Selenium Forms and Dosages Determined Their Biological Actions in Mouse Models of Parkinson’s Disease
Abstract
:1. Introduction
2. Methods
2.1. Animal Experimental Design
2.1.1. Acute PD Model Experiment
2.1.2. Chronic PD Model Experiment
2.1.3. Se Bio-Distribution Experiment In Vivo
2.2. Behavior Tests
2.3. Western-Blot Analysis
2.4. Real-Time PCR
2.5. Microwave Digestion and ICP-OES
2.6. Statistical Analysis
3. Results
3.1. Comparative Effects of Se-Na and Se-Met in Acute PD Mice Model
3.2. Comparative Effects of Se-Na and Se-Met in Chronic PD Mice Model
3.3. Comparative Effects of Se-Na and Se-Met on Gene Transcripts of Selenoproteins in the Brain
3.4. Comparative Effects of Se-Na and Se-Met on GPX Activities in the Brain
3.5. Bio-Distribution of Se-Na and Se-Met in Normal and Acute PD Model Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zou, Y.M.; Liu, J.; Tian, Z.Y.; Lu, D.; Zhou, Y.Y. Systematic review of the prevalence and incidence of Parkinson’s disease in the People’s Republic of China. Neuropsychiatr. Dis. Treat. 2015, 11, 1467–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dauer, W.; Przedborski, S. Parkinson’s disease: Mechanisms and models. Neuron 2003, 39, 889–909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, B.R.; Roberts, B.R.; Bush, A.I.; Hare, D.J. Selenium, selenoproteins and neurodegenerative diseases. Metallomics 2015, 7, 1213–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahar, A.; Patel, K.V.; Semba, R.D.; Bandinelli, S.; Shahar, D.R.; Ferrucci, L.; Guralnik, J.M. Plasma selenium is positively related to performance in neurological tasks assessing coordination and motor speed. Mov. Disord. 2010, 25, 1909–1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahima Verma, A.K.; Kumar, A.; Rahal, A.; Kumar, V.; Roy, D. Inorganic versus organic selenium supplementation: A review. Pak. J. Biol. Sci. 2012, 15, 418–425. [Google Scholar]
- Solovyev, N.D. Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling. J. Inorg. Biochem. 2015, 153, 1–12. [Google Scholar] [CrossRef]
- Chen, J.; Berry, M.J. Selenium and selenoproteins in the brain and brain diseases. J. Neurochem. 2003, 86, 1–12. [Google Scholar] [CrossRef]
- Venkateshappa, C.; Harish, G.; Mythri, R.B.; Mahadevan, A.; Bharath, M.M.; Shankar, S.K. Increased oxidative damage and decreased antioxidant function in aging human substantia nigra compared to striatum: Implications for Parkinson’s disease. Neurochem. Res. 2012, 37, 358–369. [Google Scholar] [CrossRef]
- Ellwanger, J.H.; Molz, P.; Dallemole, D.R.; Pereira dos Santos, A.; Muller, T.E.; Cappelletti, L.; Goncalves da Silva, M.; Franke, S.I.; Pra, D.; Pegas Henriques, J.A. Selenium reduces bradykinesia and DNA damage in a rat model of Parkinson’s disease. Nutrition 2015, 31, 359–365. [Google Scholar] [CrossRef]
- Zafar, K.S.; Siddiqui, A.; Sayeed, I.; Ahmad, M.; Salim, S.; Islam, F. Dose-dependent protective effect of selenium in rat model of Parkinson’s disease: Neurobehavioral and neurochemical evidences. J. Neurochem. 2003, 84, 438–446. [Google Scholar] [CrossRef]
- Vinceti, M.; Filippini, T.; Wise, L.A. Environmental Selenium and Human Health: An Update. Curr. Environ. Health Rep. 2018, 5, 464–485. [Google Scholar] [CrossRef]
- Ringuet, M.T.; Hunne, B.; Lenz, M.; Bravo, D.M.; Furness, J.B. Analysis of Bioavailability and Induction of Glutathione Peroxidase by Dietary Nanoelemental, Organic and Inorganic Selenium. Nutrients 2021, 13, 1073. [Google Scholar] [CrossRef]
- Zhai, Q.; Xiao, Y.; Li, P.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W. Varied doses and chemical forms of selenium supplementation differentially affect mouse intestinal physiology. Food Funct. 2019, 10, 5398–5412. [Google Scholar] [CrossRef]
- Tang, Y.L.; Wang, S.W.; Lin, S.M. Both inorganic and organic selenium supplements can decrease brain monoamine oxidase B enzyme activity in adult rats. Br. J. Nutr. 2008, 100, 660–665. [Google Scholar] [CrossRef] [Green Version]
- Duntas, L.H.; Benvenga, S. Selenium: An element for life. Endocrine 2015, 48, 756–775. [Google Scholar] [CrossRef]
- Ammar, E.M.; Couri, D. Acute toxicity of sodium selenite and selenomethionine in mice after ICV or IV administration. Neurotoxicology 1981, 2, 383–386. [Google Scholar]
- Schrauzer, G.N. The nutritional significance, metabolism and toxicology of selenomethionine. Adv. Food Nutr. Res. 2003, 47, 73–112. [Google Scholar]
- Khan, H.A. Selenium partially reverses the depletion of striatal dopamine and its metabolites in MPTP-treated C57BL mice. Neurochem. Int. 2010, 57, 489–491. [Google Scholar] [CrossRef]
- Kumar, B.; Nahreini, P.; Hanson, A.J.; Andreatta, C.; Prasad, J.E.; Prasad, K.N. Selenomethionine prevents degeneration induced by overexpression of wild-type human alpha-synuclein during differentiation of neuroblastoma cells. J. Am. Coll. Nutr. 2005, 24, 516–523. [Google Scholar] [CrossRef]
- Meredith, G.E.; Rademacher, D.J. MPTP mouse models of Parkinson’s disease: An update. J. Park. Dis. 2011, 1, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.L.; Wang, X.; Liu, F.; Liu, X.; Du, Z.R.; Li, R.W.; Xue, C.H.; Wong, K.H.; Wong, W.T.; Zhao, Q.; et al. Polymannuronic acid prevents dopaminergic neuronal loss via brain-gut-microbiota axis in Parkinson’s disease model. Int. J. Biol. Macromol. 2020, 164, 994–1005. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Peritore, C.; Ginsberg, J.; Shih, J.; Arun, S.; Donmez, G. Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson’s disease. Behav. Brain Res. 2015, 281, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Khan, M.M.; Ishrat, T.; Khan, M.B.; Khuwaja, G.; Raza, S.S.; Shrivastava, P.; Islam, F. Synergistic effect of selenium and melatonin on neuroprotection in cerebral ischemia in rats. Biol. Trace Elem. Res. 2011, 139, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Du, Z.R.; Wang, X.; Luk, K.H.; Chan, C.H.; Cao, X.; Zhao, Q.; Zhao, F.; Wong, W.T.; Wong, K.H.; et al. Colonic Dopaminergic Neurons Changed Reversely with Those in the Midbrain via Gut Microbiota-Mediated Autophagy in a Chronic Parkinson’s Disease Mice Model. Front. Aging Neurosci. 2021, 13, 649627. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Du, Z.R.; Wang, X.; Sun, X.R.; Zhao, Q.; Zhao, F.; Wong, W.T.; Wong, K.H.; Dong, X.L. Polymannuronic acid prebiotic plus Lacticaseibacillus rhamnosus GG probiotic as a novel synbiotic promoted their separate neuroprotection against Parkinson’s disease. Food Res. Int. 2022, 155, 111067. [Google Scholar] [CrossRef]
- Lee, J.; Park, Y.S.; Lee, H.J.; Koo, Y.E. Microwave-assisted digestion method using diluted nitric acid and hydrogen peroxide for the determination of major and minor elements in milk samples by ICP-OES and ICP-MS. Food Chem. 2022, 373, 131483. [Google Scholar] [CrossRef]
- Christensen, M.J.; Cammack, P.M.; Wray, C.D. Tissue specificity of selenoprotein gene expression in rats. J. Nutr. Biochem. 1995, 6, 367–372. [Google Scholar] [CrossRef]
- Hofstee, P.; Cuffe, J.S.M.; Perkins, A.V. Analysis of Selenoprotein Expression in Response to Dietary Selenium Deficiency During Pregnancy Indicates Tissue Specific Differential Expression in Mothers and Sex Specific Changes in the Fetus and Offspring. Int. J. Mol. Sci. 2020, 21, 2210. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ye, Y.L.; Zhu, H.; Sun, S.N.; Zheng, J.; Fan, H.H.; Wu, H.M.; Chen, S.F.; Cheng, W.H.; Zhu, J.H. Selenotranscriptomic Analyses Identify Signature Selenoproteins in Brain Regions in a Mouse Model of Parkinson’s Disease. PLoS ONE 2016, 11, e0163372. [Google Scholar] [CrossRef] [Green Version]
- Gan, L.; Liu, Q.; Xu, H.B.; Zhu, Y.S.; Yang, X.L. Effects of selenium overexposure on glutathione peroxidase and thioredoxin reductase gene expressions and activities. Biol. Trace Elem. Res. 2002, 89, 165–175. [Google Scholar] [CrossRef]
- Balogh, K.; Weber, M.; Erdélyi, M.; Mézes, M. Effect of excess selenium supplementation on the glutathione redox system in broiler chicken. Acta Vet. Hung. 2004, 52, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Bermano, G.; Nicol, F.; Dyer, J.A.; Sunde, R.A.; Beckett, G.J.; Arthur, J.R.; Hesketh, J.E. Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats. Biochem J 1995, 311 Pt 2, 425–430. [Google Scholar] [CrossRef] [Green Version]
- Gammelgaard, B.; Rasmussen, L.H.; Gabel-Jensen, C.; Steffansen, B. Estimating intestinal absorption of inorganic and organic selenium compounds by in vitro flux and biotransformation studies in Caco-2 cells and ICP-MS detection. Biol. Trace Elem. Res. 2012, 145, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Luk, K.H.; Cheung, S.T.; Kwok, K.W.; Wong, K.H.; Chen, T. Polysaccharide-protein complex-decorated selenium nanosystem as an efficient bone-formation therapeutic. J. Mater. Chem. B 2018, 6, 5215–5219. [Google Scholar] [CrossRef] [PubMed]
Body Weight | Body Weight | |||
---|---|---|---|---|
Groups | N | Beginning (g) | End (g) | |
Acute PD mice model | Normal | 8 | 19.3 ± 0.5 | 22.5 ± 0.3 |
Model | 6 | 19.8 ± 0.5 | 22.6 ± 0.4 | |
L-SM | 7 | 20.1 ± 0.6 | 22.3 ± 0.4 | |
H-SM | 6 | 19.5 ± 0.6 | 22.2 ± 0.6 | |
Chronic PD mice model | Normal | 8 | 27.1 ± 0.5 | 26.9 ± 0.6 |
Model | 8 | 26.4 ± 0.3 | 25.8 ± 0.4 | |
Se-Met | 8 | 26.2 ± 0.9 | 25.8 ± 0.9 | |
Se-Na | 8 | 26.8 ± 0.7 | 26.0 ± 0.6 |
Se Concentration in Different Tissues | Se-Met (1 mg Se/kg) | Se-Na (1 mg Se/kg) | |
---|---|---|---|
Normal mice | Serum (µg/mL) | 1.55 ± 0.32 | 0.31 ± 0.11 ** |
Liver (µg/g) | 3.16 ± 0.44 | 1.72 ± 0.25 ** | |
Kidney (µg/g) | 2.70 ± 0.17 | 3.03 ± 0.52 | |
Acute PD model mice | Serum (µg/mL) | 0.59 ± 0.07 ## | 5.59 ± 0.84 ***### |
Liver (µg/g) | 2.77 ± 0.19 | 1.90 ± 0.13 ** | |
Kidney (µg/g) | 1.75 ± 0.02 ### | 1.52 ± 0.41 # |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Du, Z.; Liu, X.; Yang, Y.; Zhou, S.; Li, C.; Cao, X.; Zhao, Q.; Wong, K.; Chen, W.; et al. Selenium Forms and Dosages Determined Their Biological Actions in Mouse Models of Parkinson’s Disease. Nutrients 2023, 15, 11. https://doi.org/10.3390/nu15010011
Sun C, Du Z, Liu X, Yang Y, Zhou S, Li C, Cao X, Zhao Q, Wong K, Chen W, et al. Selenium Forms and Dosages Determined Their Biological Actions in Mouse Models of Parkinson’s Disease. Nutrients. 2023; 15(1):11. https://doi.org/10.3390/nu15010011
Chicago/Turabian StyleSun, Chongchong, Zhongrui Du, Xin Liu, Ye Yang, Sainan Zhou, Chong Li, Xu Cao, Qing Zhao, Kahing Wong, Wenfang Chen, and et al. 2023. "Selenium Forms and Dosages Determined Their Biological Actions in Mouse Models of Parkinson’s Disease" Nutrients 15, no. 1: 11. https://doi.org/10.3390/nu15010011
APA StyleSun, C., Du, Z., Liu, X., Yang, Y., Zhou, S., Li, C., Cao, X., Zhao, Q., Wong, K., Chen, W., & Dong, X. (2023). Selenium Forms and Dosages Determined Their Biological Actions in Mouse Models of Parkinson’s Disease. Nutrients, 15(1), 11. https://doi.org/10.3390/nu15010011