Sex- and Age-Dependent Changes in the Adiponectin/Leptin Ratio in Experimental Diet-Induced Obesity in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Blood and Tissue Collection
2.3. Blood Measurements
2.4. Oral Glucose Tolerance Tests
2.5. Intraperitoneal Insulin Tolerance Test
2.6. Statistical Analysis
3. Results
3.1. Effect of Sexual Differences and Diet on Energy Homeostasis
3.2. Sex and Age-Dependent Differences in Glucose Metabolism
3.3. Sex-Specific Effect of HFD on Adiponectin/Leptin Ratio
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 1289 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frühbeck, G.; Busetto, L.; Dicker, D.; Yumuk, V.; Goossens, G.H.; Hebebrand, J.; Halford, J.G.; Farpour-Lambert, N.J.; Blaak, E.E.; Woodward, E.; et al. The ABCD of Obesity: An EASO Position Statement on a Diagnostic Term with Clinical and Scientific Implications. Obes. Facts 2019, 12, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Yárnoz-Esquiroz, P.; Olazarán, L.; Aguas-Ayesa, M.; Perdomo, C.M.; García-Goñi, M.; Silva, C.; Fernández-Formoso, J.A.; Escalada, J.; Montecucco, F.; Portincasa, P.; et al. ‘Obesities’: Position statement on a complex disease entity with multifaceted drivers. Eur. J. Clin. Investig. 2022, 52, e13811. [Google Scholar] [CrossRef] [PubMed]
- Catalán, V.; Avilés-Olmos, I.; Rodríguez, A.; Becerril, S.; Fernández-Formoso, J.A.; Kiortsis, D.; Portincasa, P.; Gómez-Ambrosi, J.; Frühbeck, G. Time to Consider the “Exposome Hypothesis” in the Development of the Obesity Pandemic. Nutrients 2022, 14, 1597. [Google Scholar] [CrossRef]
- Bourgeois, F.; Alexiu, A.; Lemonnter, D. Dietary-induced obesity: Effect of dietary fats on adipose tissue cellularity in mice. Br. J. Nutr. 1983, 49, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Nordström, A.; Hadrévi, J.; Olsson, T.; Franks, P.W.; Nordström, P. Higher Prevalence of Type 2 Diabetes in Men than in Women Is Associated with Differences in Visceral Fat Mass. J. Clin. Endocrinol. Metab. 2016, 101, 3740–3746. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Lu, J.; Weng, J.; Jia, W.; Ji, L.; Xiao, J.; Shan, Z.; Liu, J.; Tian, H.; Ji, Q.; et al. Prevalence of diabetes among men and women in China. N. Engl. J. Med. 2010, 362, 1090–1101. [Google Scholar] [CrossRef]
- Rebuffé-Scrive, M.; Surwit, R.; Feinglos, M.; Kuhn, C.; Rodin, J. Regional fat distribution and metabolism in a new mouse model (C57BL/6J) of non-insulin-dependent diabetes mellitus. Metabolism 1993, 42, 1405–1409. [Google Scholar] [CrossRef]
- Lovejoy, J.C.; Sainsbury, A.; Stock Conference Working Group. Sex differences in obesity and the regulation of energy homeostasis. Obes. Rev. 2009, 10, 154–167. [Google Scholar] [CrossRef]
- Oraha, J.; Enriquez, R.F.; Herzog, H.; Lee, N.J. Sex-specific changes in metabolism during the transition from chow to high-fat diet feeding are abolished in response to dieting in C57BL/6J mice. Int. J. Obes. 2022, 46, 1749–1758. [Google Scholar] [CrossRef]
- Pettersson, U.S.; Waldén, T.B.; Carlsson, P.-O.; Jansson, L.; Phillipson, M. Female mice are protected against high-fat diet induced metabolic syndrome and increase the regulatory T cell population in adipose tissue. PLoS ONE 2012, 7, e46057. [Google Scholar] [CrossRef] [Green Version]
- Mancuso, P.; Bouchard, B. The Impact of Aging on Adipose Function and Adipokine Synthesis. Front. Endocrinol. 2019, 10, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Muruzabal, F.J.; Frühbeck, G.; Gomez-Ambrosi, J.; Archanco, M.; Burrell, M.A. Immunocytochemical detection of leptin in non-mammalian vertebrate stomach. Gen. Comp. Endocrinol. 2002, 128, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Stern, J.H.; Rutkowski, J.M.; Scherer, P.E. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 2016, 23, 770–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frühbeck, G.; Catalán, V.; Rodríguez, A.; Ramírez, B.; Becerril, S.; Salvador, J.; Portincasa, P.; Colina, I.; Gómez-Ambrosi, J. Involvement of the leptin-adiponectin axis in inflammation and oxidative stress in themetabolic syndrome. Sci. Rep. 2017, 7, 6619. [Google Scholar] [CrossRef] [Green Version]
- Unamuno, X.; Izaguirre, M.; Gómez-Ambrosi, J.; Rodríguez, A.; Ramírez, B.; Becerril, S.; Valentí, V.; Moncada, R.; Silva, C.; Salvador, J.; et al. Increase of the Adiponectin/Leptin Ratio in Patients with Obesity and Type 2 Diabetes after Roux-en-Y Gastric Bypass. Nutrients 2019, 11, 2069. [Google Scholar] [CrossRef] [Green Version]
- Bailey, C.J.; Flatt, P. Hormonal control of glucose homeostasis during development and ageing in mice. Metabolism 1982, 31, 238–246. [Google Scholar] [CrossRef]
- Barzilai, N.; Huffman, D.M.; Muzumdar, R.H.; Bartke, A. The Critical Role of Metabolic Pathways in Aging. Diabetes 2012, 61, 1315–1322. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Sengupta, P. Men and mice: Relating their ages. Life Sci. 2016, 152, 244–248. [Google Scholar] [CrossRef]
- Rodríguez, A.; Gomez-Ambrosi, J.; Catalan, V.; Rotellar, F.; Valentí, V.; Silva, C.; Mugueta, M.D.C.; Pulido, M.R.; Vázquez, R.; Salvador, J.; et al. The ghrelin O-acyltransferase-ghrelin system reduces TNF-α-induced apoptosis and autophagy in human visceral adipocytes. Diabetologia 2012, 55, 3038–3050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catalan, V.; Gómez-Ambrosi, J.; Rodríguez, A.; Ramírez, B.; Rotellar, F.; Valentí, V.; Silva, C.; Gil, M.J.; Fernández-Real, J.M.; Salvador, J.; et al. Increased levels of calprotectin in obesity are related to macrophage content: Impact on inflammation and effect of weight loss. Mol. Med. 2011, 17, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- Mauvais-Jarvis, F.; Arnold, A.P.; Reue, K. A Guide for the Design of Pre-clinical Studies on Sex Differences in Metabolism. Cell Metab. 2017, 25, 1216–1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beery, A.K.; Zucker, I. Sex bias in neuroscience and biomedical research. Neurosci. Biobehav. Rev. 2011, 35, 565–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sara, B.; Amaia, R.; Victoria, C.; Beatriz, R.; Amaia, M.; Gabriela, N.; Javier, G.-A.; Gema, F. Putting gender on the agenda. Nature 2010, 465, 665. Available online: https://www.nature.com/articles/465665a (accessed on 19 December 2022).
- Clayton, J.A.; Collins, F.S. Policy: NIH to balance sex in cell and animal studies. Nature 2014, 509, 282–283. [Google Scholar] [CrossRef] [Green Version]
- Palmer, B.F.; Clegg, D.J. The sexual dimorphism of obesity. Mol. Cell. Endocrinol. 2015, 402, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Goo, B.; Ahmadieh, S.; Zarzour, A.; Yiew, N.K.H.; Kim, D.; Shi, H.; Greenway, J.; Cave, S.; Nguyen, J.; Aribindi, S.; et al. Sex-Dependent Role of Adipose Tissue HDAC9 in Diet-Induced Obesity and Metabolic Dysfunction. Cells 2022, 11, 2698. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Farias, M.; Fos-Domenech, J.; Serra, D.; Herrero, L.; Sánchez-Infantes, D. White adipose tissue dysfunction in obesity and aging. Biochem. Pharmacol. 2021, 192, 114723. [Google Scholar] [CrossRef]
- Frühbeck, G.; Catalán, V.; Rodríguez, A.; Ramírez, B.; Becerril, S.; Salvador, J.; Colina, I.; Gómez-Ambrosi, J. Adiponectin-leptin Ratio is a Functional Biomarker of Adipose Tissue Inflammation. Nutrients 2019, 11, 454. [Google Scholar] [CrossRef] [Green Version]
- West, D.B.; Boozer, C.N.; Moody, D.L.; Atkinson, R.L. Dietary obesity in nine inbred mouse strains. Am. J. Physiol. 1992, 262, R1025–R1032. [Google Scholar] [CrossRef] [PubMed]
- Iena, F.M.; Jul, J.B.; Vegger, J.B.; Lodberg, A.; Thomsen, J.S.; Brüel, A.; Lebeck, J. Sex-Specific Effect of High-Fat Diet on Glycerol Metabolism in Murine Adipose Tissue and Liver. Front. Endocrinol. 2020, 11, 577650. [Google Scholar] [CrossRef] [PubMed]
- Berglund, E.D.; Li, C.Y.; Poffenberger, G.; Ayala, J.E.; Fueger, P.T.; Willis, S.E.; Jewell, M.M.; Powers, A.C.; Wasserman, D.H. Glucose metabolism in vivo in four commonly used inbred mouse strains. Diabetes 2008, 57, 1790–1799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stubbins, R.E.; Holcomb, V.B.; Hong, J.; Núñez, N.P. Estrogen modulates abdominal adiposity and protects female mice from obesity and impaired glucose tolerance. Eur. J. Nutr. 2011, 51, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Frühbeck, G.; Gomez-Ambrosi, J.; Salvador, J. Leptin-induced lipolysis opposes the tonic inhibition of endogenous adenosine in white adipocytes. FASEB J. 2001, 15, 333–340. [Google Scholar] [CrossRef]
- Frühbeck, G. Obesity: Aquaporin enters the picture. Nature 2005, 438, 436–437. [Google Scholar] [CrossRef]
- Poulain-Godefroy, O.; Lecoeur, C.; Pattou, F.; Frühbeck, G.; Froguel, P. Inflammation is associated with a decrease of lipogenic factors in omental fat in women. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2008, 295, R1–R7. [Google Scholar] [CrossRef]
- Xu, A.; Chan, K.W.; Hoo, R.L.; Wang, Y.; Tan, K.C.; Zhang, J.; Chen, B.; Lam, M.C.; Tse, C.; Cooper, G.J.; et al. Testosterone selectively reduces the high molecular weight form of adiponectin by inhibiting its secretion from adipocytes. J. Biol. Chem. 2005, 280, 18073–18080. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Pérez, Y.; Amengual-Cladera, E.; Català-Niell, A.; Thomàs-Moyà, E.; Gianotti, M.; Proenza, A.M.; Lladó, I. Gender dimorphism in high-fat-diet-induced insulin resistance in skeletal muscle of aged rats. Cell. Physiol. Biochem. 2008, 22, 539–548. [Google Scholar] [CrossRef]
- Kadowaki, T.; Yamauchi, T.; Kubota, N.; Hara, K.; Ueki, K.; Tobe, K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Investig. 2006, 116, 1784–1792. [Google Scholar] [CrossRef] [Green Version]
- Bullen, J.W., Jr.; Bluher, S.; Kelesidis, T.; Mantzoros, C.S. Regulation of adiponectin and its receptors in response to development of diet-induced obesity in mice. Am. J. Physiol. Endocrinol. Metab. 2007, 292, E1079–E1086. [Google Scholar] [CrossRef] [PubMed]
- Marecki, J.C.; Ronis, M.J.; Shankar, K.; Badger, T.M. Hyperinsulinemia and ectopic fat deposition can develop in the face of hyperadiponectinemia in young obese rats. J. Nutr. Biochem. 2011, 22, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Jang, A.Y.; Scherer, P.E.; Kim, J.Y.; Lim, S.; Koh, K.K. Adiponectin and cardiometabolic trait and mortality: Where do we go? Cardiovasc. Res. 2022, 118, 2074–2084. [Google Scholar] [CrossRef] [PubMed]
- Salpeter, S.R.; Walsh, J.M.; Ormiston, T.M.; Greyber, E.; Buckley, N.S.; Salpeter, E.E. Meta-analysis: Effect of hormone-replacement therapy on components of the metabolic syndrome in postmenopausal women. Diabetes Obes. Metab. 2006, 8, 538–554. [Google Scholar] [CrossRef] [PubMed]
- Misso, M.L.; Murata, Y.; Boon, W.C.; Jones, M.E.; Britt, K.L.; Simpson, E.R. Cellular and molecular characterization of the adipose phenotype of the aromatase-deficient mouse. Endocrinology 2003, 144, 1474–1480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mauvais-Jarvis, F. Estrogen and androgen receptors: Regulators of fuel homeostasis and emerging targets for diabetes and obesity. Trends Endocrinol. Metab. 2011, 22, 24–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz, A.; López-Grueso, R.; Gambini, J.; Monleón, D.; Mas-Bargues, C.; Abdelaziz, K.M.; Vina, J.; Borrás, C. Sex Differences in Age-Associated Type 2 Diabetes in Rats-Role of Estrogens and Oxidative Stress. Oxidative Med. Cell. Longev. 2019, 2019, 6734836. [Google Scholar] [CrossRef]
- Barros, R.P.; Gustafsson, J.A. Estrogen receptors and the metabolic network. Cell Metab. 2011, 14, 289–299. [Google Scholar] [CrossRef] [Green Version]
- Pitteloud, N.; Mootha, V.K.; Dwyer, A.A.; Hardin, M.; Lee, H.; Eriksson, K.F.; Tripathy, D.; Yialamas, M.; Groop, L.; Elahi, D.; et al. Relationship between testosterone levels, insulin sensitivity, and mitochondrial function in men. Diabetes Care 2005, 28, 1636–1642. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Iemitsu, M.; Aizawa, K.; Ajisaka, R. Testosterone and DHEA activate the glucose metabolism-related signaling pathway in skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 2008, 294, E961–E968. [Google Scholar] [CrossRef] [Green Version]
- Pal, M.; Khan, J.; Kumar, R.; Surolia, A.; Gupta, S. Testosterone supplementation improves insulin responsiveness in HFD fed male T2DM mice and potentiates insulin signaling in the skeletal muscle and C2C12 myocyte cell line. PLoS ONE 2019, 14, e0224162. [Google Scholar] [CrossRef] [PubMed]
- Davidyan, A.; Pathak, S.; Baar, K.; Bodine, S.C. Maintenance of muscle mass in adult male mice is independent of testosterone. PLoS ONE 2021, 16, e0240278. [Google Scholar] [CrossRef] [PubMed]
12 WEEKS | |||||||
---|---|---|---|---|---|---|---|
Males | Females | ANOVA 12 weeks | |||||
ND | HFD | ND | HFD | Sex | Diet | Sex*Diet | |
BW(g) | 26.1 ± 0.3 | 26.4 ± 0.6 | 21.6 ± 0.3 | 21.5 ± 0.2 | <0.001 | 0.834 | 0.618 |
Relative FI (kcal/100 g BW) | 42.8 ± 2.4 | 49.3 ± 1.4 | 54.5 ± 1.5 | 56.6 ± 1.3 | <0.001 | 0.023 | 0.246 |
Rectal temp (°C) | 36.7 ± 0.1 | 37.5 ± 0.2 b | 36.7 ± 0.1 | 36.8 ± 0.1 e | 0.010 | 0.001 | 0.010 |
FER | 0.15 ± 0.01 | 0.17 ± 0.01 | 0.09 ± 0.01 | 0.14 ± 0.01 | <0.001 | <0.001 | 0.091 |
BAT (g/100 g BW) | 0.31 ± 0.05 | 0.32 ± 0.02 | 0.30 ± 0.01 | 0.30 ± 0.01 | 0.309 | 0.691 | 0.587 |
GWAT (g/100 g BW) | 0.65 ± 0.03 | 1.04 ± 0.09 c | 0.40 ± 0.03 e | 0.30 ± 0.03 f | <0.001 | 0.010 | <0.001 |
SCWAT (g/100 g BW) | 0.56 ± 0.07 | 0.88 ± 0.09 c | 0.49 ± 0.06 | 0.45 ± 0.02 f | 0.001 | 0.023 | 0.004 |
PRWAT (g/100 g BW) | 0.15 ± 0.02 | 0.33 ± 0.05 c | 0.13 ± 0.01 | 0.12 ± 0.02 f | <0.001 | 0.003 | 0.002 |
Adiposity index (g/100 g BW) | 1.35 ± 0.11 | 2.25 ± 0.23 c | 1.02 ± 0.11 | 0.87 ± 0.07 f | <0.001 | 0.013 | <0.001 |
Leptin (ng/mL) | 0.60 ± 0.48 | 0.91 ± 0.29 | 0.24 ± 0.06 | 0.28 ± 0.05 | 0.132 | 0.565 | 0.680 |
Adpn (μg/mL) | 23.1 ± 3.4 | 22.4 ± 1.4 | 34.5 ± 4.4 | 22.8 ± 1.9 | 0.049 | 0.042 | 0.065 |
32 WEEKS | |||||||
Males | Females | ANOVA 32 weeks | |||||
ND | HFD | ND | HFD | Sex | Diet | Sex*Diet | |
BW(g) | 32.9 ± 1.2 | 36.9 ± 1.5 | 25.3 ± 0.3 | 27.2 ± 1.0 | <0.001 | 0.016 | 0.547 |
Relative FI (kcal/100 g BW) | 33.3 ± 1.5 | 34.9 ± 1.4 | 53.60 ± 1.49 | 47.06 ± 2.03 | <0.001 | 0.046 | 0.104 |
Rectal temp (°C) | 36.6 ± 0.1 | 37.5 ± 0.2 b | 37.1 ± 0.1 d | 36.8 ± 0.1 d | 0.349 | 0.046 | <0.001 |
FER | 0.05 ± 0.00 | 0.08 ± 0.01 | 0.01 ± 0.00 | 0.04 ± 0.01 | <0.001 | 0.011 | 0.933 |
BAT (g/100 g BW) | 0.44 ± 0.03 | 0.48 ± 0.04 | 0.34 ± 0.02 | 0.36 ± 0.02 | <0.001 | 0.325 | 0.795 |
GWAT (g/100 g BW) | 1.57 ± 0.15 | 2.31 ± 0.19 c | 0.68 ± 0.06 f | 0.81 ± 0.09 f | <0.001 | 0.004 | 0.038 |
SCWAT (g/100 g BW) | 1.26 ± 0.13 | 1.94 ± 0.17 | 0.85 ± 0.06 | 1.02 ± 0.15 | <0.001 | 0.004 | 0.070 |
PRWAT (g/100 g BW) | 0.50 ± 0.06 | 0.73 ± 0.05 | 0.27 ± 0.02 | 0.50 ± 0.14 | <0.001 | 0.007 | 0.772 |
Adiposity index (g/100 g BW) | 3.37 ± 0.34 | 4.85 ± 0.40 | 1.80 ± 0.13 | 2.33 ± 0.34 | <0.001 | 0.004 | 0.155 |
Leptin (ng/mL) | 1.16 ± 0.14 | 6.49 ± 1.03 c | 1.27 ± 0.33 | 1.42 ± 0.67 f | 0.004 | 0.002 | 0.003 |
Adpn (μg/mL) | 36.8 ± 1.9 | 39.9 ± 2.6 | 34.9 ± 4.3 | 36.8 ± 7.1 | 0.164 | 0.788 | 0.820 |
12 WEEKS | |||||||
---|---|---|---|---|---|---|---|
Males | Females | ANOVA 12 weeks | |||||
ND | HFD | ND | HFD | Sex | Diet | Sex*Diet | |
Glucose (mg/dL) | 75.2 ± 3.4 | 81.8 ± 4.7 | 70.3 ± 3.4 | 72.4 ± 1.6 | 0.044 | 0.212 | 0.514 |
Insulin (ng/mL) | 0.39 ± 0.04 | 0.60 ± 0.05 b | 0.45 ± 0.05 | 0.39 ± 0.02 e | 0.104 | 0.106 | 0.004 |
HOMA-IR | 0.09 ± 0.01 | 0.14 ± 0.02 a | 0.09 ± 0.01 | 0.08 ± 0.01 d | 0.038 | 0.140 | 0.019 |
QUICKI | 0.67 ± 0.03 | 0.58 ± 0.02 | 0.64 ± 0.01 | 0.66 ± 0.01 | 0.282 | 0.202 | 0.034 |
FFA (mmol/L) | 0.70 ± 0.06 | 0.78 ± 0.05 | 0.83 ± 0.14 | 0.85 ± 0.14 | 0.188 | 0.483 | 0.704 |
Adipo-IR | 0.08 ± 0.01 | 0.13 ± 0.01 a | 0.11 ± 0.04 | 0.09 ± 0.01 c | 0.748 | 0.589 | 0.039 |
32 WEEKS | |||||||
Males | Females | ANOVA 32 weeks | |||||
ND | HFD | ND | HFD | Sex | Diet | Sex*Diet | |
Glucose (mg/dL) | 73.0 ± 3.6 | 86.7 ± 4.4 | 65.6 ± 3.9 | 76.4 ± 2.1 | 0.007 | <0.001 | 0.270 |
Insulin (ng/mL) | 0.97 ± 0.13 | 0.86 ± 0.13 | 0.50 ± 0.03 | 0.48 ± 0.02 | 0.003 | 0.612 | 0.719 |
HOMA-IR | 0.20 ± 0.04 | 0.23 ± 0.05 | 0.09 ± 0.01 | 0.11 ± 0.01 | 0.014 | 0.627 | 0.843 |
QUICKI | 0.54 ± 0.02 | 0.53 ± 0.02 | 0.64 ± 0.02 | 0.61 ± 0.01 | <0.001 | 0.685 | 0.358 |
FFA (mmol/L) | 0.72 ± 0.06 | 0.75 ± 0.06 | 0.91 ± 0.10 | 0.84 ± 0.07 | 0.054 | 0.807 | 0.521 |
Adipo-IR | 0.20 ± 0.03 | 0.21 ± 0.05 | 0.12 ± 0.02 | 0.12 ± 0.01 | 0.042 | 0.864 | 0.938 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becerril, S.; Rodríguez, A.; Catalán, V.; Ramírez, B.; Mentxaka, A.; Neira, G.; Gómez-Ambrosi, J.; Frühbeck, G. Sex- and Age-Dependent Changes in the Adiponectin/Leptin Ratio in Experimental Diet-Induced Obesity in Mice. Nutrients 2023, 15, 73. https://doi.org/10.3390/nu15010073
Becerril S, Rodríguez A, Catalán V, Ramírez B, Mentxaka A, Neira G, Gómez-Ambrosi J, Frühbeck G. Sex- and Age-Dependent Changes in the Adiponectin/Leptin Ratio in Experimental Diet-Induced Obesity in Mice. Nutrients. 2023; 15(1):73. https://doi.org/10.3390/nu15010073
Chicago/Turabian StyleBecerril, Sara, Amaia Rodríguez, Victoria Catalán, Beatriz Ramírez, Amaia Mentxaka, Gabriela Neira, Javier Gómez-Ambrosi, and Gema Frühbeck. 2023. "Sex- and Age-Dependent Changes in the Adiponectin/Leptin Ratio in Experimental Diet-Induced Obesity in Mice" Nutrients 15, no. 1: 73. https://doi.org/10.3390/nu15010073
APA StyleBecerril, S., Rodríguez, A., Catalán, V., Ramírez, B., Mentxaka, A., Neira, G., Gómez-Ambrosi, J., & Frühbeck, G. (2023). Sex- and Age-Dependent Changes in the Adiponectin/Leptin Ratio in Experimental Diet-Induced Obesity in Mice. Nutrients, 15(1), 73. https://doi.org/10.3390/nu15010073