Assessment of Intestinal Permeability and Inflammation Bio-Markers in Patients with Rheumatoid Arthritis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Fecal Sample Processing and Analysis
2.3. Blood Sample Processing and Analysis
2.4. Fiber Intake Analysis
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristic
3.2. Fecal Biomarker Concentrations and Fiber Intake
3.2.1. Fecal Zonulin
3.2.2. Fecal Calprotectin
3.2.3. Fecal Total Short-Chain Fatty Acids (SCFAs), Butyrate Concentrations and Fiber Intake
3.3. Blood Biomarkers Concentrations
3.3.1. Serum Zonulin
3.3.2. Serum Calprotectin
3.3.3. Plasma LPS
3.4. Relationship between Fecal and Blood Biomarkers, SCFAs, Fiber Intake, Gender, Smoking Status and Obesity
3.5. Frequencies of Abnormal Values of Fecal and Blood Biomarkers Related to RA
3.6. Associations between Serum and Fecal Zonulin, Serum and Fecal Calprotectin, and LPS and RA-Specific Confounders—Univariate Linear Regression
3.7. Associations between Blood and Fecal Biomarkers and RA-Specific Confounders—Multivariate Linear Regression
4. Discussion
5. Conclusions
- Zonulin, a biomarker of intestinal permeability, and calprotectin, a biomarker of intestinal inflammation, are elevated in serum and feces in patients with RA.
- The elevated serum and fecal zonulin levels suggest that increased gut permeability is present in RA.
- Plasma LPS, a marker of intestinal permeability and inflammation, is also elevated in RA patients.
- A strong association between serum and fecal zonulin was found in patients with RA.
- Serum zonulin levels were more likely to be abnormal with a longer disease duration and fecal zonulin levels were affected inversely to age.
- A strong association between fecal and serum calprotectin and between LPS and fecal calprotectin were found in males, but not in females, independent of other biomarkers.
- Abnormal fecal calprotectin concentrations were significantly more common in RA patients treated with glucocorticoids than in untreated patients.
- Fecal calprotectin appears to be a more promising marker of intestinal inflammation than serum calprotectin does, which showed no association with LPS.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, J.; Yu, J.; Jiao, W.; Chen, G.; Liu, L.; Zhang, M.; Wu, D. Scientific Knowledge of Rheumatoid Arthritis: A Bibliometric Analysis from 2011 to 2020. J. Pain Res. 2022, 15, 2761–2772. [Google Scholar] [CrossRef] [PubMed]
- Rech, J.; Schett, G. Towards preventive treatment of rheumatoid arthritis. Lancet 2022, 400, 253–255. [Google Scholar] [CrossRef] [PubMed]
- McInnes, I.B.; Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011, 365, 2205–2219. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.; Kim, J.-W.; You, H.J.; Park, S.-J.; Lee, J.; Ju, J.H.; Park, M.S.; Jin, H.; Cho, M.-L.; Kwon, B. Gut microbial composition and function are altered in patients with early rheumatoid arthritis. J. Clin. Med. 2019, 8, 693. [Google Scholar] [CrossRef] [PubMed]
- Horta-Baas, G.; Romero-Figueroa, M.d.S.; Montiel-Jarquín, A.J.; Pizano-Zárate, M.L.; García-Mena, J.; Ramírez-Durán, N. Intestinal dysbiosis and rheumatoid arthritis: A link between gut microbiota and the pathogenesis of rheumatoid arthritis. J. Immunol. Res. 2017, 2017, 4835189. [Google Scholar] [CrossRef] [PubMed]
- Block, K.E.; Zheng, Z.; Dent, A.L.; Kee, B.L.; Huang, H. Gut microbiota regulates K/BxN autoimmune arthritis through follicular helper T but not Th17 cells. J. Immunol. 2016, 196, 1550–1557. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, C.S.; Calado, Â.; Sousa, J.; Fonseca, J.E. Diet, microbiota, and gut permeability—The unknown triad in rheumatoid arthritis. Front. Med. 2018, 5, 349. [Google Scholar] [CrossRef]
- Tajik, N.; Frech, M.; Schulz, O.; Schälter, F.; Lucas, S.; Azizov, V.; Dürholz, K.; Steffen, F.; Omata, Y.; Rings, A. Targeting zonulin and intestinal epithelial barrier function to prevent onset of arthritis. Nat. Commun. 2020, 11, 1995. [Google Scholar] [CrossRef]
- Matei, D.E.; Menon, M.; Alber, D.G.; Smith, A.M.; Nedjat-Shokouhi, B.; Fasano, A.; Magill, L.; Duhlin, A.; Bitoun, S.; Gleizes, A. Intestinal barrier dysfunction plays an integral role in arthritis pathology and can be targeted to ameliorate disease. Med 2021, 2, 864–883.e9. [Google Scholar] [CrossRef]
- Capaldo, C.T.; Powell, D.N.; Kalman, D. Layered defense: How mucus and tight junctions seal the intestinal barrier. J. Mol. Med. 2017, 95, 927–934. [Google Scholar] [CrossRef]
- Groschwitz, K.R.; Hogan, S.P. Intestinal barrier function: Molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 2009, 124, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Caviglia, G.P.; Rosso, C.; Ribaldone, D.G.; Dughera, F.; Fagoonee, S.; Astegiano, M.; Pellicano, R. Physiopathology of intestinal barrier and the role of zonulin. Minerva Biotecnol. 2019, 31, 83–92. [Google Scholar] [CrossRef]
- Seethaler, B.; Basrai, M.; Neyrinck, A.M.; Nazare, J.-A.; Walter, J.; Delzenne, N.M.; Bischoff, S.C. Biomarkers for assessment of intestinal permeability in clinical practice. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 321, G11–G17. [Google Scholar] [CrossRef] [PubMed]
- Sequeira, I.R.; Lentle, R.G.; Kruger, M.C.; Hurst, R.D. Standardising the lactulose mannitol test of gut permeability to minimise error and promote comparability. PLoS ONE 2014, 9, e99256. [Google Scholar] [CrossRef]
- Gan, J.; Nazarian, S.; Teare, J.; Darzi, A.; Ashrafian, H.; Thompson, A.J. A case for improved assessment of gut permeability: A meta-analysis quantifying the lactulose: Mannitol ratio in coeliac and Crohn’s disease. BMC Gastroenterol. 2022, 22, 16. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Barbara, G.; Buurman, W.; Ockhuizen, T.; Schulzke, J.-D.; Serino, M.; Tilg, H.; Watson, A.; Wells, J.M. Intestinal permeability–a new target for disease prevention and therapy. BMC Gastroenterol. 2014, 14, 189. [Google Scholar] [CrossRef]
- Mielants, H.; De Vos, M.; Goemaere, S.; Schelstraete, K.; Cuvelier, C.; Goethals, K.; Maertens, M.; Ackerman, C.; Veys, E. Intestinal mucosal permeability in inflammatory rheumatic diseases. II. Role of disease. J. Rheumatol. 1991, 18, 394–400. [Google Scholar]
- Schoultz, I.; Keita, Å.V. The Intestinal Barrier and Current Techniques for the Assessment of Gut Permeability. Cells 2020, 9, 1909. [Google Scholar] [CrossRef]
- Wells, J.M.; Brummer, R.J.; Derrien, M.; MacDonald, T.T.; Troost, F.; Cani, P.D.; Theodorou, V.; Dekker, J.; Méheust, A.; de Vos, W.M.; et al. Homeostasis of the gut barrier and potential biomarkers. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G171–G193. [Google Scholar] [CrossRef]
- Rahman, M.T.; Ghosh, C.; Hossain, M.; Linfield, D.; Rezaee, F.; Janigro, D.; Marchi, N.; van Boxel-Dezaire, A.H. IFN-γ, IL-17A, or zonulin rapidly increase the permeability of the blood-brain and small intestinal epithelial barriers: Relevance for neuro-inflammatory diseases. Biochem. Biophys. Res. Commun. 2018, 507, 274–279. [Google Scholar] [CrossRef]
- Sturgeon, C.; Fasano, A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers 2016, 4, e1251384. [Google Scholar] [CrossRef] [PubMed]
- Zaiss, M.M.; Joyce Wu, H.-J.; Mauro, D.; Schett, G.; Ciccia, F. The gut–joint axis in rheumatoid arthritis. Nat. Rev. Rheumatol. 2021, 17, 224–237. [Google Scholar] [CrossRef]
- Inciarte-Mundo, J.; Frade-Sosa, B.; Sanmartí, R. From bench to bedside: Calprotectin (S100A8/S100A9) as a biomarker in rheumatoid arthritis. Front. Immunol. 2022, 13, 1001025. [Google Scholar] [CrossRef] [PubMed]
- Nys, G.; Cobraiville, G.; Servais, A.C.; Malaise, M.G.; de Seny, D.; Fillet, M. Targeted proteomics reveals serum amyloid A variants and alarmins S100A8-S100A9 as key plasma biomarkers of rheumatoid arthritis. Talanta 2019, 204, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Uchida, T.; Fukawa, A.; Uchida, M.; Fujita, K.; Saito, K. Application of a novel protein biochip technology for detection and identification of rheumatoid arthritis biomarkers in synovial fluid. J. Proteome Res. 2002, 1, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Andrés Cerezo, L.; Mann, H.; Pecha, O.; Pleštilová, L.; Pavelka, K.; Vencovský, J.; Senolt, L. Decreases in serum levels of S100A8/9 (calprotectin) correlate with improvements in total swollen joint count in patients with recent-onset rheumatoid arthritis. Arthritis Res. Ther. 2011, 13, R122. [Google Scholar] [CrossRef] [PubMed]
- Inciarte-Mundo, J.; Ramirez, J.; Hernández, M.V.; Ruiz-Esquide, V.; Cuervo, A.; Cabrera-Villalba, S.R.; Pascal, M.; Yagüe, J.; Cañete, J.D.; Sanmarti, R. Calprotectin and TNF trough serum levels identify power Doppler ultrasound synovitis in rheumatoid arthritis and psoriatic arthritis patients in remission or with low disease activity. Arthritis Res. Ther. 2016, 18, 160. [Google Scholar] [CrossRef]
- Aghdashi, M.A.; Seyedmardani, S.; Ghasemi, S.; Khodamoradi, Z. Evaluation of serum calprotectin level and disease activity in patients with rheumatoid arthritis. Curr. Rheumatol. Rev. 2019, 15, 316–320. [Google Scholar] [CrossRef]
- Bach, M.; Moon, J.; Moore, R.; Pan, T.; Nelson, J.L.; Lood, C. A neutrophil activation biomarker panel in prognosis and monitoring of patients with rheumatoid arthritis. Arthritis Rheumatol. 2020, 72, 47–56. [Google Scholar] [CrossRef]
- Candelli, M.; Franza, L.; Pignataro, G.; Ojetti, V.; Covino, M.; Piccioni, A.; Gasbarrini, A.; Franceschi, F. Interaction between lipopolysaccharide and gut microbiota in inflammatory bowel diseases. Int. J. Mol. Sci. 2021, 22, 6242. [Google Scholar] [CrossRef]
- Page, M.J.; Kell, D.B.; Pretorius, E. The role of lipopolysaccharide-induced cell signalling in chronic inflammation. Chronic Stress 2022, 6, 24705470221076390. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Uzzau, S.; Goldblum, S.E.; Fasano, A. Human zonulin, a potential modulator of intestinal tight junctions. J. Cell Sci. 2000, 113 Pt 24, 4435–4440. [Google Scholar] [CrossRef] [PubMed]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef]
- Letarouilly, J.-G.; Flipo, R.-M.; Cortet, B.; Tournadre, A.; Paccou, J. Body composition in patients with rheumatoid arthritis: A narrative literature review. Ther. Adv. Musculoskelet. Dis. 2021, 13, 1759720X211015006. [Google Scholar] [CrossRef]
- Caviglia, G.P.; Dughera, F.; Ribaldone, D.G.; Rosso, C.; Abate, M.L.; Pellicano, R.; Bresso, F.; Smedile, A.; Saracco, G.M.; Astegiano, M. Serum zonulin in patients with inflammatory bowel disease: A pilot study. Minerva Med. 2019, 110, 95–100. [Google Scholar] [CrossRef]
- Neufingerl, N.; Eilander, A. Nutrient intake and status in adults consuming plant-based diets compared to meat-eaters: A systematic review. Nutrients 2022, 14, 29. [Google Scholar] [CrossRef]
- Dalile, B.; Van Oudenhove, L.; Verbeke, K.; Vervliet, B. Nourishing the gut microbiota: The potential of prebiotics in microbiota-gut-brain axis research. Behav. Brain Sci. 2019, 42, E69. [Google Scholar] [CrossRef]
- Dilmore, A.H.; Martino, C.; Neth, B.J.; West, K.A.; Zemlin, J.; Rahman, G.; Panitchpakdi, M.; Meehan, M.J.; Weldon, K.C.; Blach, C.; et al. Effects of a ketogenic and low-fat diet on the human metabolome, microbiome, and foodome in adults at risk for Alzheimer’s disease. Alzheimers Dement. 2023. [Google Scholar] [CrossRef]
- Moreno-Navarrete, J.M.; Sabater, M.; Ortega, F.; Ricart, W.; Fernandez-Real, J.M. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance. PLoS ONE 2012, 7, e37160. [Google Scholar] [CrossRef] [PubMed]
- Ang, Q.Y.; Alexander, M.; Newman, J.C.; Tian, Y.; Cai, J.; Upadhyay, V.; Turnbaugh, J.A.; Verdin, E.; Hall, K.D.; Leibel, R.L. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell 2020, 181, 1263–1275.e1216. [Google Scholar] [CrossRef]
- Prospero, L.; Riezzo, G.; Linsalata, M.; Orlando, A.; D’attoma, B.; Russo, F. Psychological and gastrointestinal symptoms of patients with irritable bowel syndrome undergoing a low-FODMAP diet: The role of the intestinal barrier. Nutrients 2021, 13, 2469. [Google Scholar] [CrossRef]
- Heidt, C.; Kämmerer, U.; Marquardt, T.; Reuss-Borst, M. Nutrition Patterns and Their Gender Differences among Rheumatoid Arthritis Patients: A Descriptive Study. Nutrients 2022, 15, 95. [Google Scholar] [CrossRef] [PubMed]
- Bolstad, B.M.; Irizarry, R.A.; Åstrand, M.; Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003, 19, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Schnedl, W.J.; Michaelis, S.; Enko, D.; Mangge, H. Fecal Calprotectin Elevations Associated with Food Intolerance/Malabsorption Are Significantly Reduced with Targeted Diets. Nutrients 2023, 15, 1179. [Google Scholar] [CrossRef] [PubMed]
- Malíčková, K.; Francová, I.; Lukáš, M.; Kolář, M.; Králíková, E.; Bortlík, M.; Ďuricová, D.; Štěpánková, L.; Zvolská, K.; Pánková, A.; et al. Fecal zonulin is elevated in Crohn’s disease and in cigarette smokers. Pract. Lab. Med. 2017, 9, 39–44. [Google Scholar] [CrossRef]
- Scapaticci, M.; Bartolini, A.; Biscaro, M.; Biscaro, R.; Da Rin, G. Interleukin-6 and Serum/Fecal Calprotectin as Useful Specific Markers for Monitoring Rheumatic Diseases: A Pilot Study. Lab. Med. 2022, 53, 123–127. [Google Scholar] [CrossRef]
- Ometto, F.; Friso, L.; Astorri, D.; Botsios, C.; Raffeiner, B.; Punzi, L.; Doria, A. Calprotectin in rheumatic diseases. Exp. Biol. Med. 2017, 242, 859–873. [Google Scholar] [CrossRef]
- Lacombe, L.A.C.; Matiollo, C.; Rosa, J.S.D.; Felisberto, M.; Dalmarco, E.M.; Schiavon, L.L. Factors Associated with Circulating Zonulin in Inflammatory Bowel Disease. Arq. Gastroenterol. 2022, 59, 238–243. [Google Scholar] [CrossRef]
- Szymanska, E.; Wierzbicka, A.; Dadalski, M.; Kierkus, J. Fecal Zonulin as a Noninvasive Biomarker of Intestinal Permeability in Pediatric Patients with Inflammatory Bowel Diseases-Correlation with Disease Activity and Fecal Calprotectin. J. Clin. Med. 2021, 10, 3905. [Google Scholar] [CrossRef]
- Cenni, S.; Casertano, M.; Trani, M.; Pacella, D.; Martinelli, M.; Staiano, A.; Miele, E.; Strisciuglio, C. The use of calgranulin-C (S100A12) and fecal zonulin as possible non-invasive markers in children with inflammatory bowel disease: A clinical study. Eur. J. Pediatr. 2023, 182, 1299–1308. [Google Scholar] [CrossRef]
- Gilbert, B.T.P.; Lamacchia, C.; Amend, L.; Strowig, T.; Rodriguez, E.; Palmer-Lourenco, G.; Finckh, A. Brief report: Assessment of mucosal barrier integrity using serological biomarkers in preclinical stages of rheumatoid arthritis. Front. Immunol. 2023, 14, 1117742. [Google Scholar] [CrossRef]
- Hałasa, M.; Maciejewska, D.; Ryterska, K.; Baśkiewicz-Hałasa, M.; Safranow, K.; Stachowska, E. Assessing the Association of Elevated Zonulin Concentration in Stool with Increased Intestinal Permeability in Active Professional Athletes. Medicina 2019, 55, 710. [Google Scholar] [CrossRef] [PubMed]
- Lamprecht, M.; Bogner, S.; Schippinger, G.; Steinbauer, K.; Fankhauser, F.; Hallstroem, S.; Schuetz, B.; Greilberger, J.F. Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial. J. Int. Soc. Sports Nutr. 2012, 9, 45. [Google Scholar] [CrossRef] [PubMed]
- Hałasa, M.; Maciejewska, D.; Baśkiewicz-Hałasa, M.; Machaliński, B.; Safranow, K.; Stachowska, E. Oral Supplementation with Bovine Colostrum Decreases Intestinal Permeability and Stool Concentrations of Zonulin in Athletes. Nutrients 2017, 9, 370. [Google Scholar] [CrossRef] [PubMed]
- Łoniewska, B.; Adamek, K.; Węgrzyn, D.; Kaczmarczyk, M.; Skonieczna-Żydecka, K.; Clark, J.; Adler, G.; Tousty, J.; Uzar, I.; Tousty, P.; et al. Analysis of Faecal Zonulin and Calprotectin Concentrations in Healthy Children During the First Two Years of Life. An Observational Prospective Cohort Study. J. Clin. Med. 2020, 9, 777. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Goel, R.; Kim, S.; Richards, E.M.; Carter, C.S.; Pepine, C.J.; Raizada, M.K.; Buford, T.W. Intestinal permeability biomarker zonulin is elevated in healthy aging. J. Am. Med. Dir. Assoc. 2017, 18, 810.e1–810.e4. [Google Scholar] [CrossRef]
- Scheffler, L.; Crane, A.; Heyne, H.; Tönjes, A.; Schleinitz, D.; Ihling, C.H.; Stumvoll, M.; Kovacs, P.; Heiker, J.T. Widely used commercial ELISA for human Zonulin reacts with Complement C3 rather than pre-Haptoglobin 2. bioRxiv 2017. bioRxiv:157578. [Google Scholar] [CrossRef]
- Scheffler, L.; Crane, A.; Heyne, H.; Tönjes, A.; Schleinitz, D.; Ihling, C.H.; Stumvoll, M.; Freire, R.; Fiorentino, M.; Fasano, A.; et al. Widely Used Commercial ELISA Does Not Detect Precursor of Haptoglobin2, but Recognizes Properdin as a Potential Second Member of the Zonulin Family. Front. Endocrinol. 2018, 9, 22. [Google Scholar] [CrossRef]
- Massier, L.; Chakaroun, R.; Kovacs, P.; Heiker, J.T. Blurring the picture in leaky gut research: How shortcomings of zonulin as a biomarker mislead the field of intestinal permeability. Gut 2021, 70, 1801–1802. [Google Scholar] [CrossRef]
- Chmielińska, M.; Olesińska, M.; Romanowska-Próchnicka, K.; Szukiewicz, D. Haptoglobin and Its Related Protein, Zonulin-What Is Their Role in Spondyloarthropathy? J. Clin. Med. 2021, 10, 1131. [Google Scholar] [CrossRef]
- Riviere, A.J.; Smith, K.S.; Schaberg, M.N.; Greene, M.W.; Frugé, A.D. Plasma and fecal zonulin are not altered by a high green leafy vegetable dietary intervention: Secondary analysis of a randomized control crossover trial. BMC Gastroenterol. 2022, 22, 184. [Google Scholar] [CrossRef]
- Ohlsson, B.; Roth, B.; Larsson, E.; Höglund, P. Calprotectin in serum and zonulin in serum and feces are elevated after introduction of a diet with lower carbohydrate content and higher fiber, fat and protein contents. Biomed. Rep. 2017, 6, 411–422. [Google Scholar] [CrossRef]
- Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef]
- Dürholz, K.; Hofmann, J.; Iljazovic, A.; Häger, J.; Lucas, S.; Sarter, K.; Strowig, T.; Bang, H.; Rech, J.; Schett, G.; et al. Dietary Short-Term Fiber Interventions in Arthritis Patients Increase Systemic SCFA Levels and Regulate Inflammation. Nutrients 2020, 12, 3207. [Google Scholar] [CrossRef] [PubMed]
- Häger, J.; Bang, H.; Hagen, M.; Frech, M.; Träger, P.; Sokolova, M.V.; Steffen, U.; Tascilar, K.; Sarter, K.; Schett, G.; et al. The Role of Dietary Fiber in Rheumatoid Arthritis Patients: A Feasibility Study. Nutrients 2019, 11, 2392. [Google Scholar] [CrossRef] [PubMed]
- Zaiss, M.M.; Jones, R.M.; Schett, G.; Pacifici, R. The gut-bone axis: How bacterial metabolites bridge the distance. J. Clin. Investig. 2019, 129, 3018–3028. [Google Scholar] [CrossRef] [PubMed]
- Abendroth, A.; Michalsen, A.; Lüdtke, R.; Rüffer, A.; Musial, F.; Dobos, G.J.; Langhorst, J. Changes of Intestinal Microflora in Patients with Rheumatoid Arthritis during Fasting or a Mediterranean Diet. Forsch. Komplementmed. 2010, 17, 307–313. [Google Scholar] [CrossRef]
- Stephen, A.M.; Champ, M.M.; Cloran, S.J.; Fleith, M.; van Lieshout, L.; Mejborn, H.; Burley, V.J. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health. Nutr. Res. Rev. 2017, 30, 149–190. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, R.; Zhang, D.; Qi, S.; Liu, Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed. Pharmacother. 2023, 160, 114295. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Haub, M.D. Effects of dietary fiber and its components on metabolic health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef]
- Chiellini, C.; Santini, F.; Marsili, A.; Berti, P.; Bertacca, A.; Pelosini, C.; Scartabelli, G.; Pardini, E.; López-Soriano, J.; Centoni, R.; et al. Serum haptoglobin: A novel marker of adiposity in humans. J. Clin. Endocrinol. Metab. 2004, 89, 2678–2683. [Google Scholar] [CrossRef]
- Ohlsson, B.; Orho-Melander, M.; Nilsson, P.M. Higher Levels of Serum Zonulin May Rather Be Associated with Increased Risk of Obesity and Hyperlipidemia, Than with Gastrointestinal Symptoms or Disease Manifestations. Int. J. Mol. Sci. 2017, 18, 582. [Google Scholar] [CrossRef] [PubMed]
- Del Chierico, F.; Abbatini, F.; Russo, A.; Quagliariello, A.; Reddel, S.; Capoccia, D.; Caccamo, R.; Ginanni Corradini, S.; Nobili, V.; De Peppo, F. Gut microbiota markers in obese adolescent and adult patients: Age-dependent differential patterns. Front. Microbiol. 2018, 9, 1210. [Google Scholar] [CrossRef] [PubMed]
- Ramezani Ahmadi, A.; Sadeghian, M.; Alipour, M.; Ahmadi Taheri, S.; Rahmani, S.; Abbasnezhad, A. The Effects of Probiotic/Synbiotic on Serum Level of Zonulin as a Biomarker of Intestinal Permeability: A Systematic Review and Meta-Analysis. Iran. J. Public Health 2020, 49, 1222–1231. [Google Scholar] [CrossRef] [PubMed]
- Horvath, A.; Leber, B.; Schmerboeck, B.; Tawdrous, M.; Zettel, G.; Hartl, A.; Madl, T.; Stryeck, S.; Fuchs, D.; Lemesch, S.; et al. Randomised clinical trial: The effects of a multispecies probiotic vs. placebo on innate immune function, bacterial translocation and gut permeability in patients with cirrhosis. Aliment. Pharmacol. Ther. 2016, 44, 926–935. [Google Scholar] [CrossRef]
- El Asmar, R.; Panigrahi, P.; Bamford, P.; Berti, I.; Not, T.; Coppa, G.V.; Catassi, C.; Fasano, A. Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure. Gastroenterology 2002, 123, 1607–1615. [Google Scholar] [CrossRef]
- von Roon, A.C.; Karamountzos, L.; Purkayastha, S.; Reese, G.E.; Darzi, A.W.; Teare, J.P.; Paraskeva, P.; Tekkis, P.P. Diagnostic precision of fecal calprotectin for inflammatory bowel disease and colorectal malignancy. Am. J. Gastroenterol. 2007, 102, 803–813. [Google Scholar] [CrossRef]
- Macias-Muñoz, L.; Frade-Sosa, B.; Iniciarte-Mundo, J.; Hidalgo, S.; Morla, R.M.; Gallegos, Y.; Sanmarti, R.; Auge, J.M. Analytical and clinical evaluation of DiaSorin Liaison® Calprotectin fecal assay adapted for serum samples. J. Clin. Lab. Anal. 2022, 36, e24258. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, X.; Liu, J.; Wu, P.; Yang, L. Linkage of calprotectin with inflammation, activity and treatment response of rheumatoid arthritis: A meta-analysis. Biomark. Med. 2022, 16, 1239–1249. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Yan, W.; Geczy, C.L.; Brown, M.A.; Thomas, R. Serum levels of soluble receptor for advanced glycation end products and of S100 proteins are associated with inflammatory, autoantibody, and classical risk markers of joint and vascular damage in rheumatoid arthritis. Arthritis Res. Ther. 2009, 11, R39. [Google Scholar] [CrossRef]
- Klingberg, E.; Carlsten, H.; Hilme, E.; Hedberg, M.; Forsblad-d’Elia, H. Calprotectin in ankylosing spondylitis–frequently elevated in feces, but normal in serum. Scand. J. Gastroenterol. 2012, 47, 435–444. [Google Scholar] [CrossRef]
- Brun, J.; Madland, T.; Gran, J.; Myklebust, G. A longitudinal study of calprotectin in patients with polymyalgia rheumatica or temporal arteritis: Relation to disease activity. Scand. J. Rheumatol. 2005, 34, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Hsu, K.; Passey, R.J.; Endoh, Y.; Rahimi, F.; Youssef, P.; Yen, T.; Geczy, C.L. Regulation of S100A8 by glucocorticoids. J. Immunol. 2005, 174, 2318–2326. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.C.; Lee, Y.H. Calprotectin levels in rheumatoid arthritis and their correlation with disease activity: A meta-analysis. Postgrad. Med. 2017, 129, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.; Azzopardi, C.; Thaker, S.; Botchu, R.; Gupta, H. Power Doppler in musculoskeletal ultrasound: Uses, pitfalls and principles to overcome its shortcomings. J. Ultrasound 2021, 24, 151–156. [Google Scholar] [CrossRef]
- Hurnakova, J.; Hulejova, H.; Zavada, J.; Komarc, M.; Hanova, P.; Klein, M.; Mann, H.; Sleglova, O.; Olejarova, M.; Forejtova, S.; et al. Serum Calprotectin Discriminates Subclinical Disease Activity from Ultrasound-Defined Remission in Patients with Rheumatoid Arthritis in Clinical Remission. PLoS ONE 2016, 11, e0165498. [Google Scholar] [CrossRef]
- Ramírez, J.; Narváez, J.A.; Ruiz-Esquide, V.; Hernández-Gañán, J.; Cuervo, A.; Inciarte-Mundo, J.; Hernández, M.V.; Sampayo-Cordero, M.; Pablos, J.L.; Sanmartí, R.; et al. Clinical and sonographic biomarkers of structural damage progression in RA patients in clinical remission: A prospective study with 12 months follow-up. Semin. Arthritis Rheum. 2017, 47, 303–309. [Google Scholar] [CrossRef]
- Ghosh, S.S.; Wang, J.; Yannie, P.J.; Ghosh, S. Intestinal barrier dysfunction, LPS translocation, and disease development. J. Endocr. Soc. 2020, 4, bvz039. [Google Scholar] [CrossRef]
- Kitamura, K.; Shionoya, H.; Suzuki, S.; Fukai, R.; Uda, S.; Abe, C.; Takemori, H.; Nishimura, K.; Baba, H.; Katayama, K. Oral and intestinal bacterial substances associated with disease activities in patients with rheumatoid arthritis: A cross-sectional clinical study. J. Immunol. Res. 2022, 2022, 6839356. [Google Scholar] [CrossRef]
- Ehrchen, J.M.; Sunderkötter, C.; Foell, D.; Vogl, T.; Roth, J. The endogenous Toll–like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J. Leukoc. Biol. 2009, 86, 557–566. [Google Scholar] [CrossRef]
- Orivuori, L.; Mustonen, K.; De Goffau, M.; Hakala, S.; Paasela, M.; Roduit, C.; Dalphin, J.C.; Genuneit, J.; Lauener, R.; Riedler, J. High level of fecal calprotectin at age 2 months as a marker of intestinal inflammation predicts atopic dermatitis and asthma by age 6. Clin. Exp. Allergy 2015, 45, 928–939. [Google Scholar] [CrossRef]
Demographic Data, Unit | Indexes | All | Female | Male |
---|---|---|---|---|
Gender | n (%) | 61 (100) | 41 (67) | 20 (33) |
Age, years | Median (IQR) | 63 (56–70.5) | 65 (58–71) | 57 (53.3–61.5) |
BMI, kg/m2 | Median (IQR) | 26.3 (23.5–30.9) | 25.7 (22.6–30.81) | 27.8 (25.7–30.3) |
Smoking status | ||||
Current | n (%) | 6 (9.8) | 3 (7.3) | 3 (15) |
Former | n (%) | 26 (42.6) | 16 (39) | 10 (50) |
Never | n (%) | 29 (47.5) | 22 (53.7) | 7 (35) |
RA-specific data, unit | ||||
Disease duration, years | Median (IQR) | 2.5 (0.6–7.5) | 3 (1.0–11.5) | 0.8 (0.5–3.9) |
SDAI, units | Median (IQR) | 11.08 (6.36–18.09) | 11.9 (6.1–20.1) | 10.2 (7.1–21.3) |
CRP, mg/dL | Median (IQR) | 0.19 (0.08–0.52) | 0.2 (0.1–0.5) | 0.2 (0.1–0.4) |
Rheumatoid Factor IgM, positive | n (%) | 21 (34.4) | 15 (37) | 6 (30) |
Anti-CCP-IGG antibody, positive | n (%) | 17 (27.9) | 13 (32) | 4 (20) |
Anti-rheumatic treatment | ||||
Methotrexate | n (%) | 19 (31.1) | 14 (34) | 5 (25) |
Other conventional (cs) DMARDs | n (%) | 7 (11.5) | 6 (15) | 1 (5) |
Targeted synthesized (ts) DMARDs | n (%) | 3 (4.9) | 2 (5) | 1 (5) |
Biologicals | n (%) | 13 (21.3) | 9 (22) | 4 (20) |
Glucocorticoids | n (%) | 16 (26.2) | 10 (24) | 6 (30) |
Biochemical data, unit | ||||
Total cholesterol, mmol/L | Median (IQR) | 6.01 (5.1–6.6) | 6.08 (5.22–6.39) | 5.34 (4.7–6.6) |
Fasting triglycerides, mmol/L | Median (IQR) | 1.27 (1.03–2.10) | 1.28 (1.03–2.0) | 1.37 (1.09–2.19) |
Non-HDL cholesterol, mmol/L | Median (IQR) | 4.21 (3.33–4.81) | 4.19 (3.41–4.73) | 3.96 (3.25–5.0) |
Nutrition intake data, unit | ||||
Energy, kcal/day | Median (IQR) | 1509 (1281–1863) | 1557 (1193–1806) | 1493 (1350–1932) |
Total fiber, g/day | Median (IQR) | 15.26 (10.74–20.26) | 15.3 (11.2–19.6) | 15.6 (10.8–21) |
Biomarkers, Unit | Indexes | All (N = 61) | Female (N = 41) | Male (N = 20) | p-Value |
---|---|---|---|---|---|
Fecal zonulin, ng/g | Median (IQR) | 297 (226–413) | 326 (248–417) | 285 (166–406) | 0.33 |
Reference value according to the lab | ng/g | <61 | <61 | <61 | |
Abnormal values | n/N (%) | 60/61 (98) | 41/41(100) | 19/20 (95) | |
Fecal calprotectin, µg/g | Median (IQR) | 36.1 (19.2–94) | 40 (20–84) | 32 (19–120) | 0.42 |
Reference value according to the lab | µg/g | <50 | <50 | <50 | |
Abnormal values | n/N (%) | 23/61 (38) | 17/41 (42) | 6/20 (30) | |
Fecal total SCFAs, µmol/g | Median (IQR) | 36.4 (24.9–45.8) | 35 (25–40) | 43 (23–55) | 0.11 |
Reference value according to the lab | µmol/g | ≥14 | ≥14 | ≥14 | |
Abnormal values | n/N (%) | 2/60 (3) | 0/40 (0) | 2/20 (10) | |
Fecal butyrate, µmol/g | Median (IQR) | 4 (2.4–7.6) | 3.4 (2.3–6.1) | 4.5 (2.9–8.8) | 0.34 |
Reference value according to the lab | µmol/g | ≥2.5 | ≥2.5 | ≥2.5 | |
Abnormal values | n/N (%) | 15/59 (25) | 12/40 (30) | 3/19 (16) | |
Serum zonulin, ng/mL | Median (IQR) | 32 (28–42) | 32 (28–42) | 33 (28–42) | 1 |
Reference cut-off value | ng/mL | >34 | >34 | >34 | |
Abnormal values | n/N (%) | 23/61 (38) | 16/41 (39) | 7/20 (35) | |
Serum calprotectin, µg/mL | Median (IQR) | 2 (1.3–2.9) | 2 (1.3–2.9) | 1.7 (1.2–2.8) | 1 |
Reference value according to the lab | µg/mL | <3 | <3 | <3 | |
Abnormal values | n/N (%) | 14/61 (23) | 10/41 (24) | 4/20 (20) | |
Plasma LPS, ng/mL | Median (IQR) | 0.3 (0.2–0.5) | 0.36 (0.3–0.5) | 0.33 (0–0.4) | 0.018 |
Cut-off value | ng/mL | >0.05 | >0.05 | >0.05 | |
Abnormal values | n/N (%) | 26/30 (87) | 18/18 (100) | 8/12 (67) |
Biomarker | N | p-Value | |||
---|---|---|---|---|---|
Obesity | non-obese | obese | |||
Serum zonulin, ng/mL | 61 | 36% (15/42) | 42% (8/19) | 0.78 | |
Serum calprotectin, µg/mL | 61 | 26% (11/42) | 16% (3/19) | 0.52 | |
Fecal zonulin, ng/g | 61 | 97.6% (41/42) | 53% (10/19) | 1 | |
Fecal calprotectin, µg/g | 61 | 31% (13/42) | 53% (10/19) | 0.15 | |
Plasma LPS, ng/mL | 30 | 95% (19/20) | 70% (7/10) | 0.095 | |
Rheumatoid Factor | positive | negative | |||
Serum zonulin, ng/mL | 61 | 62% (13/21) | 26% (10/39) | 0.011 | |
Serum calprotectin, µg/mL | 61 | 38% (8/21) | 15% (6/39) | 0.061 | |
Fecal zonulin, ng/g | 61 | 100% (21/21) | 97.4% (38/39) | 1 | |
Fecal calprotectin, µg/g | 61 | 24% (5/21) | 46% (18/39) | 0.1 | |
Plasma LPS, ng/mL | 30 | 85% (11/13) | 88% (15/17) | 1 | |
CRP | ≥0.2 | <0.2 | |||
Serum zonulin, ng/mL | 61 | 25% (8/32) | 52% (15/29) | 0.038 | |
Serum calprotectin, µg/mL | 61 | 22% (7(32) | 24% (7/29) | 1 | |
Fecal zonulin, ng/g | 61 | 100% (32/32) | 96.6% (28/29) | 047 | |
Fecal calprotectin, µg/g | 61 | 34% (11/32) | 41% (12/29) | 0.61 | |
Plasma LPS, ng/mL | 30 | 88% (15/17) | 85% (11/13) | 1 | |
Glucocorticoids Treatment | yes | no | |||
Serum zonulin, ng/mL | 61 | 35% (6/17) | 39% (17/44) | 1 | |
Serum calprotectin, µg/mL | 61 | 35% (6/17) | 18% (8/44) | 0.18 | |
Fecal zonulin, ng/g | 61 | 100% (17/17) | 97.7% (43/44) | 1 | |
Fecal calprotectin, µg/g | 61 | 59% (10/17) | 30% (13/44) | 0.044 | |
Plasma LPS, ng/mL | 30 | 100% (6/6) | 83% (20/24) | 0.56 | |
TNF-Inhibitor Treatment | yes | no | |||
Serum zonulin, ng/mL | 61 | 36% (4/11) | 38% (19/50) | 1 | |
Serum calprotectin, µg/mL | 61 | 27% (3/11) | 22% (11/50) | 0.7 | |
Fecal zonulin, ng/g | 61 | 100% (11/11) | 98% (49/50) | 1 | |
Fecal calprotectin, µg/g | 61 | 64% (7/11) | 32% (16/50) | 0.084 | |
Plasma LPS, ng/mL | 30 | 66.7% (4/6) | 91.7% (22/24) | 0.17 |
Dependent Variable | Independent Variable | Univariable Coefficient | p-Value | Multi- Variable Coefficient (R2) | p-Value |
---|---|---|---|---|---|
Serum zonulin (ng/mL) | Gender, m/f | 1.03 | 0.718 | −0.34 | 0.908 |
Age, years | 0.02 | 0.857 | −0.00 | 0.999 | |
BMI, kg/m2 | 0.18 | 0.507 | 0.26 | 0.333 | |
SDAI, units | 0.11 | 0.489 | 0.09 | 0.548 | |
Disease duration, years | 0.29 | 0.017 | 0.29 | 0.016 | |
Fecal zonulin, ng/g | 0.02 | 0.049 | 0.01 | 0.047 | |
Serum calprotectin (µg/mL) | Gender, m/f | 0.06 | 0.875 | 0.15 | 0.714 |
Age, years | −0.02 | 0.223 | −0.02 | 0.247 | |
BMI, kg/m2 | −0.06 | 0.094 | −0.07 | 0.061 | |
SDAI, units | 0.02 | 0.381 | 0.01 | 0.725 | |
Fecal calprotectin, µg/g | 0.00 | 0.040 | 0.00 | 0.027 | |
Fecal zonulin (ng/g) | Gender, m/f | 35.25 | 0.453 | 46.20 | 0.0339 |
Age, years | −4.49 | 0.028 | −5.28 | 0.013 | |
BMI, kg/m2 | 0.66 | 0.882 | 3.99 | 0.356 | |
SDAI, units | 1.45 | 0.581 | 0.65 | 0.793 | |
Fecal total SCFAs, (µmol/g) | −0.51 | 0.095 | 4.17 | 0.119 | |
Fecal butyrate, (µmol/g) | −2.40 | 0.065 | −19.29 | 0.088 | |
Serum zonulin, ng/mL | 4.16 | 0.049 | 3.49 | 0.088 | |
Fecal calprotectin (µg/g) | Gender, m/f | −15.15 | 0.650 | −57.38 | 0.406 |
Age, years | 0.71 | 0.631 | −0.09 | 0.977 | |
BMI, kg/m2 | 1.65 | 0.601 | 3.26 | 0.688 | |
SDAI, units | 2.15 | 0.247 | 1.98 | 0.634 | |
Serum calprotectin, µg/mL | 21.59 | 0.040 | 32.84 | 0.059 | |
Plasma LPS, ng/mL | 163.54 | 0.074 | 196 | 0.043 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heidt, C.; Kämmerer, U.; Fobker, M.; Rüffer, A.; Marquardt, T.; Reuss-Borst, M. Assessment of Intestinal Permeability and Inflammation Bio-Markers in Patients with Rheumatoid Arthritis. Nutrients 2023, 15, 2386. https://doi.org/10.3390/nu15102386
Heidt C, Kämmerer U, Fobker M, Rüffer A, Marquardt T, Reuss-Borst M. Assessment of Intestinal Permeability and Inflammation Bio-Markers in Patients with Rheumatoid Arthritis. Nutrients. 2023; 15(10):2386. https://doi.org/10.3390/nu15102386
Chicago/Turabian StyleHeidt, Christina, Ulrike Kämmerer, Manfred Fobker, Andreas Rüffer, Thorsten Marquardt, and Monika Reuss-Borst. 2023. "Assessment of Intestinal Permeability and Inflammation Bio-Markers in Patients with Rheumatoid Arthritis" Nutrients 15, no. 10: 2386. https://doi.org/10.3390/nu15102386
APA StyleHeidt, C., Kämmerer, U., Fobker, M., Rüffer, A., Marquardt, T., & Reuss-Borst, M. (2023). Assessment of Intestinal Permeability and Inflammation Bio-Markers in Patients with Rheumatoid Arthritis. Nutrients, 15(10), 2386. https://doi.org/10.3390/nu15102386