Sarcopenia and Nutrition in Elderly Rheumatoid Arthritis Patients: A Cross-Sectional Study to Determine Prevalence and Risk Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Data Source, and Sample
2.1.1. Patients
2.1.2. Controls
2.2. Study Protocol
Body Composition by DXA
2.3. Variables and Definitions
2.3.1. Sarcopenia, Sarcopenic Obesity, and Osteosarcopenia
2.3.2. Demographics
2.3.3. Anthropometric Variables, Body Composition, Strength, Performance, and Nutrition
2.3.4. RA Variables
2.4. Statistical Analysis
3. Results
3.1. Characterization of RA and Controls
3.1.1. Demographics
3.1.2. Characteristics Associated with RA
3.1.3. Anthropometric Measurements, Nutritional Status, Strength, and Physical Performance in Patients with RA and Controls
3.1.4. Analysis of Body Composition and Prevalence of Sarcopenia in RA Patients and Controls
3.2. Characteristics of RA Patients with Sarcopenia
3.3. Factors Associated with Sarcopenia in RA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mena-Vázquez, N.; Lisbona-Montañez, J.M.; Redondo-Rodriguez, R.; Mucientes, A.; Manrique-Arija, S.; Rioja, J.; Garcia-Studer, A.; Ortiz-Márquez, F.; Cano-García, L.; Fernández-Nebro, A. Inflammatory profile of incident cases of late-onset compared with young-onset rheumatoid arthritis: A nested cohort study. Front. Med. 2022, 9, 1016159. [Google Scholar] [CrossRef]
- El-Labban, A.S.; Omar, H.A.S.A.; El-Shereif, R.R.; Ali, F.; El-Mansoury, T.M. Pattern of Young and Old Onset Rheumatoid Arthritis (YORA and EORA) Among a Group of Egyptian Patients with Rheumatoid Arthritis. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2010, 3, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Serhal, L.; Lwin, M.N.; Holroyd, C.; Edwards, C.J. Rheumatoid arthritis in the elderly: Characteristics and treatment considerations. Autoimmun. Rev. 2020, 19, 102528. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.M.; Lu, Y.P.; Lan, J.L.; Chen, D.Y.; Wang, J.D. Lifetime Risks, Life Expectancy, and Health Care Expenditures for Rheumatoid Arthritis: A Nationwide Cohort Followed Up From 2003 to 2016. Arthritis Rheumatol. 2021, 73, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Brance, M.L.; Di Gregorio, S.; Pons-Estel, B.A.; Quagliato, N.J.; Jorfen, M.; Berbotto, G.; Cortese, N.; Raggio, J.C.; Palatnik, M.; Chavero, I.; et al. Prevalence of Sarcopenia and Whole-Body Composition in Rheumatoid Arthritis. J. Clin. Rheumatol. 2021, 27, S153–S160. [Google Scholar] [CrossRef] [PubMed]
- Małecka-Massalska, T.; Majdan, A. Malnutrition and obesity among patients with rheumatoid arthritis and chronic inflammatory process. Wiad. Lek. 2018, 71, 52–58. [Google Scholar]
- McGregor, R.A.; Cameron-Smith, D.; Poppitt, S.D. It is not just muscle mass: A review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longev. Healthspan 2014, 3, 9. Available online: https://pubmed.ncbi.nlm.nih.gov/25520782/ (accessed on 15 January 2023). [CrossRef] [PubMed]
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; van Kan, G.A.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.; Michel, J.-P.; Rolland, Y.; Schneider, S.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Greenlund, L.J.S.; Nair, K.S. Sarcopenia—Consequences, mechanisms, and potential therapies. Mech. Ageing Dev. 2003, 124, 287–299. [Google Scholar] [CrossRef]
- Ngeuleu, A.; Allali, F.; Medrare, L.; Madhi, A.; Rkain, H.; Hajjaj-Hassouni, N. Sarcopenia in rheumatoid arthritis: Prevalence, influence of disease activity and associated factors. Rheumatol. Int. 2017, 37, 1015–1020. [Google Scholar] [CrossRef] [PubMed]
- Doğan, S.C.; Hizmetli, S.; Hayta, E.; Kaptanoğlu, E.; Erselcan, T.; Güler, E. Sarcopenia in women with rheumatoid arthritis. Eur. J. Rheumatol. 2015, 2, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Giles, J.T.; Ling, S.M.; Ferrucci, L.; Bartlett, S.J.; Andersen, R.E.; Towns, M.; Muller, D.; Fontaine, K.R.; Bathon, J.M. Abnormal body composition phenotypes in older rheumatoid arthritis patients: Association with disease characteristics and pharmacotherapies. Arthritis Rheum. 2008, 59, 807–815. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. Available online: https://pubmed.ncbi.nlm.nih.gov/30312372/ (accessed on 14 January 2023). [CrossRef] [PubMed]
- Dao, T.; Kirk, B.; Phu, S.; Vogrin, S.; Duque, G. Prevalence of Sarcopenia and its Association with Antirheumatic Drugs in Middle-Aged and Older Adults with Rheumatoid Arthritis: A Systematic Review and Meta-analysis. Calcif. Tissue Int. 2021, 109, 475–489. [Google Scholar] [CrossRef] [PubMed]
- Mena-Vázquez, N.; Manrique-Arija, S.; Ordoñez-Cañizares, M.C.; Redondo-Rodriguez, R.; Rioja Villodres, J.; Cano-Garcia, L.; Godoy-Navarrete, F.J.; Nuñez, F.G.J.; Rego, G.D.-C.; Garnica, I.U.; et al. Relationship between polyautoimmunity and sarcopenic obesity in rheumatoid arthritis patients. Reumatol. Clin. 2022, 18, 531–537. [Google Scholar] [CrossRef]
- Klein, G.L. The Effect of Glucocorticoids on Bone and Muscle. Osteoporos. Sarcopenia 2015, 1, 39–45. [Google Scholar] [CrossRef]
- Vlietstra, L.; Stebbings, S.; Meredith-Jones, K.; Abbott, J.H.; Treharne, G.J.; Waters, D.L. Sarcopenia in osteoarthritis and rheumatoid arthritis: The association with self-reported fatigue, physical function and obesity. PLoS ONE 2019, 14, e0217462. [Google Scholar] [CrossRef]
- Barone, M.; Viggiani, M.T.; Anelli, M.G.; Fanizzi, R.; Lorusso, O.; Lopalco, G.; Cantarini, L.; Di Leo, A.; Lapadula, G.; Iannone, F. Sarcopenia in Patients with Rheumatic Diseases: Prevalence and Associated Risk Factors. J. Clin. Med. 2018, 7, 504. [Google Scholar] [CrossRef]
- Torii, M.; Hashimoto, M.; Hanai, A.; Fujii, T.; Furu, M.; Ito, H.; Uozumi, R.; Hamaguchi, M.; Terao, C.; Yamamoto, W.; et al. Prevalence and factors associated with sarcopenia in patients with rheumatoid arthritis. Mod. Rheumatol. 2019, 29, 589–595. [Google Scholar] [CrossRef]
- Mochizuki, T.; Yano, K.; Ikari, K.; Okazaki, K. Sarcopenia in Japanese younger patients with rheumatoid arthritis: A cross-sectional study. Mod. Rheumatol. 2021, 31, 504–505. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.F.; Giles, J.T.; Weber, D.; George, M.D.; Leonard, M.B.; Zemel, B.S.; Long, J.; Katz, P. Sarcopenic obesity in rheumatoid arthritis: Prevalence and impact on physical functioning. Rheumatology 2022, 61, 2285–2294. Available online: https://pubmed.ncbi.nlm.nih.gov/34559201/ (accessed on 15 January 2023). [CrossRef] [PubMed]
- van Onna, M.; Boonen, A. Challenges in the management of older patients with inflammatory rheumatic diseases. Nat. Rev. Rheumatol. 2022, 18, 326–334. Available online: https://pubmed.ncbi.nlm.nih.gov/35314796/ (accessed on 14 January 2023). [CrossRef] [PubMed]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cereda, E.; Cruz-Jentoft, A.; Goisser, S.; de Groot, L.; Großhauser, F.; Kiesswetter, E.; Norman, K.; et al. Management of Malnutrition in Older Patients-Current Approaches, Evidence and Open Questions. J. Clin. Med. 2019, 8, 974. [Google Scholar] [CrossRef]
- Tański, W.; Wójciga, J.; Jankowska-Polańska, B. Association between Malnutrition and Quality of Life in Elderly Patients with Rheumatoid Arthritis. Nutrients 2021, 13, 1259. [Google Scholar] [CrossRef]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.C.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef]
- Shepherd, J.A.; Fan, B.; Lu, Y.; Wu, X.P.; Wacker, W.K.; Ergun, D.L.; Levine, M.A. A multinational study to develop universal standardization of whole-body bone density and composition using GE Healthcare Lunar and Hologic DXA systems. J. Bone Miner Res. 2012, 27, 2208–2216. [Google Scholar] [CrossRef]
- Kelly, T.L.; Wilson, K.E.; Heymsfield, S.B. Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS ONE 2009, 4, e7038. [Google Scholar] [CrossRef]
- Kanis, J.A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: Synopsis of a WHO report. WHO Study Group. Osteoporos. Int. 1994, 4, 368–381. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Charlson, M.; Szatrowski, T.P.; Peterson, J.; Gold, J. Validation of a combined comorbidity index. J. Clin. Epidemiol. 1994, 47, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Medication Safety in Polypharmacy: Technical Report. Available online: https://apps.who.int/iris/handle/10665/325454 (accessed on 15 January 2023).
- WHO. Obesity: Preventing and Managing the Global Epidemic. Report of a WHO Consultation. World Health Organ. Tech. Rep. Ser. 2000, 894, 1–253. [Google Scholar]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The FNIH sarcopenia project: Rationale, study description, conference recommendations, and final estimates. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.G.; Song, H.J.; Song, Y.R. Fat-to-muscle ratio as a predictor of insulin resistance and metabolic syndrome in Korean adults. J. Cachexia Sarcopenia Muscle 2020, 11, 710–725. [Google Scholar] [CrossRef]
- Parra-Rodríguez, L.; Szlejf, C.; García-González, A.I.; Malmstrom, T.K.; Cruz-Arenas, E.; Rosas-Carrasco, O. Cross-Cultural Adaptation and Validation of the Spanish-Language Version of the SARC-F to Assess Sarcopenia in Mexican Community-Dwelling Older Adults. J. Am. Med. Dir. Assoc. 2016, 17, 1142–1146. [Google Scholar] [CrossRef] [PubMed]
- Lauretani, F.; Ticinesi, A.; Gionti, L.; Prati, B.; Nouvenne, A.; Tana, C.; Tana, C.; Meschi, T.; Maggio, M. Short-Physical Performance Battery (SPPB) score is associated with falls in older outpatients. Aging Clin. Exp. Res. 2019, 31, 1435–1442. [Google Scholar] [CrossRef]
- Ministerio de Sanidad—Profesionales—Salud Publica—Promocion de la Salud—Prevencion—Estrategia Promocion de la Salud y Prevencion en el Sistema Nacional de Salud. Available online: https://www.sanidad.gob.es/profesionales/saludPublica/prevPromocion/Estrategia/estrategiaPromocionyPrevencion.htm (accessed on 15 January 2023).
- Cesari, M.; Landi, F.; Calvani, R.; Cherubini, A.; Di Bari, M.; Kortebein, P.; Del Signore, S.; Le Lain, R.; Vellas, B.; Fernández-Nebro, A. Rationale for a preliminary operational definition of physical frailty and sarcopenia in the SPRINTT trial. Aging Clin. Exp. Res. 2017, 29, 81–88. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Esteve-Vives, J.; Batlle-Gualda, E.; Reig, A. Spanish version of the Health Assessment Questionnaire: Reliability, validity and transcultural equivalency. Grupo para la Adaptacion del HAQ a la Poblacion Espanola. J. Rheumatol. 1993, 20, 2116–2122. [Google Scholar]
- Steinbrocker, O.; Traeger, C.H.; Batterman, R.C. Therapeutic criteria in rheumatoid arthritis. J. Am. Med. Assoc. 1949, 140, 659–662. [Google Scholar] [CrossRef]
- Brooks, R.; De Charro, F. EuroQol: The current state of play. Health Policy 1996, 37, 53–72. Available online: https://pubmed.ncbi.nlm.nih.gov/10158943/ (accessed on 28 April 2023). [CrossRef] [PubMed]
- Rubenstein, L.Z.; Harker, J.O.; Salvà, A.; Guigoz, Y.; Vellas, B. Screening for undernutrition in geriatric practice: Developing the short-form mini-nutritional assessment (MNA-SF). J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M366–M372. [Google Scholar] [CrossRef] [PubMed]
- Prevoo, M.L.; Van’t Hof, M.A.; Kuper, H.H.; Van Leeuwen, M.A.; Van de Putte, L.B.; Van Riel, P.L. Modified disease activity scores that include twenty-eight-joint counts. Development and validation in a prospective longitudinal study of patients with rheumatoid arthritis. Arthritis Rheum. 1995, 38, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Shin, A.; Choi, S.R.; Han, M.; Ha, Y.J.; Lee, Y.J.; Lee, E.B.; Kang, E.H. Association between sarcopenia defined as low lean mass by dual-energy X-ray absorptiometry and comorbidities of rheumatoid arthritis: Results of a nationwide cross-sectional health examination. Semin. Arthritis Rheum. 2022, 57, 152090. [Google Scholar] [CrossRef]
- Reckner Olsson, A.; Skogh, T.; Wingren, G. Comorbidity and lifestyle, reproductive factors, and environmental exposures associated with rheumatoid arthritis. Ann. Rheum. Dis. 2001, 60, 934–939. [Google Scholar] [CrossRef]
- Wong, K.C.; Tan, E.S.E.; Liow, M.H.L.; Tan, M.H.; Howe, T.S.; Koh, S.B. Lower socioeconomic status is associated with increased co-morbidity burden and independently associated with time to surgery, length of hospitalisation, and readmission rates of hip fracture patients. Arch. Osteoporos. 2022, 17, 139. [Google Scholar] [CrossRef]
- Gandham, A.; Zengin, A.; Bonham, M.P.; Brennan-Olsen, S.L.; Aitken, D.; Winzenberg, T.M.; Ebeling, P.R.; Jones, G.; Scott, D. Associations between socioeconomic status and obesity, sarcopenia, and sarcopenic obesity in community-dwelling older adults: The Tasmanian Older Adult Cohort Study. Exp. Gerontol. 2021, 156, 111627. [Google Scholar] [CrossRef]
- Yuan, S.; Larsson, S.C. Epidemiology of sarcopenia: Prevalence, risk factors, and consequences. Metabolism 2023, 155533. [Google Scholar] [CrossRef]
- Dietzel, R.; Wiegmann, S.; Borucki, D.; Detzer, C.; Zeiner, K.N.; Schaumburg, D.; Buehring, B.; Buttgereit, F.; Armbrecht, G. Prevalence of sarcopenia in patients with rheumatoid arthritis using the revised EWGSOP2 and the FNIH definition. RMD Open 2022, 8, e002600. Available online: https://pubmed.ncbi.nlm.nih.gov/36180102/ (accessed on 14 January 2023). [CrossRef]
- Ben Tekaya, A.; Mehmli, T.; Ben Sassi, M.; Teyeb, Z.; Bouden, S.; Rouached, L.; Mahmoud, I.; Dziri, C.; Abdelmoula, L. Effects of biologic and target synthetic disease-modifying anti-rheumatic drugs on sarcopenia in spondyloarthritis and rheumatoid arthritis: A systematic review and meta-analysis. Clin. Rheumatol. 2022, 42, 979–997. [Google Scholar] [CrossRef]
- Chen, H.; Yi, Y.-Y.; Zhang, S.-B.; Xu, H.-W.; Fang, X.-Y.; Hu, T.; Wu, D.-S.; Wang, S.-J. Sarcopenic obesity defined by visceral adiposity was associated with osteoporotic vertebral fracture. Arch. Osteoporos. 2022, 17, 41. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, T.; Bouchi, R.; Takeuchi, T.; Tsujimoto, K.; Minami, I.; Yoshimoto, T.; Minami, I.; Yoshimoto, T.; Ogawa, Y. Sarcopenic obesity assessed using dual energy X-ray absorptiometry (DXA) can predict cardiovascular disease in patients with type 2 diabetes: A retrospective observational study. Cardiovasc. Diabetol. 2018, 17, 55. [Google Scholar] [CrossRef]
- Yu, B.; Sun, Y.; Du, X.; Zhang, H.; Chen, C.; Tan, X.; Yang, Z.; Lu, Y.; Wang, N. Age-specific and sex-specific associations of visceral adipose tissue mass and fat-to-muscle mass ratio with risk of mortality. J. Cachexia Sarcopenia Muscle 2022, 14, 406–417. [Google Scholar] [CrossRef]
- Dos Santos, M.R.; da Fonseca, G.W.P.; Sherveninas, L.P.; de Souza, F.R.; Battaglia Filho, A.C.; Novaes, C.E.; Pereira, R.M.R.; Negrão, C.E.; Barretto, A.C.P.; Alves, M.N.N. Android to gynoid fat ratio and its association with functional capacity in male patients with heart failure. ESC Heart Fail. 2020, 7, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Bea, J.W.; Chen, Z.; Blew, R.M.; Nicholas, J.S.; Follis, S.; Bland, V.L.; Cheng, T.-Y.D.; Ochs-Balcom, H.M.; Wactawski-Wende, J.; Banack, H.R.; et al. MRI Based Validation of Abdominal Adipose Tissue Measurements from DXA in Postmenopausal Women. J. Clin. Densitom. 2022, 25, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Summers, G.D.; Metsios, G.S.; Stavropoulos-Kalinoglou, A.; Kitas, G.D. Rheumatoid cachexia and cardiovascular disease. Nat. Rev. Rheumatol. 2010, 6, 445–451. [Google Scholar] [CrossRef]
- Manrique-Arija, S.; Mena-Vazquez, N.; Ureña, I.; Rioja, J.; Valdivielso, P.; Ginel-Mendoza, L.; Abad-Sánchez, S.; Jiménez-Núñez, F.G.; Oliver-Martos, B.; Fernandez-Nebro, A. Cumulative inflammatory burden and obesity as determinants of insulin resistance in patients with established rheumatoid arthritis: Cross-sectional study. BMJ Open 2021, 11, e044749. [Google Scholar] [CrossRef]
- Alvarez-Nemegyei, J.; Buenfil-Rello, F.A.; Pacheco-Pantoja, E.L. Association between body composition and disease activity in rheumatoid arthritis. A systematic review. Reumatol. Clin. 2016, 12, 190–195. Available online: https://pubmed.ncbi.nlm.nih.gov/26549160/ (accessed on 14 January 2023). [CrossRef]
- Targowski, T. Sarcopaenia and rheumatoid arthritis. Reumatologia 2017, 55, 84. [Google Scholar] [CrossRef]
- Müller, R.; Kull, M.; Põlluste, K.; Valner, A.; Lember, M.; Kallikorm, R. Factors Associated with Low Lean Mass in Early Rheumatoid Arthritis: A Cross-Sectional Study. Medicina 2019, 55, 730. [Google Scholar] [CrossRef]
- Tekgoz, E.; Colak, S.; Ozalp Ates, F.S.; Sonaeren, I.; Yilmaz, S.; Cinar, M. Sarcopenia in rheumatoid arthritis: Is it a common manifestation? Int. J. Rheum. Dis. 2020, 23, 1685–1691. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Heymsfield, S.B.; Wang, Z.M.; Ross, R.; Casamento-Moran, A.; Chen, Y.-T.; Lodha, N.; Yacoubi, B.; Christou, E.A.; Deane, C.S.; et al. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 2000, 89, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, H.; Yano, K.; Furu, M.; Yamakawa, N.; Ikari, K.; Hashimoto, M.; Ito, H.; Fujii, T.; Yamamoto, W.; Ohmura, K.; et al. Time-averaged disease activity fits better joint destruction in rheumatoid arthritis. Sci. Rep. 2017, 7, 5856. [Google Scholar] [CrossRef] [PubMed]
- Semenova, E.A.; Pranckevičienė, E.; Bondareva, E.A.; Gabdrakhmanova, L.J.; Ahmetov, I.I. Identification and Characterization of Genomic Predictors of Sarcopenia and Sarcopenic Obesity Using UK Biobank Data. Nutrients 2023, 15, 758. [Google Scholar] [CrossRef]
RA Patients N = 76 | Controls N = 76 | p-Value | |
---|---|---|---|
Age, yrs, mean (SD) | 71.0 (4.8) | 71.2 (4.9) | 0.726 |
65–69 yrs | 32 (42.1) | 29 (38.2) | |
70–79 yrs | 40 (52.6) | 42 (55.3) | |
80–90 yrs | 4 (5.3) | 5 (6.6) | |
Women, n (%) | 60 (78.9) | 60 (78.9) | 1.000 |
Smoking status | 0.121 | ||
Non-smokers, n (%) | 54 (71) | 57 (75) | |
Smokers, n (%) | 6 (7.9) | 11 (14.5) | |
Former smokers, n (%) | 16 (21.1) | 8 (10.5) | |
Alcohol intake, n (%) | 12 (15.8) | 17 (22.5) | 0.195 |
Educational level | <0.001 | ||
No studies | 9 (11.8) | 1 (1.3) | |
Primary studies | 55 (72.4) | 41 (53.9) | |
Secondary studies | 10 (13.2) | 24 (31.6) | |
Higher education | 2 (2.6) | 10 (13.2) | |
Economic level | 0.003 | ||
No income, n (%) | 12 (15.8) | 5 (6.6) | |
Income < EUR 1500, n (%) | 51 (67.1) | 40 (52.6) | |
Income ≥ EUR 1500, n (%) | 13 (17.1) | 31 (40.8) | |
Comorbidities | |||
High blood pressure, n (%) | 43 (56.6) | 21 (27.6) | <0.001 |
Diabetes mellitus, n (%) | 13 (17.1) | 8 (10.5) | 0.240 |
Dyslipidemia, n (%) | 30 (39.5) | 19 (25.0) | 0.056 |
Cardiovascular disease, n (%) | 4 (5.3) | 1 (1.3) | 0.172 |
Osteoporosis, n (%) | 15 (19.7) | 4 (5.3) | 0.007 |
Asthma, n (%) | 1 (7.9) | 0 (0.0) | 0.012 |
Other comorbidities, n (%) | 44 (57.9) | 29 (38.2) | 0.015 |
Age-CCI, median (p25–p75) | 3.0 (3.0–4.0) | 3.0 (2.0–3.0) | <0.001 |
Estimated 10-year survival (%), median (p25–p75) | 77.0 (53.0–77.0) | 77.0 (77.0–90.0) | <0.001 |
RA Patients N = 76 | Controls N = 76 | p-Value | |
---|---|---|---|
Duration of RA, years, mean (SD) | 18 (7.8) | - | |
RF positive > 10 IU/mL, n (%) | 57 (75.0) | 0 | |
ACPA positive > 20 IU/mL, n (%) | 55 (72.4) | 0 | |
CRP, mg/L, median (p25–p75) | 3.3 (2.1–6.0) | 2.7 (1.1–4.0) | 0.002 |
DAS28-ESR at cut-off, score 0–10, mean (SD) | 2.9 (1.1) | - | |
Remission or low activity, n (%) | 49 (64.5) | ||
Moderate or high activity, n (%) | 27 (35.5) | ||
HAQ-DI, score 0–3, mean (SD) | 1.282 (0.798) | - | |
Treatments | |||
NSAIDs, n (%) | 32 (42.1) | 6 (7.9) | <0.001 |
Analgesics, n (%) | 1.0 (0.7) | 0.2 (0.5) | <0.001 |
csDMARDs, n (%) | 45 (59.2) | 0 (0.0) | <0.001 |
No. of csDMARDs, median (p25–p75) | 1.0 (0–1.7) | 0 | <0.001 |
bDMARDs, n (%) | 56 (73.7) | 0 (0.0) | <0.001 |
No. of bDMARDs, median (p25–p75) | 4.0 (0.0–7.0) | 0 | <0.001 |
Glucocorticoids at cut-off, n (%) | 44 (57.9) | 0 | <0.001 |
Polypharmacy, n (%) | 69 (90.8) | 23 (30.3) | <0.001 |
No. of drugs, median (p25–p75) | 8.0 (6.0–11.0) | 3.0 (2.0–4.7) | <0.001 |
RA Patients N = 76 | Controls N = 76 | p-Value | |
---|---|---|---|
Anthropometric measurements | |||
BMI, kg/m2, mean (SD) | 28.1 (5.0) | 28.1 (4.5) | 0.296 |
Underweight | 1 (1.3) | 1 (1.3) | |
Normal weight | 14 (18.4) | 16 (21.1) | |
Overweight | 31 (40.8) | 38 (50.0) | |
Obesity, n (%) | 30 (39.5) | 21 (27.6) | 0.252 |
Class I obesity | 21 (27.6) | 12 (15.8) | |
Class II obesity | 6 (7.9) | 9 (11.8) | |
Class II obesity | 3 (3.9) | 0 | |
Right arm circumference, cm | 29.5 (4.5) | 29.9 (4.5) | 0.422 |
Left arm circumference, cm | 29.6 (4.5) | 29.9 (4.5) | 0.714 |
Left triceps skinfold, mm | 14.0 (10.3–19.0) | 17.2 (11.8–23.0) | 0.034 |
Right triceps skinfold, mm | 14.0 (10.2–17.9) | 15.5 (11.8–23.5) | 0.049 |
Nutrition | |||
MNA, mean (SD) | 12.3 (2.0) | 12.9 (1.6) | 0.057 |
Malnutrition, n (%) | 24 (31.6) | 17 (22.4) | 0.201 |
Total proteins, g/L, mean (SD) | 6.8 (0.5) | 6.9 (0.7) | 0.081 |
Albumin, g/L, mean (SD) | 4.1 (0.4) | 4.3 (0.7) | 0.139 |
Hemoglobin, mg/dL, median (p25–p75) | 13.2 (12.2–14.1) | 13.9 (12.9–14.7) | 0.322 |
Calcium, mg/dL, mean (SD) | 11.8 (13.8) | 9.5 (0.6) | 0.182 |
Vitamin B12, pg/mL, median (p25–p75) | 315.5 (258.2–404.2) | 397.0 (305.0–501.0) | 0.006 |
Vitamin D, ng/mL, mean (SD) | 30.8 (15.3) | 28.8 (14.3) | 0.456 |
Strength and performance | |||
Functional class | <0.001 | ||
Steinbrocker I, n (%) | 22 (28.9) | 67 (88.2) | |
Steinbrocker II, n (%) | 38 (50.0) | 8 (10.5) | |
Steinbrocker III, n (%) | 15 (19.7) | 1 (1.3) | |
Steinbrocker IV, n (%) | 1 (1.3) | 0 (0.0) | |
Physical frailty, n (%) | 31 (40.1) | 12 (15.8) | <0.001 |
EuroQol—VAS, median (p25–p75) | 55.0 (41.2–69.0) | 75.0 (60.0–80.0) | <0.001 |
EuroQol 5D-5L, median (p25–p75) (0–1) | 0.53 (0.31–0.71) | 1.0 (0.78–1.0) | 0.001 |
IPAQ, METs, median (p25–p75) | 260.0 (0.0–630.0) | 594.0 (0.0–1173.7) | 0.002 |
Handgrip strength, kg, median (p25–p75) | 16.8 (10.4–21.9) | 25.0 (20.0–35.5) | <0.001 |
Reduced handgrip strength, n (%) | 65 (85.5) | 42 (55.3) | <0.001 |
Gait speed, m/s, median (p25–p75) | 1.2 (1.0–1.5) | 0.9 (0.8–1.2) | <0.001 |
Low speed, n (%) | 9 (11.8) | 16 (21.1) | 0.126 |
SPPB, median (p25–p75) | 7.0 (5.5–9.0) | 10.0 (9.0–11.0) | <0.001 |
SARC-F questionnaire (0–10), median (p25–p75) | 5.0 (3–6) | 1.0 (0–2) | <0.001 |
High SARC-F, n (%) | 53 (69.7) | 12 (15.8) | <0.001 |
Body composition | |||
Appendicular LM, kg, median (p25–p75) | 14.7 (13.8–16.9) | 15.5 (15.4–18.9) | 0.210 |
Appendicular FFMI, kg/m2, median (p25–p75) | 6.0 (5.3–7.0) | 6.2 (5.6–7.2) | 0.074 |
Appendicular FM, kg, median (p25–p75) | 12.8 (11.7–14.1) | 11.09 (10.06–13.6) | 0.104 |
FMI, kg/m2, mean (SD) | 5.2 (1.8) | 4.7 (1.7) | 0.104 |
High FMI *, n (%) | 43 (56.6) | 23 (41.8) | 0.095 |
Sarcopenia EWGSOP2, n (%) | |||
Probable sarcopenia, n (%) | 35 (46.1) | 11 (14.5) | <0.001 |
Confirmed sarcopenia, n (%) | 12 (15.8) | 3 (3.9) | 0.014 |
Severe sarcopenia | 1 (1.3) | 0 | 1.000 |
Sarcopenic obesity †, n (%) | 8 (10.5) | 1 (1.3) | 0.016 |
Osteosarcopenia ‡, n (%) | 3 (4.1) | 0 | 0.076 |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
Predictor | OR | 95% CI | p-Value | OR | 95% CI | p-Value |
Male sex | 0.3 | 0.1–1.0 | 0.057 | 9.3 | 1.1–80.4 | 0.042 |
Age, yrs | 0.9 | 0.97–0.9 | <0.001 | |||
RA duration, yrs | 0.9 | 0.9–0.9 | <0.001 | 1.1 | 1.0–1.2 | 0.012 |
MNA screening | 0.9 | 0.8–0.9 | <0.001 | 0.7 | 0.5–0.9 | 0.042 |
SPPB | 0.8 | 0.7–0.9 | <0.001 | |||
DAS28-ESR | 0.6 | 0.5–0.8 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cano-García, L.; Manrique-Arija, S.; Domínguez-Quesada, C.; Vacas-Pérez, J.C.; Armenteros-Ortiz, P.J.; Ruiz-Vilchez, D.; Martín-Martín, J.M.; Redondo-Rodríguez, R.; García-Studer, A.; Ortiz-Márquez, F.; et al. Sarcopenia and Nutrition in Elderly Rheumatoid Arthritis Patients: A Cross-Sectional Study to Determine Prevalence and Risk Factors. Nutrients 2023, 15, 2440. https://doi.org/10.3390/nu15112440
Cano-García L, Manrique-Arija S, Domínguez-Quesada C, Vacas-Pérez JC, Armenteros-Ortiz PJ, Ruiz-Vilchez D, Martín-Martín JM, Redondo-Rodríguez R, García-Studer A, Ortiz-Márquez F, et al. Sarcopenia and Nutrition in Elderly Rheumatoid Arthritis Patients: A Cross-Sectional Study to Determine Prevalence and Risk Factors. Nutrients. 2023; 15(11):2440. https://doi.org/10.3390/nu15112440
Chicago/Turabian StyleCano-García, Laura, Sara Manrique-Arija, Carmen Domínguez-Quesada, Juan Crisóstomo Vacas-Pérez, Pedro J. Armenteros-Ortiz, Desiré Ruiz-Vilchez, José María Martín-Martín, Rocío Redondo-Rodríguez, Aimara García-Studer, Fernando Ortiz-Márquez, and et al. 2023. "Sarcopenia and Nutrition in Elderly Rheumatoid Arthritis Patients: A Cross-Sectional Study to Determine Prevalence and Risk Factors" Nutrients 15, no. 11: 2440. https://doi.org/10.3390/nu15112440
APA StyleCano-García, L., Manrique-Arija, S., Domínguez-Quesada, C., Vacas-Pérez, J. C., Armenteros-Ortiz, P. J., Ruiz-Vilchez, D., Martín-Martín, J. M., Redondo-Rodríguez, R., García-Studer, A., Ortiz-Márquez, F., Mena-Vázquez, N., & Fernández-Nebro, A. (2023). Sarcopenia and Nutrition in Elderly Rheumatoid Arthritis Patients: A Cross-Sectional Study to Determine Prevalence and Risk Factors. Nutrients, 15(11), 2440. https://doi.org/10.3390/nu15112440