia. Ann. Acad. Med. Singap. 2008, 37, 6–9. [Google Scholar] [PubMed]
- Randall, J.A.; Sutter, C.; Wang, S.; Bailey, E.; Raither, L.; Perfetti, R.; Shendelman, S.; Burbridge, C. Qualitative interviews with adults with Classic Galactosemia and their caregivers: Disease burden and challenges with daily living. Orphanet J. Rare Dis. 2022, 17, 138. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Feldman, G.; Puscheck, E.E. Primary ovarian insufficiency in classic galactosemia: Current understanding and future research opportunities. J. Assist. Reprod. Genet. 2018, 35, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Bosch, A.M. Galactosaemia—Should it be screened in newborns? J. Mother Child 2018, 22, 221–224. [Google Scholar]
- Veldman, A.; Kiewiet, M.B.G.; Heiner-Fokkema, M.R.; Nelen, M.R.; Sinke, R.J.; Sikkema-Raddatz, B.; Voorhoeve, E.; Westra, D.; Dollé, M.E.T.; Schielen, P.C.J.I.; et al. Towards Next-Generation Sequencing (NGS)-Based Newborn Screening: A Technical Study to Prepare for the Challenges Ahead. Int. J. Neonatal Screen. 2022, 8, 17. [Google Scholar] [CrossRef]
- Colhoun, H.O.; Rubio Gozalbo, E.M.; Bosch, A.M.; Knerr, I.; Dawson, C.; Brady, J.; Galligan, M.; Stepien, K.; O’Flaherty, R.; Moss, C.C.; et al. Fertility in classical galactosaemia, a study of N-glycan, hormonal and inflammatory gene interactions. Orphanet J. Rare Dis. 2018, 13, 164. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badiu Tișa, I.; Achim, A.C.; Cozma-Petruț, A. The Importance of Neonatal Screening for Galactosemia. Nutrients 2023, 15, 10. https://doi.org/10.3390/nu15010010
Badiu Tișa I, Achim AC, Cozma-Petruț A. The Importance of Neonatal Screening for Galactosemia. Nutrients. 2023; 15(1):10. https://doi.org/10.3390/nu15010010
Chicago/Turabian StyleBadiu Tișa, Ioana, Anca Cristina Achim, and Anamaria Cozma-Petruț. 2023. "The Importance of Neonatal Screening for Galactosemia" Nutrients 15, no. 1: 10. https://doi.org/10.3390/nu15010010
APA StyleBadiu Tișa, I., Achim, A. C., & Cozma-Petruț, A. (2023). The Importance of Neonatal Screening for Galactosemia. Nutrients, 15(1), 10. https://doi.org/10.3390/nu15010010