A Pleiotropic Nuclear Hormone Labelled Hundred Years Ago Vitamin D
Funding
Conflicts of Interest
References
- Carlberg, C. Vitamin D in the context of evolution. Nutrients 2022, 14, 3018. [Google Scholar] [CrossRef]
- Alsufiani, H.M.; AlGhamdi, S.A.; AlShaibi, H.F.; Khoja, S.O.; Saif, S.F.; Carlberg, C. A single vitamin D3 bolus supplementation improves vitamin D status and reduces proinflammatory cytokines in healthy females. Nutrients 2022, 14, 3963. [Google Scholar] [CrossRef]
- Arora, J.; Patel, D.R.; Nicol, M.J.; Field, C.J.; Restori, K.H.; Wang, J.; Froelich, N.E.; Katkere, B.; Terwilliger, J.A.; Weaver, V.; et al. Vitamin D and the ability to produce 1,25(OH)2D are critical for protection from vral infection of the lungs. Nutrients 2022, 14, 3061. [Google Scholar] [CrossRef]
- Carlberg, C. Vitamin D and its target genes. Nutrients 2022, 14, 1354. [Google Scholar] [CrossRef]
- Cui, X.; Eyles, D.W. Vitamin D and the central nervous system: Causative and preventative mechanisms in brain disorders. Nutrients 2022, 14, 4353. [Google Scholar] [CrossRef]
- Duval, G.T.; Schott, A.M.; Sanchez-Rodriguez, D.; Herrmann, F.R.; Annweiler, C. Month-of-birth effect on muscle mass and srength in community-dwelling older women: The French EPIDOS cohort. Nutrients 2022, 14, 4874. [Google Scholar] [CrossRef]
- Fleet, J.C. Vitamin D-mediated regulation of intestinal calcium absorption. Nutrients 2022, 14, 3351. [Google Scholar] [CrossRef]
- Grant, W.B.; Boucher, B.J.; Al Anouti, F.; Pilz, S. Comparing the evidence from observational studies and randomized controlled trials for nonskeletal health effects of vitamin D. Nutrients 2022, 14, 3811. [Google Scholar] [CrossRef]
- Hussain, S.; Yates, C.; Campbell, M.J. Vitamin D and systems biology. Nutrients 2022, 14, 5197. [Google Scholar] [CrossRef]
- Hypponen, E.; Vimaleswaran, K.S.; Zhou, A. Genetic determinants of 25-hydroxyvitamin D concentrations and their relevance to public health. Nutrients 2022, 14, 4408. [Google Scholar] [CrossRef]
- Latic, N.; Erben, R.G. Interaction of vitamin D with peptide hormones with emphasis on parathyroid hormone, FGF23, and the renin-angiotensin-aldosterone system. Nutrients 2022, 14, 5186. [Google Scholar] [CrossRef] [PubMed]
- Maestro, M.A.; Seoane, S. The centennial collection of VDR ligands: Metabolites, analogs, hybrids and non-secosteroidal ligands. Nutrients 2022, 14, 4927. [Google Scholar] [CrossRef] [PubMed]
- Marcinkowska, E. Vitamin D derivatives in acute myeloid leukemia: The matter of selecting the right targets. Nutrients 2022, 14, 2851. [Google Scholar] [CrossRef] [PubMed]
- Munoz, A.; Grant, W.B. Vitamin D and cancer: An historical overview of the epidemiology and mechanisms. Nutrients 2022, 14, 1448. [Google Scholar] [CrossRef] [PubMed]
- Piatek, K.; Schepelmann, M.; Kallay, E. The effect of vitamin D and its analogs in ovarian cancer. Nutrients 2022, 14, 3867. [Google Scholar] [CrossRef] [PubMed]
- Qayyum, S.; Slominski, R.M.; Raman, C.; Slominski, A.T. Novel CYP11A1-derived vitamin D and lumisterol biometabolites for the management of COVID-19. Nutrients 2022, 14, 4779. [Google Scholar] [CrossRef] [PubMed]
- Rochel, N. Vitamin D and its receptor from a structural perspective. Nutrients 2022, 14, 2847. [Google Scholar] [CrossRef]
- St-Arnaud, R.; Arabian, A.; Kavame, D.; Kaufmann, M.; Jones, G. Vitamin D and diseases of mineral homeostasis: A Cyp24a1 R396W humanized preclinical model of infantile hypercalcemia type 1. Nutrients 2022, 14, 3221. [Google Scholar] [CrossRef]
- Żmijewski, M.A. Nongenomic activities of vitamin D. Nutrients 2022, 14, 5104. [Google Scholar] [CrossRef]
- van Driel, M.; van Leeuwen, J.P.T.M. Vitamin D and osteoblasts: An endo/auto/paracrine story. Nutrients 2022, 14. under review. [Google Scholar]
- Holick, M. The one hundred year anniversary of the discovery of the sunshine vitamin D: Historical, personal and evidence based perspectives. Nutrients 2023, 15. under review. [Google Scholar] [CrossRef]
- McMollum, E.V.; Simmonds, N.; Becker, J.E.; Shipley, P.G. Studies on experimental rickets: An experimental demonstration of the existence of a vitamin which promotes calcium deposition. J. Biol. Chem. 1922, 52, 293–298. [Google Scholar] [CrossRef]
- Holick, M.F. Photobiology of vitamin D. In Vitamin D, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 13–22. [Google Scholar] [CrossRef]
- Holick, M.F. Resurrection of vitamin D deficiency and rickets. J. Clin. Investig. 2006, 116, 2062–2072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malmberg, H.R.; Hanel, A.; Taipale, M.; Heikkinen, S.; Carlberg, C. Vitamin D treatment sequence is critical for transcriptome modulation of immune challenged primary human cells. Front. Immunol. 2021, 12, 754056. [Google Scholar] [CrossRef] [PubMed]
- Bilezikian, J.P.; Bikle, D.; Hewison, M.; Lazaretti-Castro, M.; Formenti, A.M.; Gupta, A.; Madhavan, M.V.; Nair, N.; Babalyan, V.; Hutchings, N.; et al. Vitamin D and COVID-19. Eur. J. Endocrinol. 2020, 183, R133–R147. [Google Scholar] [CrossRef]
- Sita-Lumsden, A.; Lapthorn, G.; Swaminathan, R.; Milburn, H.J. Reactivation of tuberculosis and vitamin D deficiency: The contribution of diet and exposure to sunlight. Thorax 2007, 62, 1003–1007. [Google Scholar] [CrossRef] [Green Version]
- Hypponen, E.; Laara, E.; Reunanen, A.; Jarvelin, M.R.; Virtanen, S.M. Intake of vitamin D and risk of type 1 diabetes: A birth-cohort study. Lancet 2001, 358, 1500–1503. [Google Scholar] [CrossRef]
- Munger, K.L.; Levin, L.I.; Hollis, B.W.; Howard, N.S.; Ascherio, A. Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 2006, 296, 2832–2838. [Google Scholar] [CrossRef] [Green Version]
- Carlberg, C. Genome-wide (over)view on the actions of vitamin D. Front. Physiol. 2014, 5, 167. [Google Scholar] [CrossRef] [Green Version]
- Kim-Hellmuth, S.; Aguet, F.; Oliva, M.; Munoz-Aguirre, M.; Kasela, S.; Wucher, V.; Castel, S.E.; Hamel, A.R.; Vinuela, A.; Roberts, A.L.; et al. Cell type-specific genetic regulation of gene expression across human tissues. Science 2020, 369, 6589. [Google Scholar] [CrossRef]
- Hanel, A.; Carlberg, C. Vitamin D and evolution: Pharmacologic implications. Biochem. Pharmacol. 2020, 173, 113595. [Google Scholar] [CrossRef]
- Muller, V.; de Boer, R.J.; Bonhoeffer, S.; Szathmary, E. An evolutionary perspective on the systems of adaptive immunity. Biol. Rev. Camb. Philos. Soc. 2018, 93, 505–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanherwegen, A.S.; Gysemans, C.; Mathieu, C. Vitamin D endocrinology on the cross-road between immunity and metabolism. Mol. Cell Endocrinol. 2017, 453, 52–67. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carlberg, C. A Pleiotropic Nuclear Hormone Labelled Hundred Years Ago Vitamin D. Nutrients 2023, 15, 171. https://doi.org/10.3390/nu15010171
Carlberg C. A Pleiotropic Nuclear Hormone Labelled Hundred Years Ago Vitamin D. Nutrients. 2023; 15(1):171. https://doi.org/10.3390/nu15010171
Chicago/Turabian StyleCarlberg, Carsten. 2023. "A Pleiotropic Nuclear Hormone Labelled Hundred Years Ago Vitamin D" Nutrients 15, no. 1: 171. https://doi.org/10.3390/nu15010171
APA StyleCarlberg, C. (2023). A Pleiotropic Nuclear Hormone Labelled Hundred Years Ago Vitamin D. Nutrients, 15(1), 171. https://doi.org/10.3390/nu15010171