Serum Acylcarnitines Profile in Critically Ill Survivors According to Illness Severity and ICU Length of Stay: An Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Serum Acylcarnitine Profiling
2.3. Other Collected Data
2.4. Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Longo, N.; Frigeni, M.; Pasquali, M. Carnitine transport and fatty acid oxidation. Biochim. Biophys. Acta 2016, 1863, 2422–2435. [Google Scholar] [CrossRef] [PubMed]
- Reuter, S.E.; Evans, A.M. Carnitine and acylcarnitines: Pharmacokinetic, pharmacological and clinical aspects. Clin. Pharmacokinet. 2012, 51, 553–572. [Google Scholar] [CrossRef] [PubMed]
- McCann, M.R.; George De la Rosa, M.V.; Rosania, G.R.; Stringer, K.A. L-Carnitine and Acylcarnitines: Mitochondrial Biomarkers for Precision Medicine. Metabolites 2021, 11, 51. [Google Scholar] [CrossRef]
- Rousseau, A.F.; Schmitz, S.; Cavalier, E.; Misset, B.; Boemer, F. Altered Serum Acylcarnitines Profile after a Prolonged Stay in Intensive Care. Nutrients 2022, 14, 1122. [Google Scholar] [CrossRef] [PubMed]
- Puthucheary, Z.A.; Rawal, J.; McPhail, M.; Connolly, B.; Ratnayake, G.; Chan, P.; Hopkinson, N.S.; Phadke, R.; Dew, T.; Sidhu, P.S.; et al. Acute skeletal muscle wasting in critical illness. JAMA 2013, 310, 1591–1600. [Google Scholar] [CrossRef] [PubMed]
- Hermans, G.; Van den Berghe, G. Clinical review: Intensive care unit acquired weakness. Crit. Care 2015, 19, 274. [Google Scholar] [CrossRef]
- Owen, A.M.; Patel, S.P.; Smith, J.D.; Balasuriya, B.K.; Mori, S.F.; Hawk, G.S.; Stromberg, A.J.; Kuriyama, N.; Kaneki, M.; Rabchevsky, A.G.; et al. Chronic muscle weakness and mitochondrial dysfunction in the absence of sustained atrophy in a preclinical sepsis model. eLife 2019, 8, e49920. [Google Scholar] [CrossRef]
- Nanas, S.; Kritikos, K.; Angelopoulos, E.; Siafaka, A.; Tsikriki, S.; Poriazi, M.; Kanaloupiti, D.; Kontogeorgi, M.; Pratikaki, M.; Zervakis, D.; et al. Predisposing factors for critical illness polyneuromyopathy in a multidisciplinary intensive care unit. Acta Neurol. Scand. 2008, 118, 175–181. [Google Scholar] [CrossRef]
- Millington, D.S.; Kodo, N.; Norwood, D.L.; Roe, C.R. Tandem mass spectrometry: A new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J. Inherit. Metab. Dis. 1990, 13, 321–324. [Google Scholar] [CrossRef]
- Van Hove, J.L.; Zhang, W.; Kahler, S.G.; Roe, C.R.; Chen, Y.T.; Terada, N.; Chace, D.H.; Iafolla, A.K.; Ding, J.H.; Millington, D.S. Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency: Diagnosis by acylcarnitine analysis in blood. Am. J. Hum. Genet. 1993, 52, 958–966. [Google Scholar]
- Millington, D.S.; Stevens, R.D. Acylcarnitines: Analysis in plasma and whole blood using tandem mass spectrometry. Methods Mol. Biol. 2011, 708, 55–72. [Google Scholar] [PubMed]
- Rinaldo, P.; Cowan, T.M.; Matern, D. Acylcarnitine profile analysis. Genet. Med. 2008, 10, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Filee, R.; Schoos, R.; Boemer, F. Evaluation of physiological amino acids profiling by tandem mass spectrometry. JIMD Rep. 2014, 13, 119–128. [Google Scholar] [PubMed]
- Roe, D.S.; Roe, C.R.; Brivet, M.; Sweetman, L. Evidence for a short-chain carnitine-acylcarnitine translocase in mitochondria specifically related to the metabolism of branched-chain amino acids. Mol. Genet. Metab. 2000, 69, 69–75. [Google Scholar] [CrossRef]
- Platell, C.; Kong, S.E.; McCauley, R.; Hall, J.C. Branched-chain amino acids. J. Gastroenterol. Hepatol. 2000, 15, 706–717. [Google Scholar] [CrossRef]
- Hasselgren, P.O.; Pedersen, P.; Sax, H.C.; Warner, B.W.; Fischer, J.E. Current concepts of protein turnover and amino acid transport in liver and skeletal muscle during sepsis. Arch. Surg. 1988, 123, 992–999. [Google Scholar] [CrossRef]
- Singer, P.; Blaser, A.R.; Berger, M.M.; Alhazzani, W.; Calder, P.C.; Casaer, M.P.; Hiesmayr, M.; Mayer, K.; Montejo, J.C.; Pichard, C.; et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019, 38, 48–79. [Google Scholar] [CrossRef]
- Jiroutkova, K.; Krajcova, A.; Ziak, J.; Fric, M.; Waldauf, P.; Dzupa, V.; Gojda, J.; Nemcova-Furstova, V.; Kovar, J.; Elkalaf, M.; et al. Mitochondrial function in skeletal muscle of patients with protracted critical illness and ICU-acquired weakness. Crit. Care 2015, 19, 448. [Google Scholar] [CrossRef]
- Moonen, H.; Van Zanten, A.R.H. Mitochondrial dysfunction in critical illness during acute metabolic stress and convalescence: Consequences for nutrition therapy. Curr. Opin. Crit. Care 2020, 26, 346–354. [Google Scholar] [CrossRef]
- Wolf, A.; Weir, P.; Segar, P.; Stone, J.; Shield, J. Impaired fatty acid oxidation in propofol infusion syndrome. Lancet 2001, 357, 606–607. [Google Scholar] [CrossRef]
- Klawitter, F.; Ehler, J.; Bajorat, R.; Patejdl, R. Mitochondrial Dysfunction in Intensive Care Unit-Acquired Weakness and Critical Illness Myopathy: A Narrative Review. Int. J. Mol. Sci. 2023, 24, 5516. [Google Scholar] [CrossRef] [PubMed]
- Zampino, M.; Tanaka, T.; Ubaida-Mohien, C.; Fantoni, G.; Candia, J.; Semba, R.D.; Ferrucci, L. A Plasma Proteomic Signature of Skeletal Muscle Mitochondrial Function. Int. J. Mol. Sci. 2020, 21, 9540. [Google Scholar] [CrossRef]
- Rogers, A.J.; McGeachie, M.; Baron, R.M.; Gazourian, L.; Haspel, J.A.; Nakahira, K.; Fredenburgh, L.E.; Hunninghake, G.M.; Raby, B.A.; Matthay, M.A.; et al. Metabolomic derangements are associated with mortality in critically ill adult patients. PLoS ONE 2014, 9, e87538. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.P.; Chen, G.Y.; Chuang, T.Y.; Huang, Y.T.; Chang, H.T.; Chen, Y.F.; Liu, W.L.; Chen, Y.J.; Hsu, C.L.; Huang, M.T.; et al. Increased Plasma Acetylcarnitine in Sepsis Is Associated with Multiple Organ Dysfunction and Mortality: A Multicenter Cohort Study. Crit. Care Med. 2019, 47, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Liptak, P.; Baranovicova, E.; Rosolanka, R.; Simekova, K.; Bobcakova, A.; Vysehradsky, R.; Duricek, M.; Dankova, Z.; Kapinova, A.; Dvorska, D.; et al. Persistence of Metabolomic Changes in Patients during Post-COVID Phase: A Prospective, Observational Study. Metabolites 2022, 12, 641. [Google Scholar] [CrossRef]
- Guntur, V.P.; Nemkov, T.; de Boer, E.; Mohning, M.P.; Baraghoshi, D.; Cendali, F.I.; San-Millan, I.; Petrache, I.; D’Alessandro, A. Signatures of Mitochondrial Dysfunction and Impaired Fatty Acid Metabolism in Plasma of Patients with Post-Acute Sequelae of COVID-19 (PASC). Metabolites 2022, 12, 1026. [Google Scholar] [CrossRef]
- Joris, M.; Pincemail, J.; Colson, C.; Joris, J.; Calmes, D.; Cavalier, E.; Misset, B.; Guiot, J.; Minguet, G.; Rousseau, A.F. Exercise Limitation after Critical Versus Mild COVID-19 Infection: A Metabolic Perspective. J. Clin. Med. 2022, 11, 4322. [Google Scholar] [CrossRef]
- Aitken-Buck, H.M.; Krause, J.; Zeller, T.; Jones, P.P.; Lamberts, R.R. Long-Chain Acylcarnitines and Cardiac Excitation-Contraction Coupling: Links to Arrhythmias. Front. Physiol. 2020, 11, 577856. [Google Scholar] [CrossRef] [PubMed]
Data | Survivors of a Cardiac Surgery (CS Group) n = 50 | Survivors of a Prolonged Stay in ICU (PS Group) n = 85 | p Value | ||
---|---|---|---|---|---|
Age, y | 70.9 [65–77.6] | 68 [63–73] | 0.0942 | ||
Male, n (%) | 40 (80) | 67 (78.8) | >0.999 | ||
Weight, kg | 84 [72.7–94] | 77.7 [68.2–87.8] | 0.081 | ||
BMI, kg/m2 | 28.7 [26.1–30.5] | 26.6 [23.5–29.4] | 0.028 | ||
Comorbidities, n (%) | Cardiovascular a | 50 (100) | 68 (80) | <0.001 | |
Respiratory b | 14 (28) | 30 (35.3) | 0.449 | ||
Neurological c | 10 (20) | 8 (9.4) | 0.114 | ||
Chronic kidney disease | 11 (22) | 14 (16.5) | 0.493 | ||
Diabetes | 13 (26) | 24 (28.2) | 0.843 | ||
Cirrnhosis | 0 | 2 (2.3) | 0.530 | ||
Immunosuppression | 0 | 9 (10.6) | 0.026 | ||
Cancer | 5 (10) | 23 (27.1) | 0.027 | ||
Admission category, n (%) | Medical | - | 42 (49.4) | - | |
Surgical | 50 (100) | 43 (50.6) | - | ||
Primary failure, n (%) | Cardiovascular | 50 (100) | 49 (57.7) | - | |
Pulmonary | - | 21 (24.7) | - | ||
Neurologic | - | 2 (2.4) | - | ||
Digestive and hepatic | - | 6 (7) | - | ||
Polytrauma | - | 1 (1.2) | - | ||
Other | - | 6 (7) | - | ||
SAPS II | 23 [18–26.7] | 40.5 [29–54.5] | <0.001 | ||
Mechanical ventilation > 24 h, n (%) | 0 | 56 (65.9) | - | ||
Duration of mechanical ventilation, d | - | 3 [1–11.5] | - | ||
Renal replacement therapy, n (%) | - | 2 (2.3) | - | ||
Duration of renal replacement therapy, d | - | 5 and 8 days | - | ||
Extracorporeal membrane oxygenation, n (%) | - | 2 (2.3) | - | ||
Propofol-based sedation, n (%) | - | 58 (68.2) | - | ||
Duration of propofol infusion, d | - | 2.5 [1–8.2] | - | ||
Type of nutrition during ICU stay, n (%) | Oral nutrition | 50 (100) | 56 (65.9) | - | |
Enteral nutrition | - | 33 (38.8) | - | ||
Parenteral nutrition | - | 12 (14.1) | - | ||
None | - | 9 (10.6) | - | ||
ICU LOS, d | 2 [2,3] | 11 [8–15.5] | <0.001 |
Acylcarnitines (μmol/L) | Reference Range | CS Group n = 50 | PS Group n = 85 | p Value |
---|---|---|---|---|
C0 | 14.95–84.34 | 45.58 [39.2–55.75] | 50.79 [38.22–62.93] | 0.072 |
C2 | 2.71–21.28 | 12.87 [10.61–14.54] | 12.34 [9.33–17.53] | 0.945 |
C3 | 0.086–3.329 | 0.470 [0.337–0.593] | 0.670 [0.448–0.917] | <0.001 |
C3-DC | 0.007–0.221 | 0.090 [0.067–0.130] | 0.090 [0.049–0.135] | 0.340 |
C4 | 0.038–0.400 | 0.200 [0.147–0.270] | 0.300 [0.198–0.420] | <0.001 |
C5 | 0.024–0.202 | 0.110 [0.080–0.150] | 0.110 [0.080–0.150] | 0.816 |
C5:1 | 0.004–0.043 | 0.020 [0.020–0.030] | 0.020 [0.011–0.036] | 0.168 |
C5-OH | 0.011–0.073 | 0.050 [0.047–0.062] | 0.068 [0.050–0.081] | 0.017 |
C5-DC | 0.021–0.267 | 0.200 [0.157–0.270] | 0.203 [0.127–0.290] | 0.058 |
C6 | 0.011–0.164 | 0.090 [0.060–0.140] | 0.090 [0.060–0.160] | 0.289 |
C6-DC | 0.019–0.578 | 0.040 [0.030–0.060] | 0.070 [0.040–0.145] | 0.005 |
C8 | 0.016–0.291 | 0.145 [0.087–0.220] | 0.120 [0.080–0.173] | 0.233 |
C8:1 | 0.019–0.331 | 0.130 [0.090–0.200] | 0.160 [0.118–0.255] | 0.01 |
C10 | 0.023–0.622 | 0.200 [0.130–0.303] | 0.159 [0.100– 0.234] | 0.032 |
C10:1 | 0.016–0.265 | 0.100 [0.080–0.140] | 0.090 [0.060–0.133] | 0.196 |
C10:2 | 0.004–0.050 | 0.020 [0.020–0.030] | 0.020 [0.012–0.030] | 0.651 |
C12 | 0.011–0.239 | 0.090 [0.057–0.120] | 0.060 [0.040–0.090] | 0.003 |
C12:1 | 0.012–0.253 | 0.085 [0.060–0.123] | 0.076 [0.050–0.110] | 0.552 |
C14 | 0.008–0.081 | 0.060 [0.040–0.080] | 0.040 [0.032–0.057] | <0.001 |
C14:1 | 0.016–0.315 | 0.120 [0.090–0.153] | 0.083 [0.060–0.121] | <0.001 |
C14:2 | 0.005- 0.080 | 0.040 [0.030–0.060] | 0.030 [0.020–0.041] | <0.001 |
C14-OH | 0.002–0.016 | 0.020 [0.010–0.020] | 0.010 [0.009–0.020] | 0.005 |
C16 | 0.060–0.293 | 0.270 [0.200–0.380] | 0.190 [0.140–0.290] | <0.001 |
C16:1 | 0.007–0.154 | 0.050 [0.047–0.070] | 0.041 [0.030–0.060] | 0.001 |
C16-OH | 0.001–0.009 | 0.010 [0.010–0.020] | 0.010 [0.005–0.020] | 0.032 |
C18 | 0.019–0.082 | 0.100 [0.087–0.125] | 0.070 [0.045–0.110] | <0.001 |
C18:1 | 0.048–0.479 | 0.270 [0.237–0.320] | 0.220 [0.162–0.290] | 0.001 |
C18:2 | 0.012–0.106 | 0.080 [0.070–0.090] | 0.063 [0.050–0.100] | 0.018 |
C18:1-OH | 0.001–0.010 | 0.020 [0.010–0.030] | 0.010 [0.004–0.020] | <0.001 |
C18:2-OH | 0.001–0.006 | 0.010 [0.001–0.020] | 0.010 [0.002–0.010] | <0.001 |
Acylcarnitines (μmol/L) | Reference Range | CS Group n = 50 | PS Group n = 85 | p Value |
---|---|---|---|---|
SCACs | 0.270–4.071 | 1.185 [0.932–1.895] | 1.520 [1.178–1.974] | 0.010 |
LCACs | 0.195–1.295 | 1.090 [0.935–1.293] | 0.830 [0.660–1.105] | <0.001 |
Biomarkers | Reference Range | CS Group n = 50 | PS Group n = 85 | p Value |
---|---|---|---|---|
Leucine (μmol/L) | 73.5–228 | 155.5 [134.8–196.3] | 127 [92.1–147.5] | <0.001 |
Isoleucine (μmol/L) | 36.5–132 | 97.5 [73.4–116.8] | 75 [55.8–94.85] | 0.001 |
Valine (μmol/L) | 105–352 | 259 [203–306] | 201 [170–239] | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rousseau, A.-F.; Dongier, A.; Colson, C.; Minguet, P.; Defraigne, J.-O.; Minguet, G.; Misset, B.; Boemer, F. Serum Acylcarnitines Profile in Critically Ill Survivors According to Illness Severity and ICU Length of Stay: An Observational Study. Nutrients 2023, 15, 2392. https://doi.org/10.3390/nu15102392
Rousseau A-F, Dongier A, Colson C, Minguet P, Defraigne J-O, Minguet G, Misset B, Boemer F. Serum Acylcarnitines Profile in Critically Ill Survivors According to Illness Severity and ICU Length of Stay: An Observational Study. Nutrients. 2023; 15(10):2392. https://doi.org/10.3390/nu15102392
Chicago/Turabian StyleRousseau, Anne-Françoise, Alice Dongier, Camille Colson, Pauline Minguet, Jean-Olivier Defraigne, Grégory Minguet, Benoit Misset, and François Boemer. 2023. "Serum Acylcarnitines Profile in Critically Ill Survivors According to Illness Severity and ICU Length of Stay: An Observational Study" Nutrients 15, no. 10: 2392. https://doi.org/10.3390/nu15102392
APA StyleRousseau, A. -F., Dongier, A., Colson, C., Minguet, P., Defraigne, J. -O., Minguet, G., Misset, B., & Boemer, F. (2023). Serum Acylcarnitines Profile in Critically Ill Survivors According to Illness Severity and ICU Length of Stay: An Observational Study. Nutrients, 15(10), 2392. https://doi.org/10.3390/nu15102392