Association between Dietary Zinc Intake, Serum Zinc Level and Multiple Comorbidities in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting and Participants
2.2. Data Collection and Measurement Tools
2.2.1. Structured Interview-Administered Questionnaire
2.2.2. Clinical Measurements
2.2.3. Disease Definitions
2.2.4. Dietary Assessment
2.2.5. Biochemical Measurement
2.3. Statistical Analysis
2.4. Ethical Considerations
3. Results
3.1. Baseline and Clinical Characteristics, and Biochemical Parameters
3.2. Factors Associated with the Serum Zinc Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement:
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Report on Ageing and Health; World Health Organization: Geneva, Switzerland, 2015; Available online: http://www.who.int/ageing/events/world-report-2015-launch (accessed on 12 September 2022).
- Loichinger, E.; Pothisiri, W. Health prospects of older persons in Thailand: The role of education. Asian Popul. Stud. 2018, 14, 310–329. [Google Scholar] [CrossRef]
- Ahmadi Ahangar, A.; Saadat, P.; Niroomand, S.; Alijanpour, S.; Sohrabnezhad, R.; Firozejahi, A.; Biani, M.A.; Arab, F.; Hosseinzadeh, H.; Faraji, S.; et al. Increased Zinc Serum Level: New Clues in Babol Stroke Patients, Northern Iran. Stroke Res. Treat. 2018, 2018, 7681682. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.R.; Arslan, I.; Attia, J.; McEvoy, M.; McElduff, P.; Basher, A.; Rahman, W.; Peel, R.; Akhter, A.; Akter, S.; et al. Is serum zinc level associated with prediabetes and diabetes? A cross-sectional study from Bangladesh. PLoS ONE 2013, 8, e61776. [Google Scholar] [CrossRef] [Green Version]
- Bastola, M.M.; Locatis, C.; Maisiak, R.; Fontelo, P. Selenium, copper, zinc and hypertension: An analysis of the National Health and Nutrition Examination Survey (2011–2016). BMC Cardiovasc. Disord. 2020, 20, 45. [Google Scholar] [CrossRef] [Green Version]
- Knez, M.; Pantovic, A.; Zekovic, M.; Pavlovic, Z.; Glibetic, M.; Zec, M. Is There a Link between Zinc Intake and Status with Plasma Fatty Acid Profile and Desaturase Activities in Dyslipidemic Subjects? Nutrients 2019, 12, 93. [Google Scholar] [CrossRef] [Green Version]
- Malavolta, M.; Piacenza, F.; Basso, A.; Giacconi, R.; Costarelli, L.; Mocchegiani, E. Serum copper to zinc ratio: Relationship with aging and health status. Mech. Ageing Dev. 2015, 151, 93–100. [Google Scholar] [CrossRef]
- Parra-Rizo, M.A.; Vásquez-Gómez, J.; Álvarez, C.; Diaz-Martínez, X.; Troncoso, C.; Leiva-Ordoñez, A.M.; Zapata-Lamana, R.; Cigarroa, I. Predictors of the Level of Physical Activity in Physically Active Older People. Behav. Sci. 2022, 12, 331. [Google Scholar] [CrossRef]
- Zapata-Lamana, R.; Poblete-Valderrama, F.; Ledezma-Dames, A.; Pavón-León, P.; Leiva, A.M.; Fuentes-Alvarez, M.T.; Cigarroa, I. Health, Functional Ability, and Environmental Quality as Predictors of Life Satisfaction in Physically Active Older Adults. Soc. Sci. 2022, 11, 265. [Google Scholar] [CrossRef]
- Younesi, S.; Parsian, H.; Hosseini, S.R.; Noreddini, H.; Mosapour, A.; Bijani, A.; Halalkhor, S. Dyshomeostasis of Serum Oxidant/Antioxidant Status and Copper, Zinc, and Selenium Levels in Elderly Physically Disabled Persons: An AHAP-Based Study. Biol. Trace Elem. Res. 2015, 166, 136–141. [Google Scholar] [CrossRef]
- Kosaka, K.; Yamashita, S.; Ando, C.; Endo, Y.; Taniguchi, K.; Kikunaga, S. Relationships among body mass index, activities of daily living and zinc nutritional status in disabled elderly patients in nursing facilities. J. Nutr. Sci. Vitaminol. 2013, 59, 420–430. [Google Scholar] [CrossRef]
- Lukaski, H.C. Magnesium, zinc, and chromium nutriture and physical activity. Am. J. Clin. Nutr. 2000, 72, 585S–593S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aliani, M.; Udenigwe, C.C.; Girgih, A.T.; Pownall, T.L.; Bugera, J.L.; Eskin, M.N. Zinc deficiency and taste perception in the elderly. Crit. Rev. Food Sci. Nutr. 2013, 53, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Zhang, B. The Impact of Zinc and Zinc Homeostasis on the Intestinal Mucosal Barrier and Intestinal Diseases. Biomolecules 2022, 12, 900. [Google Scholar] [CrossRef]
- Marchetti, M.F.; Silva, G.; Freiria, C.N.; Borim, F.; Brito, T.; Milanski, M.; Corona, L.P. Association between zinc deficiency and cognitive decline in community-dwelling older adults. Associação entre deficiência de zinco e declínio cognitivo em idosos da comunidade. Ciênc. Saúde Colet. 2022, 27, 2805–2816. [Google Scholar]
- Warthon-Medina, M.; Moran, V.H.; Stammers, A.L.; Dillon, S.; Qualter, P.; Nissensohn, M.; Serra-Majem, L.; Lowe, N.M. Zinc intake, status and indices of cognitive function in adults and children: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2015, 6, 649–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wuehler, S.E.; Peerson, J.M.; Brown, K.H. Use of national food balance data to estimate the adequacy of zinc in national food supplies: Methodology and regional estimates. Public Health Nutr. 2005, 8, 812–819. [Google Scholar] [CrossRef] [Green Version]
- Roohani, N.; Hurrell, R.; Kelishadi, R.; Schulin, R. Zinc and its importance for human health: An integrative review. J. Res. Med. Sci. 2013, 18, 144–157. [Google Scholar]
- Kambe, T.; Tsuji, T.; Hashimoto, A.; Itsumura, N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol. Rev. 2015, 95, 749–784. [Google Scholar] [CrossRef] [Green Version]
- Olza, J.; Aranceta-Bartrina, J.; González-Gross, M.; Ortega, R.M.; Serra-Majem, L.; Varela-Moreiras, G.; Gil, Á. Reported Dietary Intake and Food Sources of Zinc, Selenium, and Vitamins A, E and C in the Spanish Population: Findings from the ANIBES Study. Nutrients 2017, 9, 697. [Google Scholar] [CrossRef]
- Prasad, A.S. Discovery of human zinc deficiency: Its impact on human health and disease. Adv. Nutr. 2013, 4, 176–190. [Google Scholar] [CrossRef] [Green Version]
- Kogan, S.; Sood, A.; Garnick, M.S. Zinc and Wound Healing: A Review of Zinc Physiology and Clinical Applications. Wounds Compend. Clin. Res. Pract. 2017, 29, 102–106. [Google Scholar]
- Maares, M.; Haase, H. Zinc and immunity: An essential interrelation. Arch. Biochem. Biophys. 2016, 611, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Grønli, O.; Kvamme, J.M.; Friborg, O.; Wynn, R. Zinc deficiency is common in several psychiatric disorders. PLoS ONE 2013, 8, e82793. [Google Scholar] [CrossRef] [PubMed]
- Vathesatogkit, P.; Woodward, M.; Tanomsup, S.; Ratanachaiwong, W.; Vanavanan, S.; Yamwong, S.; Sritara, P. Cohort profile: The electricity generating authority of Thailand study. Int. J. Epidemiol. 2012, 41, 359–365. [Google Scholar] [CrossRef] [Green Version]
- Tangwongchai, S.; Phanasathit, M.; Charernboon, T.; Akkayagorn, L.; Hemrungrojn, S.; Phanthumchinda, K.; Tangwongchai, S.P.M. The validity of Thai version of the montreal cognitive assessment (MoCA-T). Dement. Neuropsychol. 2009, 3, 136–178. [Google Scholar]
- Pinto, T.; Santos, M.; Machado, L.; Bulgacov, T.M.; Rodrigues-Junior, A.L.; Silva, G.A.; Costa, M.; Ximenes, R.; Sougey, E.B. Optimal Cutoff Scores for Dementia and Mild Cognitive Impairment in the Brazilian Version of the Montreal Cognitive Assessment among the Elderly. Dement. Geriatr. Cogn. Disord. Extra. 2019, 9, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Wongpakaran, N.; Wongpakaran, T. Prevalence of major depressive disorders and suicide in long-term care facilities: A report from northern Thailand. Psychogeriatrics 2012, 12, 11–17. [Google Scholar] [CrossRef]
- Mahoney, F.I.; Barthel, D.W. Functional Evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar]
- Phanasathit, M. Validity and Reliability of Lawton Instrumental Activities of Daily Living Scale (L-IADL) and Older People’s Quality of Life Questionnaire (OPQOL-Brief): Thai version. Technological Report. 2017. Available online: https://www.researchgate.net/project/Validity-and-Reliability-of-Lawton-Instrumental-Activities-of-Daily-Living-Scale-L-IADL-and-Older-Peoples-Quality-of-Life-Questionnaire-OPQOL-Brief-Thai-version (accessed on 12 September 2022).
- World Health Organization. Physical Status: The Use and Interpretation of Anthropometry. Technical Report Series No. 854. WHO: Geneva, Switzerland. 1995. Available online: https://pubmed.ncbi.nlm.nih.gov/8594834/ (accessed on 10 September 2022).
- Nuttall, F.Q. Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutr Today 2015, 50, 117–128. [Google Scholar] [CrossRef] [Green Version]
- National High Blood Pressure Education, P. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National Heart, Lung, and Blood Institute (US): Bethesda, MD, USA, 2004.
- World Health Organization. Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia: Report of a WHO/IDF Consultation; WHO: Geneva, Switzerland, 2006; p. 29. [Google Scholar]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018aha/acc/aacvpr/aapa/abc/acpm/ada/ags/apha/aspc/nla/pcna guideline on the management of blood cholesterol. J. Am. Coll. Cardiol. 2018, 25, 3168–3209. [Google Scholar]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the national cholesterol education program (ncep) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel iii). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef] [PubMed]
- Institute of Nutrition, Mahidol University, Thailand. INMUCAL–Nutrients Program; Institute of Nutrition, Mahidol University: Bangkok, Thailand, 2009. [Google Scholar]
- Krachler, M.; Irgolic, K.J. The potential of inductively coupled plasma mass spectrometry (ICP-MS) for the simultaneous determination of trace elements in whole blood, plasma and serum. J. Trace. Elem. Med. Biol. 1999, 13, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Miyata, S. Zinc deficiency in the elderly. Nihon Ronen Igakkai zasshi. 2007, 44, 677–689. [Google Scholar] [PubMed]
- Barman, N.; Salwa, M.; Ghosh, D.; Rahman, M.W.; Uddin, M.N.; Haque, M.A. Reference Value for Serum Zinc Level of Adult Population in Bangladesh. EJIFCC 2020, 31, 117–124. [Google Scholar]
- Alqabbani, H.M.; AlBadr, N.A. Zinc status (intake and level) of healthy elderly individuals in Riyadh and its relationship to physical health and cognitive impairment. Clin. Nutr. Exp. 2020, 29, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Committees of Dietary Reference Intake for Thais. Dietary Reference Intake for Thais 2020; Bureau of Nutrition; Department of Health, Ministry of Public Health: Bangkok, Thailand, 2020.
- Hennigar, S.R.; Lieberman, H.R.; Fulgoni, V.L., 3rd; McClung, J.P. Serum Zinc Concentrations in the US Population Are Related to Sex, Age, and Time of Blood Draw but Not Dietary or Supplemental Zinc. J. Nutr. 2018, 148, 1341–1351. [Google Scholar] [CrossRef] [Green Version]
- Meunier, N.; O’Connor, J.M.; Maiani, G.; Cashman, K.D.; Secker, D.L.; Ferry, M.; Roussel, A.M.; Coudray, C. Importance of zinc in the elderly: The ZENITH study. Eur. J. Clin. Nutr. 2005, 59, S1–S4. [Google Scholar] [CrossRef]
- Al-Timimi, D.J.; Haji, M.R.; Mohammad, B.J. Zinc Status Among Smokers and Non-Smokers: Relation to Oxidative Stress. DMJ 2010, 4, 67–73. [Google Scholar]
- Vatsalya, V.; Kong, M.; Cave, M.C.; Liu, N.; Schwandt, M.L.; George, D.T.; Ramchandani, V.A.; McClain, C.J. Association of serum zinc with markers of liver injury in very heavy drinking alcohol-dependent patients. J. Nutr. Biochem. 2018, 59, 49–55. [Google Scholar] [CrossRef]
- Caliri, A.W.; Tommasi, S.; Besaratinia, A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat. Res. Rev. Mutat. Res. 2021, 787, 108365. [Google Scholar] [CrossRef]
- Marreiro, D.D.; Cruz, K.J.; Morais, J.B.; Beserra, J.B.; Severo, J.S.; de Oliveira, A.R. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants 2017, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Melough, M.M.; Vance, T.M.; Kim, D.; Noh, H.; Koo, S.I.; Chun, O.K. The relationship between zinc intake and cadmium burden is influenced by smoking status. Food Chem. Toxicol. 2019, 125, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; McClain, C.J.; Cave, M.; Kang, Y.J.; Zhou, Z. The role of zinc deficiency in alcohol-induced intestinal barrier dysfunction. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G625–G633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahn, A.M.; Helwig, H.L.; Redeker, A.G.; Reynolds, T.B. Urine and serum zinc abnormalities in disease of the liver. Am. J. Clin. Pathol. 1965, 44, 426–435. [Google Scholar] [CrossRef]
- Tudor, R.; Zalewski, P.D.; Ratnaike, R.N. Zinc in health and chronic disease. J. Nutr. Health Aging. 2005, 9, 45–51. [Google Scholar]
- Williams, C.R.; Mistry, M.; Cheriyan, A.M.; Williams, J.M.; Naraine, M.K.; Ellis, C.L.; Mallick, R.; Mistry, A.C.; Gooch, J.L.; Ko, B.; et al. Zinc deficiency induces hypertension by promoting renal Na+ reabsorption. Am. J. Physiol. Renal Physiol. 2019, 316, F646–F653. [Google Scholar] [CrossRef]
- Farooq, D.M.; Alamri, A.F.; Alwhahabi, B.K.; Metwally, A.M.; Kareem, K.A. The status of zinc in type 2 diabetic patients and its association with glycemic control. J. Fam. Community Med. 2020, 27, 29–36. [Google Scholar]
- Seo, J.A.; Song, S.W.; Han, K.; Lee, K.J.; Kim, H.N. The associations between serum zinc levels and metabolic syndrome in the Korean population: Findings from the 2010 Korean National Health and Nutrition Examination Survey. PLoS One 2014, 9, e105990. [Google Scholar] [CrossRef]
- Idei, M.; Miyake, K.; Horiuchi, Y.; Tabe, Y.; Miyake, N.; Ikeda, N.; Miida, T. Serum zinc concentration decreases with age and is associated with anemia in middle-aged and elderly people. Rinsho Byori 2010, 58, 205–210. [Google Scholar]
- King, L.E.; Fraker, P.J. Zinc deficiency in mice alters myelopoiesis and hematopoiesis. J. Nutr. 2002, 132, 3301–3307. [Google Scholar] [CrossRef] [Green Version]
- Konomi, A.; Yokoi, K. Zinc deficiency decreases plasma erythropoietin concentration in rats. Biol. Trace Elem. Res. 2005, 107, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Powell, S.R. The antioxidant properties of zinc. J. Nutr. 2000, 130, 1447S–1454S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Dell, B.L. Role of zinc in plasma membrane function. J. Nutr. 2000, 130, 1432S–1436S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, M.; Rech, L.; Wu, Y.; Goltz, D.; Taylor, C.G.; House, J.D. Effects of zinc deficiency and zinc supplementation on homocysteine levels and related enzyme expression in rats. J. Trace Elem. Med. Biol. 2015, 30, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, N.; Sedoris, K.C.; Steed, M.; Ovechkin, A.V.; Moshal, K.S.; Tyagi, S.C. Mechanisms of homocysteine-induced oxidative stress. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H2649–H2656. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Hu, Y.; Li, M.; Liu, X.; Wang, R.; Mao, D.; Yang, X.; Yang, L. Zinc Nutritional Status and Risk Factors of Elderly in the China Adult Chronic Disease and Nutrition Surveillance 2015. Nutrients 2021, 13, 3086. [Google Scholar] [CrossRef]
- Kheirkhah, F.; Poorkarim, K.; Hosseini, S.R.; Bijani, A.; Parsian, H.; Hamidia, A.; Korani, B.; Faramarzi, M. The association between zinc and cognitive impairment in elderly people of Iran. Shiraz Med. J. 2017, 18, e13093. [Google Scholar] [CrossRef] [Green Version]
- Ferdous, N.; Mishu, F.A.; Islam, F.; Sejooti, S.S. Serum Zinc Status in Post Menopausal Women Attending in a Tertiary Care Hospital of Bangladesh. BIRDEM Med. J. 2019, 9, 147–150. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Lorente, H.; Molina-López, J.; Herrera-Quintana, L.; Gamarra-Morales, Y.; Quintero-Osso, B.; López-González, B.; Planells, E. Erythrocyte Zn concentration and antioxidant response after supplementation with Zn in a postmenopausal population. A double-blind randomized trial. Exp. Gerontol. 2022, 162, 111766. [Google Scholar] [CrossRef]
- Piacenza, F.; Giacconi, R.; Costarelli, L.; Basso, A.; Bürkle, A.; Moreno-Villanueva, M.; Dollé, M.E.T.; Jansen, E.; Grune, T.; Weber, D.; et al. Age, Sex, and BMI Influence on Copper, Zinc, and Their Major Serum Carrier Proteins in a Large European Population Including Nonagenarian Offspring From MARK-AGE Study. J. Gerontol. Biol. Sci. Med. Sci 2021, 76, 2097–2106. [Google Scholar] [CrossRef]
- Nasiadek, M.; Stragierowicz, J.; Klimczak, M.; Kilanowicz, A. The role of zinc in selected female reproductive system disorders. Nutrients 2020, 12, 246. [Google Scholar] [CrossRef] [PubMed]
- Cervellati, C.; Bergamini, C.M. Oxidative damage and the pathogenesis of menopause related disturbances and diseases. Clin. Chem. Lab. Med. 2016, 54, 739–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drewnowski, A.; Shultz, J.M. Impact of aging on eating behaviors, food choices, nutrition, and health status. J. Nutr. Health Aging. 2001, 5, 75–79. [Google Scholar] [PubMed]
- Gibson, R.S.; Hess, S.Y.; Hotz, C.; Brown, K.H. Indicators of zinc status at the population level: A review of the evidence. Br. J. Nutr. 2008, 99, S14–S23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swardfager, W.; Herrmann, N.; Mazereeuw, G.; Goldberger, K.; Harimoto, T.; Lanctôt, K.L. Zinc in depression: A meta-analysis. Biol. Psychiatry 2013, 74, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Cope, E.C.; Levenson, C.W. Role of zinc in the development and treatment of mood disorders. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 685–689. [Google Scholar] [CrossRef]
- Mackenzie, G.G.; Zago, M.P.; Keen, C.L.; Oteiza, P.I. Low intracellular zinc impairs the translocation of activated NF-kappa B to the nuclei in human neuroblastoma IMR-32 cells. J. Biol. Chem. 2002, 277, 34610–34617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, M.; Suzuki, T.; Takagi, A.; Matsumoto, H.; Hashizume, N. Serum levels of the Micronutrient Zinc Decrease with Advancing Age in Normally Nourished Older Adults Over 75 Years of Age. MJND 2016, 1, 1–8. [Google Scholar]
- Craig, G.M.; Evans, S.J.; Brayshaw, B.J.; Raina, S.K. A study of serum zinc, albumin, alpha-2-macroglobulin and transferrin levels in acute and long stay elderly hospital patients. Postgrad. Med. J. 1990, 66, 205–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mocchegiani, E.; Giacconi, R.; Cipriano, C.; Costarelli, L.; Muti, E.; Tesei, S.; Giuli, C.; Papa, R.; Marcellini, F.; Mariani, E.; et al. Zinc, metallothioneins, and longevity--effect of zinc supplementation: Zincage study. Ann. N. Y. Acad. Sci. 2007, 1119, 129–146. [Google Scholar] [CrossRef]
- Koriem, K.M. Proteomic approach in human health and disease: Preventive and cure studies. Asian Pac. J. Trop. Biomed. 2018, 8, 226. [Google Scholar] [CrossRef]
- Tanaka, T.; Basisty, N.; Fantoni, G.; Candia, J.; Moore, A.Z.; Biancotto, A.; Schilling, B.; Bandinelli, S.; Ferrucci, L. Plasma proteomic biomarker signature of age predicts health and life span. eLife 2020, 9, e61073. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Total (n = 300) N (%) | Tertile of Serum Zinc Levels | |||
---|---|---|---|---|---|
T1 (n = 100) (49.13−74.73 µg/dL) N (%) | T2 (n = 100) (74.79−83.16 µg/dL) N (%) | T3 (n = 100) (83.18−150.56 µg/dL) N (%) | p-Value | ||
Age, mean (SD) | 63.0 (2.5) | 63.7 (2.8) | 62.7 (2.3) | 62.7 (2.3) | 0.019 |
≤65 years | 243 (81) | 72 (72.0) | 85 (85.0) | 86 (86.0) | 0.001 * |
>65 years | 57 (19) | 28 (28.0) | 15 (15.0) | 14 (14.0) | |
Sex | |||||
Male | 197 (65.7) | 54 (54.0) | 64 (64.0) | 79 (79.0) | 0.001 * |
Female | 103 (34.3) | 46 (46.0) | 36 (36.0) | 21 (21.0) | |
Marital status | |||||
Single | 19 (6.3) | 11 (11.0) | 2 (2.0) | 6 (6.0) | 0.032 |
Married, windowed or separated | 281 (93.7) | 89 (89.0) | 98 (98.0) | 94 (94.0) | |
Education | |||||
≤12 years | 76 (25.3) | 37 (37.0) | 25 (25.0) | 14 (14.0) | 0.001 * |
>12 years | 224 (74.7) | 63 (63.0) | 75 (75.0) | 86 (86.0) | |
Lifestyle factors | |||||
Smoker | 33 (11.0) | 11 (11.0) | 8 (8.0) | 14 (14.0) | 0.399 |
Alcohol drinker | 124 (41.3) | 35 (35.0) | 42 (42.0) | 47 (47.0) | 0.223 |
Income | |||||
≤200,000 THB per year | 138 (46.0) | 58 (58.0) | 43 (43.0) | 37 (37.0) | 0.009 * |
>200,000 THB per year | 162 (54.0) | 42 (42.0) | 57 (57.0) | 63 (63.0) | |
Comorbidities | |||||
Hypertension | 107 (35.7) | 31 (31.0) | 39 (39.0) | 37 (37.0) | 0.470 |
Dyslipidemia | 128 (42.7) | 36 (36) | 41 (41.0) | 51 (51.0) | 0.102 |
Diabetes mellitus | 44 (14.7) | 12 (12.0) | 12 (12.0) | 20 (20.0) | 0.182 |
Ischemic heart disease | 9 (3.0) | 1 (1.0) | 2 (2.0) | 6 (6.0) | 0.157 |
Ischemic stroke | 3 (1.0) | 1 (1.0) | 1 (1.0) | 1 (1.0) | 1.000 |
Peripheral vascular disease | 2 (0.7) | 1 (1.0) | 0 (0.0) | 1 (1.0) | 1.000 |
Dental problems | 55 (18.3) | 20 (20.0) | 20 (20.0) | 15 (15.0) | 0.573 |
Waist circumference (cm), mean (SD) | 86.1 (9.9) | 85.1 (9.6) | 85.7 (10.3) | 87.4 (9.8) | 0.255 |
Systolic blood pressure (mmHg), mean (SD) | 142.8 (19.6) | 142.9 (19.1) | 145.7 (19.4) | 139.7 (20.2) | 0.097 |
Diastolic blood pressure (mmHg), mean (SD) | 80.4 (10.9) | 79.7 (11.6) | 81.2 (10.9) | 80.3 (10.2) | 0.582 |
MoCA score, mean (SD) | 25.3 (3.3) | 24.9 (3.5) | 25.3 (3.2) | 25.5 (2.9) | 0.463 |
MoCA score < 21 | 39 (13.0) | 19 (19.0) | 13 (13.0) | 7 (7.0) | 0.041 |
MoCA score ≥ 21 | 261 (87.0) | 81 (81.0) | 87 (87.0) | 93 (93.0) | |
TGDS, mean (SD) | 6.4 (1.5) | 6.5 (1.7) | 6.5 (1.5) | 6.1 (1.3) | 0.096 |
TGDS ≤ 5 | 86 (28.7) | 24 (24.0) | 26 (26.0) | 36 (36.0) | 0.098 |
TGDS > 5 | 214 (71.3) | 76 (76.0) | 74 (74.0) | 64 (64.0) | |
BADL score, mean (SD) | 19.9 (0.3) | 20.0 (0.10) | 19.9 (0.4) | 19.9 (0.4) | 0.033 |
IADL score, mean (SD) | 7.9 (0.3) | 7.9 (0.2) | 7.9 (0.3) | 7.9 (0.4) | 0.661 |
BMI (kg/m2), mean (SD) | 24.4 (3.7) | 24.4 (3.9) | 24.4 (3.8) | 24.5 (3.3) | 0.979 |
Dietary intake | |||||
Dietary zinc intake (mg/day), median (IQR) | 4.4 (3.4, 5.9) | 4.5 (3.4, 5.9) | 4.3 (3.3, 5.6) | 4.6 (3.6, 6.1) | 0.514 |
Characteristic | Total (n = 300) N (%) | Tertile of Serum Zinc Levels | |||
---|---|---|---|---|---|
T1 (n = 100) (49.13−74.73 µg/dL) N (%) | T2 (n = 100) (74.79−83.16 µg/dL) N (%) | T3 (n = 100) (83.18−150.56 µg/dL) N (%) | p-Value | ||
Cholesterol (mg/dL), mean (SD) | 213.5 (44.6) | 216.3 (46.3) | 212.7 (41.7) | 211.5 (46.1) | 0.726 |
Triglyceride (mg/dL), median (IQR) | 114.5 (85.8, 150.0) | 107.0 (80.8, 143.5) | 101.5 (81.8, 138.5.0) | 128.5 (96.8, 170.5) | 0.013 |
HDL-C (mg/dL), mean (SD) | 58.5 (14.9) | 57.8 (15.8) | 60.4 (14.7) | 57.5 (14.3) | 0.328 |
LDL-C (mg/dL), mean (SD) | 138.5 (40.7) | 141.7 (39.7) | 137.1 (39.1) | 136.8 (43.5) | 0.637 |
Glucose (mg/dL), mean (SD) | 101.8 (22.2) | 101.3 (20.8) | 99.4 (18.4) | 104.6 (26.5) | 0.245 |
Total protein (g/dL), mean (SD) | 7.4 (0.4) | 7.4 (0.4) | 7.5 (0.4) | 7.5 (0.3) | 0.111 |
Albumin (g/dL), mean (SD) | 4.7 (0.2) | 4.6 (0.2) | 4.7 (0.2) | 4.8 (0.2) | <0.001 * |
Calcium (mg/dL), mean (SD) | 9.6 (0.3) | 9.6 (0.3) | 9.7 (0.3) | 9.7 (0.3) | 0.041 |
Uric acid (mg/dL), mean (SD) | 5.8 (1.4) | 5.7 (1.3) | 5.8 (1.5) | 5.9 (1.3) | 0.603 |
Phosphorus (mg/dL), mean (SD) | 3.4 (0.5) | 3.5 (0.5) | 3.4 (0.5) | 3.4 (0.5) | 0.557 |
HbA1c (mg%), mean (SD) | 5.8 (0.8) | 5.8 (0.8) | 5.7 (0.6) | 5.9 (0.9) | 0.182 |
TSH (µIU/mL), median (IQR) | 1.8 (1.3, 2.4) | 1.7 (1.3, 2.5) | 1.8 (1.3, 2.4) | 1.8 (1.3, 2.4) | 0.370 |
Homocysteine (µmol/L), mean (SD) | 15.7 (5.2) | 14.2 (4.0) | 15.8 (6.5) | 16.9 (4.3) | 0.001 * |
Folic acid (ng/mL), median (IQR) | 10.1 (7.7, 13.2) | 10.4 (7.4, 12.5) | 10.2 (8.1, 13.6) | 9.9 (7.7, 13.2) | 0.755 |
Vitamin B12 (pg/mL), median (IQR) | 643.2 (494.0, 839.9) | 651.6 (463.2, 829.7) | 622.0 (520.2, 805.6) | 633.1 (480.6, 846.5) | 0.903 |
White blood cell count, (cells/mm3), mean (SD) | 6.3 (1.6) | 6.5 (1.5) | 6.2 (1.8) | 6.3 (1.6) | 0.387 |
Hemoglobin, mean (SD) | 14.0 (1.3) | 13.6 (1.4) | 14.0 (1.2) | 14.4 (1.2) | <0.001 * |
Platelet count (103/mm3), mean (SD) | 258.7 (66.6) | 267.2 (62.4) | 259.3 (78.6) | 249.8 (56.1) | 0.182 |
Characteristic | All (n = 300) | DM (n = 44) | HT (n = 107) | DLP (n = 128) | IHD (n = 9) | Stroke (n = 3) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
r | p-Value | r | p-Value | r | p-Value | r | p-Value | r | p-Value | r | p-Value | |
Baseline and Clinical Characteristics | ||||||||||||
Age | −0.154 | 0.008 * | −0.252 | 0.099 | −0.186 | 0.055 | −0.148 | 0.096 | 0.456 | 0.218 | −0.991 | 0.085 |
BADL score | −0.115 | 0.047 | −0.138 | 0.372 | −0.120 | 0.217 | −0.143 | 0.108 | 0.124 | 0.751 | −0.134 | 0.915 |
IADL score | −0.054 | 0.365 | 0.081 | 0.613 | 0.056 | 0.584 | 0.049 | 0.599 | 0.002 | 0.976 | 0.008 | 0.884 |
BMI | 0.017 | 0.767 | 0.037 | 0.810 | 0.064 | 0.514 | 0.065 | 0.469 | −0.361 | 0.340 | −0.954 | 0.195 |
MoCA score | 0.051 | 0.380 | 0.269 | 0.078 | 0.136 | 0.162 | 0.115 | 0.195 | 0.069 | 0.860 | 0.134 | 0.915 |
TGDS score | −0.074 | 0.203 | −0.135 | 0.383 | −0.082 | 0.403 | −0.082 | 0.356 | −0.100 | 0.798 | 0.134 | 0.915 |
Waist circumference | 0.115 | 0.048 | 0.087 | 0.574 | 0.164 | 0.091 | 0.131 | 0.141 | −0.494 | 0.177 | 0.134 | 0.915 |
Systolic blood pressure | −0.131 | 0.023 | −0.172 | 0.263 | −0.087 | 0.370 | −0.175 | 0.048 | −0.253 | 0.511 | −0.941 | 0.220 |
Diastolic blood pressure | −0.016 | 0.783 | −0.186 | 0.228 | −0.058 | 0.552 | −0.041 | 0.645 | −0.162 | 0.677 | −0.841 | 0.365 |
Dietary pattern | ||||||||||||
Dietary zinc intake | 0.045 | 0.449 | −0.221 | 0.159 | −0.115 | 0.252 | −0.081 | 0.378 | 0.167 | 0.668 | −0.500 | 0.667 |
Biochemical parameters | ||||||||||||
Cholesterol | −0.008 | 0.884 | 0.040 | 0.796 | −0.065 | 0.508 | 0.038 | 0.667 | −0.301 | 0.431 | −1.000 | 0.015 |
Triglyceride | 0.153 | 0.008 * | 0.160 | 0.300 | 0.138 | 0.157 | 0.107 | 0.230 | 0.385 | 0.306 | −0.500 | 0.667 |
HDL-C | −0.025 | 0.665 | 0.202 | 0.188 | 0.022 | 0.821 | −0.029 | 0.742 | −0.189 | 0.626 | 0.158 | 0.899 |
LDL-C | −0.002 | 0.976 | 0.059 | 0.706 | −0.048 | 0.624 | 0.056 | 0.530 | −0.326 | 0.392 | −0.997 | 0.049 |
Glucose | 0.052 | 0.366 | 0.061 | 0.693 | 0.103 | 0.290 | 0.069 | 0.440 | −0.147 | 0.706 | −0.974 | 0.145 |
Albumin | 0.403 | <0.001 * | 0.523 | <0.001 * | 0.326 | 0.001 * | 0.377 | <0.001 * | −0.112 | 0.774 | 0.999 | 0.031 |
Calcium | 0.167 | 0.004 * | 0.034 | 0.826 | 0.130 | 0.181 | 0.103 | 0.249 | −0.499 | 0.171 | −0.998 | 0.036 |
Uric acid | 0.131 | 0.023 | 0.145 | 0.348 | −0.048 | 0.624 | 0.132 | 0.136 | −0.300 | 0.432 | 0.951 | 0.200 |
Phosphorus | −0.032 | 0.578 | 0.087 | 0.573 | 0.052 | 0.592 | 0.074 | 0.409 | −0.473 | 0.199 | 1.000 | 0.006 * |
HbA1c | 0.039 | 0.502 | −0.127 | 0.413 | 0.003 | 0.973 | 0.071 | 0.425 | 0.057 | 0.884 | −0.925 | 0.248 |
TSH | 0.079 | 0.174 | 0.167 | 0.278 | 0.123 | 0.208 | 0.165 | 0.062 | −0.167 | 0.668 | 1.000 | 0.010 |
Homocysteine | 0.248 | < 0.001 * | 0.370 | 0.013 | 0.196 | 0.043 | 0.255 | 0.004 * | 0.135 | 0.729 | 0.941 | 0.220 |
Folic acid | 0.047 | 0.419 | 0.055 | 0.724 | 0.079 | 0.420 | 0.046 | 0.607 | 0.192 | 0.620 | 0.500 | 0.667 |
Vitamin B12 | −0.003 | 0.962 | −0.093 | 0.547 | −0.096 | 0.326 | −0.003 | 0.974 | 0.183 | 0.620 | −1.000 | 0.010 |
Hemoglobin | 0.196 | 0.001 * | 0.115 | 0.456 | 0.165 | 0.089 | 0.176 | 0.047 | −0.298 | 0.436 | 0.878 | 0.318 |
Characteristic | Model 1 | Model 2 | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
T1 versus T3 (Reference) | ||||||
Age > 65 years | 1.724 | 0.792−3.750 | 0.170 | 1.789 | 0.721−4.441 | 0.210 |
Female | 3.293 | 1.717−6.317 | <0.001 * | 1.340 | 0.529−3.397 | 0.537 |
Education ≤ 12 years | 2.406 | 1.095−5.288 | 0.029 | 2.462 | 0.936−6.472 | 0.068 |
Income ≤ 200,000 THB per year | 1.805 | 0.970−3.359 | 0.062 | 1.482 | 0.724−3.034 | 0.281 |
MoCA < 21 | 1.813 | 0.669−4.914 | 0.242 | 1.789 | 0.560−5.716 | 0.326 |
TGDS > 5 | 1.816 | 0.945−3.491 | 0.074 | 2.243 | 1.055−4.767 | 0.036 |
Dietary zinc intake (mg/day) | 1.020 | 0.838−1.240 | 0.844 | |||
Systolic blood pressure (mmHg) | 0.999 | 0.981−1.017 | 0.925 | |||
BADL score | 6.523 | 0.808−52.638 | 0.078 | |||
Albumin (g/dL) | 0.011 | 0.002−0.070 | <0.001 * | |||
Calcium (mg/dL) | 1.426 | 0.403−5.046 | 0.582 | |||
Triglyceride (mg/dL) | 0.996 | 0.989−1.002 | 0.202 | |||
Hemoglobin (g/dL) | 0.822 | 0.591−1.142 | 0.242 | |||
Homocysteine (µmol/L) | 0.975 | 0.904−1.052 | 0.514 |
Characteristic | Model 1 | Model 2 | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
T2 versus T3 (Reference) | ||||||
Age > 65 years | 0.904 | 0.396−2.066 | 0.811 | 0.602 | 0.231−1.569 | 0.299 |
Female | 2.130 | 1.121−4.046 | 0.021 | 1.459 | 0.601−3.539 | 0.404 |
Education ≤ 12 years | 1.892 | 0.851−4.204 | 0.118 | 2.127 | 0.828−5.465 | 0.117 |
Income ≤ 200,000 THB per year | 1.147 | 0.629−2.092 | 0.654 | 0.936 | 0.480−1.825 | 0.847 |
MoCA < 21 | 1.424 | 0.515−3.938 | 0.496 | 1.179 | 0.381−3.647 | 0.775 |
TGDS > 5 | 1.651 | 0.890−3.062 | 0.112 | 1.682 | 0.842−3.360 | 0.141 |
Dietary zinc intake (mg/day) | 0.984 | 0.820−1.182 | 0.865 | |||
Systolic blood pressure (mmHg) | 1.016 | 1.000−1.033 | 0.054 | |||
BADL score | 0.599 | 0.251−1.432 | 0.249 | |||
Albumin (g/dL) | 0.204 | 0.037−1.114 | 0.066 | |||
Calcium (mg/dL) | 1.666 | 0.514−5.401 | 0.395 | |||
Triglyceride (mg/dL) | 0.993 | 0.987−0.999 | 0.022 | |||
Hemoglobin (g/dL) | 0.811 | 0.591−1.114 | 0.719 | |||
Homocysteine (µmol/L) | 0.945 | 0.696−1.284 | 0.641 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruangritchankul, S.; Sumananusorn, C.; Sirivarasai, J.; Monsuwan, W.; Sritara, P. Association between Dietary Zinc Intake, Serum Zinc Level and Multiple Comorbidities in Older Adults. Nutrients 2023, 15, 322. https://doi.org/10.3390/nu15020322
Ruangritchankul S, Sumananusorn C, Sirivarasai J, Monsuwan W, Sritara P. Association between Dietary Zinc Intake, Serum Zinc Level and Multiple Comorbidities in Older Adults. Nutrients. 2023; 15(2):322. https://doi.org/10.3390/nu15020322
Chicago/Turabian StyleRuangritchankul, Sirasa, Chutima Sumananusorn, Jintana Sirivarasai, Wutarak Monsuwan, and Piyamitr Sritara. 2023. "Association between Dietary Zinc Intake, Serum Zinc Level and Multiple Comorbidities in Older Adults" Nutrients 15, no. 2: 322. https://doi.org/10.3390/nu15020322
APA StyleRuangritchankul, S., Sumananusorn, C., Sirivarasai, J., Monsuwan, W., & Sritara, P. (2023). Association between Dietary Zinc Intake, Serum Zinc Level and Multiple Comorbidities in Older Adults. Nutrients, 15(2), 322. https://doi.org/10.3390/nu15020322